organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3028-o3029

N,N′-Di­cyclo­hexyl-N′′-(3-fluoro­benzo­yl)-N,N′-di­methyl­phospho­ric tri­amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and bDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 30 September 2011; accepted 17 October 2011; online 22 October 2011)

In the title compound, C21H33FN3O2P, the P atom has a distorted tetra­hedral environment and the N atoms display geometries consistent with a model of sp2 hybridization (with bond-angle sums for the tertiary N atoms of 357.8 and 358.7°). The phosphoryl and carbonyl groups are anti with respect to each other. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops.

Related literature

For the coordination properties of carbacyl­amido­phosphates, see: Pourayoubi et al. (2011b[Pourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011b). Acta Cryst. C67, m160-m164.]); Gholivand et al. (2010[Gholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318-2324.]); Znovjyak et al. (2009[Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731-3738.]); Trush et al. (2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]); Gubina et al. (2002[Gubina, K. E., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Amirkhanov, V. M. & Domasevitch, K. V. (2002). Polyhedron, 21, 963-967.]). For related structures, see: Pourayoubi et al. (2011a[Pourayoubi, M., Fadaei, H. & Parvez, M. (2011a). Acta Cryst. E67, o2046.]); Pourayoubi & Saneei (2011[Pourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o2201.]). For the syn orientation of the P(=O) group and NH unit in the C(O)NHP(O) skeleton for most known carbacyl­amido­phosphates, see: Toghraee et al. (2011[Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.]). For a procedure to synthesise the starting phospho­rus–chlorine compound, see: Pourayoubi et al. (2011c[Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. E67, o934.]). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H33FN3O2P

  • Mr = 409.47

  • Monoclinic, C 2/c

  • a = 22.6634 (8) Å

  • b = 12.9587 (5) Å

  • c = 17.6627 (7) Å

  • β = 119.061 (1)°

  • V = 4534.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.658, Tmax = 0.746

  • 20958 measured reflections

  • 4228 independent reflections

  • 3254 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.157

  • S = 1.02

  • 4228 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.78 (2) 2.04 (2) 2.807 (2) 165 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

It is now well recognized that carbacylamidophosphates offer very good candidates for coordination chemistry purposes, since they bear a C(O)NHP(O) bifunctional group which is the phosphaza- analogue of β-diketones. In this context, a variety of coordination compounds with both transition and non-transition metal cations have been reported (Pourayoubi et al., 2011b; Gholivand et al., 2010; Znovjyak et al., 2009; Trush et al., 2005; Gubina et al., 2002). Therefore, the synthesis and crystal structure investigations of carbacylamidophosphates have been of particular interest in our research team (Pourayoubi et al., 2011a; Pourayoubi & Saneei, 2011). In this work, the synthesis and crystal structure of a new carbacylamidophosphate, P(O)[NHC(O)C6H4(3-F)][N(CH3)(C6H11)]2, is reported. The molecular structure (ORTEP view) of the title compound is shown in Fig. 1. The phosphoryl group and the NH unit are located in a syn position with respect to each other similar to most of the carbacylamidophosphates (Toghraee et al., 2011). The P atom has a distorted tetrahedral configuration with the bond angles around the P atom in the range of 105.9 (1)–116.4 (1)°. The PO, CO and P—N bond lengths and the P—N—C bond angles are in the range of the expected values. The sum of the surrounding angles around the tertiary N atoms confirms their sp2 hybridization. In the crystal structure, two neighboring molecules are hydrogen-bonded to each other by two equal intermolecular PO···H—N hydrogen bonds (O1···N1 = 2.807 (2) Å) (Table 1) to form a centrosymmetric dimer as an R22(8) ring.

