organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Cyano-N′-[1-(2-hy­dr­oxy­phen­yl)ethyl­­idene]acetohydrazide monohydrate

aCollege of Chemistry and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: hbli@ycit.edu.cn

(Received 8 October 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, C11H11N3O2·H2O, was obtained by the reaction of 2-acetyl­phenol with cyano­acetohydrazide in methanol. The asymmetric unit contains two hydrazone mol­ecules and two water mol­ecules of crystallization. There is an intra­molecular O—H⋯N hydrogen bond in each hydrazone mol­ecule. The crystal structure is stabilized by inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

For the structures of hydrazones, see: Wang et al. (2011[Wang, F., Liu, D.-Y., Wang, H.-B., Meng, X.-S. & Kang, T.-G. (2011). Acta Cryst. E67, o810.]); Hashemian et al. (2011[Hashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]). For compounds we have reported on recently, see: Li & Ni (2011[Li, H. & Ni, X. (2011). Acta Cryst. E67, o2002.]); Li & Chen (2011[Li, H. & Chen, P. (2011). Acta Cryst. E67, o2001.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N3O2·H2O

  • Mr = 235.24

  • Monoclinic, P 21 /n

  • a = 17.387 (3) Å

  • b = 7.576 (2) Å

  • c = 17.855 (3) Å

  • β = 90.962 (2)°

  • V = 2351.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 14877 measured reflections

  • 4994 independent reflections

  • 2551 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.147

  • S = 1.02

  • 4994 reflections

  • 329 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯N6i 0.84 (1) 2.17 (2) 2.975 (4) 159 (3)
O5—H5B⋯O3ii 0.85 (1) 2.43 (2) 3.120 (4) 140 (3)
O6—H6A⋯O4iii 0.85 (1) 2.06 (1) 2.900 (3) 173 (3)
O5—H5A⋯O2 0.85 (1) 1.93 (1) 2.777 (3) 174 (3)
N5—H5⋯O5iv 0.90 (1) 1.93 (1) 2.820 (3) 171 (3)
N2—H2⋯O6v 0.90 (1) 2.03 (1) 2.905 (3) 162 (3)
O3—H3A⋯N4 0.82 1.82 2.534 (3) 145
O1—H1⋯N1 0.82 1.81 2.528 (3) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, a great number of hydrazones derived from the reaction of salicylaldehyde and its derivatives with benzohydrazides have been reported (Wang et al., 2011; Hashemian et al., 2011; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on the hydrazones derived from cyanoacetohydrazide (Li & Ni, 2011; Li & Chen, 2011), in this paper, the title new hydrazone compound, (I), is reported.

The asymmetric unit of the compound contains two hydrazone molecules and two water molecules of crystallization, Fig. 1. There is an intramolecular O—H···N hydrogen bond (Table 1) in the hydrazone molecule. The non-hydrogen atoms of the hydrazone molecules are approximately coplanar, with mean deviations from the least-squares planes of 0.107 (3) Å for molecule A and 0.100 (3) Å for molecule B. The crystal structure is stabilized by intermolecular N—H···O, O—H···O, and O—H···N hydrogen bonds (Table 2, and Fig. 2).

Related literature top

For the structures of hydrazones, see: Wang et al. (2011); Hashemian et al. (2011); Singh & Singh (2010); Ahmad et al. (2010). For compounds we have reported recently, see: Li & Ni (2011); Li & Chen (2011).

Experimental top

The title compound was obtained by the reaction of equimolar quantities (1.0 mmol each) of 2-acetylphenol with cyanoacetohydrazide in methanol. Single crystals suitable for X-ray diffraction were obtained by the slow evaporation of the solution containing the compound in open air.

Refinement top

The water H atoms and the amino H atoms were located from a difference Fourier map and refined isotropically, with O—H, H···H, and N—H distances restrained to 0.85 (1), 1.37 (2), and 0.90 (1) Å, respectively. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 (1.5 for methyl group) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. Intramolecular O—H···N hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Cyano-N'-[1-(2-hydroxyphenyl)ethylidene]acetohydrazide monohydrate top
Crystal data top
C11H11N3O2·H2OF(000) = 992
Mr = 235.24Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.387 (3) ÅCell parameters from 2383 reflections
b = 7.576 (2) Åθ = 2.3–24.5°
c = 17.855 (3) ŵ = 0.10 mm1
β = 90.962 (2)°T = 298 K
V = 2351.7 (8) Å3Block, colorless