Related literature top

For the coordination properties of carbacylamidophosphates, see: Pourayoubi et al. (2011b); Gholivand et al. (2010); Znovjyak et al. (2009); Trush et al. (2005); Gubina et al. (2002). For related structures, see: Pourayoubi et al. (2011a); Pourayoubi & Saneei (2011). For the syn orientation of the P(O) group and NH unit in the C(O)NHP(O) skeleton for most known carbacylamidophosphates, see: Toghraee et al. (2011). For a procedure to synthesise the starting phosphorus–chlorine compound, see: Pourayoubi et al. (2011c). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

Synthesis of 3-F–C6H4C(O)NHP(O)Cl2 3-F–C6H4C(O)NHP(O)Cl2 was prepared according to the procedure which was previously used for preparation of 2-F–C6H4C(O)NHP(O)Cl2 (Pourayoubi et al., 2011c) by using 3-F–C6H4C(O)NH2 instead of 2-F–C6H4C(O)NH2. Synthesis of the title molecule To a solution of 3-F–C6H4C(O)NHP(O)Cl2 (0.512 g, 2 mmol) in CHCl3 (20 ml), a solution of N-methylcyclohexylamine (0.906 g, 8 mmol) in CHCl3 (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuo and then the resulting solid was washed with water. Single crystals of title compound were obtained from a solution of CH3OH and CHCl3 (2:1) after slow evaporation at room temperature. IR (KBr, cm-1): 3068 (NH), 2930, 2855, 1685 (CO), 1589, 1491, 1448, 1393, 1287, 1272, 1181, 1161, 1005, 982, 886, 860, 749, 682.

Refinement top

Several H atoms were located on the final ΔF map, the H atoms were included in the refinement using the `riding model' method with the X—H bond geometry and the H isotropic displacement parameter depending on the parent atom X.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XPW (Siemens, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot of title compound with labeling. Ellipsoids are given at the 50% probability level.
N,N'-Dicyclohexyl-N''-(3-fluorobenzoyl)- N,N'-dimethylphosphoric triamide top
Crystal data top
C21H33FN3O2PF(000) = 1760
Mr = 409.47Dx = 1.200 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8133 reflections
a = 22.6634 (8) Åθ = 2.4–27.0°
b = 12.9587 (5) ŵ = 0.15 mm1
c = 17.6627 (7) ÅT = 296 K
β = 119.061 (1)°Cubic, colourless
V = 4534.3 (3) Å30.32 × 0.28 × 0.16 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
4228 independent reflections
Radiation source: fine-focus sealed tube3254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2727
Tmin = 0.658, Tmax = 0.746k = 1515
20958 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0936P)2 + 3.0653P]
where P = (Fo2 + 2Fc2)/3
4228 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.93 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C21H33FN3O2PV = 4534.3 (3) Å3
Mr = 409.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.6634 (8) ŵ = 0.15 mm1
b = 12.9587 (5) ÅT = 296 K
c = 17.6627 (7) Å0.32 × 0.28 × 0.16 mm
β = 119.061 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4228 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3254 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.746Rint = 0.031
20958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.93 e Å3
4228 reflectionsΔρmin = 0.29 e Å3
257 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.19691 (2)0.87686 (4)0.02588 (3)0.03552 (19)
O20.30019 (9)0.98806 (14)0.18782 (12)0.0637 (5)
F10.46037 (14)0.6077 (2)0.31270 (17)0.1416 (10)
O10.16844 (7)0.78142 (11)0.02507 (9)0.0426 (4)
N10.27588 (8)0.84697 (15)0.10211 (11)0.0370 (4)
C10.31644 (10)0.90341 (18)0.17448 (13)0.0417 (5)
C30.15054 (14)1.02308 (19)0.0955 (2)0.0618 (7)
H3A0.17101.06690.07090.093*
H3B0.17511.02820.15750.093*
H3C0.10471.04430.07490.093*
N20.20318 (9)0.97566 (15)0.02662 (12)0.0479 (5)
C190.0611 (3)0.7585 (4)0.2030 (4)0.135 (2)
H19A0.05820.82000.23230.162*
H19B0.04280.70120.22040.162*
C200.0200 (2)0.7734 (4)0.1057 (4)0.1268 (18)
H20A0.02610.79030.09050.152*
H20B0.01930.70940.07690.152*
C210.04874 (15)0.8595 (3)0.0735 (2)0.0828 (10)
H21A0.02310.86370.01080.099*
H21B0.04500.92520.09710.099*
C160.12210 (11)0.83718 (19)0.10158 (15)0.0477 (5)
H160.12350.77130.07520.057*
N30.15171 (9)0.91587 (14)0.06955 (12)0.0429 (4)
C40.38187 (11)0.8550 (2)0.23687 (13)0.0458 (6)
C50.39071 (12)0.7492 (2)0.24479 (15)0.0563 (6)
H50.35600.70440.20990.068*
C60.45265 (15)0.7122 (3)0.30609 (18)0.0740 (9)
C70.50556 (14)0.7743 (4)0.35762 (17)0.0865 (12)
H70.54700.74660.39750.104*
C180.1330 (3)0.7373 (3)0.2291 (3)0.1109 (15)
H18A0.13620.67230.20410.133*
H18B0.15880.73110.29170.133*
C170.16264 (17)0.8231 (3)0.19916 (18)0.0774 (9)
H17A0.16260.88710.22770.093*
H17B0.20900.80640.21540.093*
C100.26677 (11)1.00986 (18)0.02259 (15)0.0462 (5)
H100.30350.97810.02930.055*
C150.27532 (14)0.9741 (2)0.09852 (16)0.0599 (7)
H15A0.27260.89940.10220.072*
H15B0.23901.00190.15180.072*
C140.34258 (17)1.0089 (3)0.0885 (2)0.0776 (9)
H14A0.34540.98930.13970.093*
H14B0.37880.97430.03910.093*
C130.35163 (19)1.1247 (3)0.0759 (2)0.0881 (10)
H13A0.39611.14390.06640.106*
H13B0.31831.15950.12770.106*
C120.34381 (19)1.1582 (3)0.0008 (3)0.0898 (10)
H12A0.34801.23260.00660.108*
H12B0.37961.12780.05320.108*
C110.27582 (17)1.1256 (2)0.0098 (2)0.0723 (8)
H11A0.27291.14540.04120.087*
H11B0.24001.16060.05940.087*
C20.13971 (13)1.0138 (2)0.09931 (19)0.0692 (8)
H2A0.10220.98640.09480.104*
H2B0.13670.99210.15300.104*
H2C0.13891.08780.09750.104*
C90.43442 (12)0.9204 (3)0.28957 (16)0.0652 (7)
H90.42840.99150.28510.078*
C80.49597 (15)0.8784 (4)0.34893 (19)0.0887 (12)
H80.53150.92210.38360.106*
H10.2925 (11)0.8035 (17)0.0877 (14)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0267 (3)0.0428 (3)0.0322 (3)0.0018 (2)0.0104 (2)0.0015 (2)
O20.0569 (11)0.0588 (11)0.0590 (11)0.0018 (8)0.0153 (9)0.0221 (8)
F10.117 (2)0.160 (2)0.1197 (19)0.0660 (17)0.0356 (16)0.0554 (17)
O10.0301 (7)0.0530 (9)0.0395 (8)0.0025 (6)0.0128 (6)0.0097 (7)
N10.0297 (9)0.0432 (10)0.0319 (9)0.0053 (7)0.0100 (7)0.0046 (7)
C10.0344 (11)0.0534 (14)0.0345 (11)0.0035 (9)0.0145 (9)0.0065 (9)
C30.0623 (16)0.0495 (15)0.0805 (19)0.0079 (12)0.0401 (15)0.0068 (13)
N20.0341 (10)0.0566 (12)0.0448 (10)0.0024 (8)0.0127 (8)0.0117 (9)
C190.197 (6)0.116 (3)0.183 (5)0.055 (3)0.164 (5)0.036 (3)
C200.098 (3)0.134 (4)0.195 (5)0.058 (3)0.108 (4)0.058 (4)
C210.0469 (15)0.108 (2)0.099 (2)0.0154 (15)0.0406 (16)0.0275 (19)
C160.0438 (12)0.0544 (14)0.0504 (13)0.0089 (10)0.0272 (11)0.0132 (11)
N30.0382 (10)0.0433 (10)0.0495 (10)0.0031 (8)0.0231 (8)0.0041 (8)
C40.0318 (11)0.0755 (17)0.0283 (10)0.0034 (10)0.0133 (9)0.0064 (10)
C50.0392 (13)0.0812 (19)0.0388 (12)0.0100 (12)0.0113 (10)0.0077 (12)
C60.0586 (17)0.106 (2)0.0518 (15)0.0363 (17)0.0225 (14)0.0271 (16)
C70.0364 (15)0.173 (4)0.0375 (14)0.0246 (19)0.0079 (12)0.0137 (19)
C180.168 (5)0.103 (3)0.096 (3)0.021 (3)0.090 (3)0.008 (2)
C170.080 (2)0.096 (2)0.0561 (17)0.0145 (17)0.0327 (16)0.0047 (16)
C100.0408 (12)0.0554 (14)0.0414 (12)0.0026 (10)0.0192 (10)0.0040 (10)
C150.0671 (17)0.0661 (17)0.0508 (14)0.0006 (13)0.0321 (13)0.0005 (12)
C140.081 (2)0.104 (2)0.0696 (19)0.0008 (18)0.0532 (18)0.0014 (17)
C130.081 (2)0.109 (3)0.092 (2)0.0239 (19)0.055 (2)0.0053 (19)
C120.087 (2)0.085 (2)0.116 (3)0.0347 (19)0.064 (2)0.021 (2)
C110.077 (2)0.0608 (17)0.095 (2)0.0165 (14)0.0536 (18)0.0173 (15)
C20.0450 (14)0.0756 (19)0.0676 (17)0.0094 (13)0.0120 (13)0.0298 (14)
C90.0389 (13)0.104 (2)0.0453 (14)0.0153 (13)0.0144 (11)0.0201 (14)
C80.0348 (14)0.173 (4)0.0450 (16)0.0165 (19)0.0090 (12)0.020 (2)
Geometric parameters (Å, º) top
P1—O11.4803 (15)C6—C71.362 (5)
P1—N21.6271 (19)C7—C81.362 (5)
P1—N31.6333 (17)C7—H70.9300
P1—N11.6808 (17)C18—C171.521 (4)
O2—C11.216 (3)C18—H18A0.9700
F1—C61.363 (4)C18—H18B0.9700
N1—C11.368 (3)C17—H17A0.9700
N1—H10.78 (2)C17—H17B0.9700
C1—C41.490 (3)C10—C111.515 (3)
C3—N31.467 (3)C10—C151.518 (3)
C3—H3A0.9600C10—H100.9800
C3—H3B0.9600C15—C141.515 (4)
C3—H3C0.9600C15—H15A0.9700
N2—C21.472 (3)C15—H15B0.9700
N2—C101.476 (3)C14—C131.516 (4)
C19—C181.487 (6)C14—H14A0.9700
C19—C201.518 (7)C14—H14B0.9700
C19—H19A0.9700C13—C121.513 (5)
C19—H19B0.9700C13—H13A0.9700
C20—C211.533 (5)C13—H13B0.9700
C20—H20A0.9700C12—C111.519 (4)
C20—H20B0.9700C12—H12A0.9700
C21—C161.514 (4)C12—H12B0.9700
C21—H21A0.9700C11—H11A0.9700
C21—H21B0.9700C11—H11B0.9700
C16—N31.476 (3)C2—H2A0.9600
C16—C171.520 (4)C2—H2B0.9600
C16—H160.9800C2—H2C0.9600
C4—C51.383 (4)C9—C81.386 (4)
C4—C91.388 (3)C9—H90.9300
C5—C61.377 (3)C8—H80.9300
C5—H50.9300
O1—P1—N2116.35 (10)C19—C18—C17111.1 (4)
O1—P1—N3110.95 (9)C19—C18—H18A109.4
N2—P1—N3105.90 (10)C17—C18—H18A109.4
O1—P1—N1105.93 (9)C19—C18—H18B109.4
N2—P1—N1106.50 (9)C17—C18—H18B109.4
N3—P1—N1111.17 (9)H18A—C18—H18B108.0
C1—N1—P1126.58 (16)C16—C17—C18110.9 (3)
C1—N1—H1118.4 (17)C16—C17—H17A109.5
P1—N1—H1113.4 (16)C18—C17—H17A109.5
O2—C1—N1122.3 (2)C16—C17—H17B109.5
O2—C1—C4121.5 (2)C18—C17—H17B109.5
N1—C1—C4116.18 (19)H17A—C17—H17B108.0
N3—C3—H3A109.5N2—C10—C11111.3 (2)
N3—C3—H3B109.5N2—C10—C15114.0 (2)
H3A—C3—H3B109.5C11—C10—C15111.6 (2)
N3—C3—H3C109.5N2—C10—H10106.5
H3A—C3—H3C109.5C11—C10—H10106.5
H3B—C3—H3C109.5C15—C10—H10106.5
C2—N2—C10117.30 (19)C14—C15—C10111.0 (2)
C2—N2—P1116.26 (16)C14—C15—H15A109.4
C10—N2—P1124.22 (15)C10—C15—H15A109.4
C18—C19—C20110.6 (3)C14—C15—H15B109.4
C18—C19—H19A109.5C10—C15—H15B109.4
C20—C19—H19A109.5H15A—C15—H15B108.0
C18—C19—H19B109.5C15—C14—C13111.6 (3)
C20—C19—H19B109.5C15—C14—H14A109.3
H19A—C19—H19B108.1C13—C14—H14A109.3
C19—C20—C21112.0 (3)C15—C14—H14B109.3
C19—C20—H20A109.2C13—C14—H14B109.3
C21—C20—H20A109.2H14A—C14—H14B108.0
C19—C20—H20B109.2C12—C13—C14110.4 (3)
C21—C20—H20B109.2C12—C13—H13A109.6
H20A—C20—H20B107.9C14—C13—H13A109.6
C16—C21—C20109.7 (3)C12—C13—H13B109.6
C16—C21—H21A109.7C14—C13—H13B109.6
C20—C21—H21A109.7H13A—C13—H13B108.1
C16—C21—H21B109.7C13—C12—C11111.3 (3)
C20—C21—H21B109.7C13—C12—H12A109.4
H21A—C21—H21B108.2C11—C12—H12A109.4
N3—C16—C21112.0 (2)C13—C12—H12B109.4
N3—C16—C17112.4 (2)C11—C12—H12B109.4
C21—C16—C17110.9 (2)H12A—C12—H12B108.0
N3—C16—H16107.1C10—C11—C12110.4 (3)
C21—C16—H16107.1C10—C11—H11A109.6
C17—C16—H16107.1C12—C11—H11A109.6
C3—N3—C16117.01 (18)C10—C11—H11B109.6
C3—N3—P1123.44 (16)C12—C11—H11B109.6
C16—N3—P1118.25 (15)H11A—C11—H11B108.1
C5—C4—C9120.2 (2)N2—C2—H2A109.5
C5—C4—C1122.4 (2)N2—C2—H2B109.5
C9—C4—C1117.4 (2)H2A—C2—H2B109.5
C6—C5—C4117.8 (3)N2—C2—H2C109.5
C6—C5—H5121.1H2A—C2—H2C109.5
C4—C5—H5121.1H2B—C2—H2C109.5
C7—C6—F1119.7 (3)C8—C9—C4119.2 (3)
C7—C6—C5123.4 (3)C8—C9—H9120.4
F1—C6—C5116.9 (3)C4—C9—H9120.4
C6—C7—C8118.0 (3)C7—C8—C9121.4 (3)
C6—C7—H7121.0C7—C8—H8119.3
C8—C7—H7121.0C9—C8—H8119.3
O1—P1—N1—C1165.46 (18)N1—C1—C4—C9154.3 (2)
N2—P1—N1—C170.1 (2)C9—C4—C5—C60.1 (3)
N3—P1—N1—C144.8 (2)C1—C4—C5—C6178.2 (2)
P1—N1—C1—O25.7 (3)C4—C5—C6—C71.4 (4)
P1—N1—C1—C4173.91 (15)C4—C5—C6—F1179.8 (2)
O1—P1—N2—C260.3 (2)F1—C6—C7—C8179.8 (3)
N3—P1—N2—C263.5 (2)C5—C6—C7—C81.4 (5)
N1—P1—N2—C2178.06 (19)C20—C19—C18—C1756.5 (5)
O1—P1—N2—C10102.28 (19)N3—C16—C17—C18176.7 (3)
N3—P1—N2—C10133.94 (18)C21—C16—C17—C1857.1 (4)
N1—P1—N2—C1015.5 (2)C19—C18—C17—C1657.4 (4)
C18—C19—C20—C2156.3 (5)C2—N2—C10—C1163.9 (3)
C19—C20—C21—C1655.5 (4)P1—N2—C10—C11133.7 (2)
C20—C21—C16—N3178.0 (3)C2—N2—C10—C1563.3 (3)
C20—C21—C16—C1755.6 (4)P1—N2—C10—C1599.0 (2)
C21—C16—N3—C358.5 (3)N2—C10—C15—C14178.1 (2)
C17—C16—N3—C367.1 (3)C11—C10—C15—C1454.8 (3)
C21—C16—N3—P1134.1 (2)C10—C15—C14—C1355.0 (3)
C17—C16—N3—P1100.3 (2)C15—C14—C13—C1256.0 (4)
O1—P1—N3—C3156.59 (19)C14—C13—C12—C1156.9 (4)
N2—P1—N3—C329.5 (2)N2—C10—C11—C12175.9 (3)
N1—P1—N3—C385.8 (2)C15—C10—C11—C1255.6 (4)
O1—P1—N3—C1636.84 (18)C13—C12—C11—C1056.8 (4)
N2—P1—N3—C16163.94 (15)C5—C4—C9—C81.1 (4)
N1—P1—N3—C1680.77 (17)C1—C4—C9—C8179.5 (2)
O2—C1—C4—C5152.3 (2)C6—C7—C8—C90.1 (5)
N1—C1—C4—C527.3 (3)C4—C9—C8—C71.1 (4)
O2—C1—C4—C926.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.78 (2)2.04 (2)2.807 (2)165 (2)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC21H33FN3O2P
Mr409.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)22.6634 (8), 12.9587 (5), 17.6627 (7)
β (°) 119.061 (1)
V3)4534.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.32 × 0.28 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.658, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
20958, 4228, 3254
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.157, 1.02
No. of reflections4228
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XPW (Siemens, 1996), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.78 (2)2.04 (2)2.807 (2)165 (2)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K., Mahzouni, H. R., Pourayoubi, M. & Amiri, S. (2010). Inorg. Chim. Acta, 363, 2318–2324.  Web of Science CSD CrossRef CAS Google Scholar
First citationGubina, K. E., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Amirkhanov, V. M. & Domasevitch, K. V. (2002). Polyhedron, 21, 963–967.  Web of Science CSD CrossRef CAS Google Scholar
First citationPourayoubi, M., Fadaei, H. & Parvez, M. (2011a). Acta Cryst. E67, o2046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Golen, J. A., Rostami Chaijan, M., Divjakovic, V., Negari, M. & Rheingold, A. L. (2011b). Acta Cryst. C67, m160–m164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M. & Saneei, A. (2011). Acta Cryst. E67, o2201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2011c). Acta Cryst. E67, o934.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationZnovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3028-o3029
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds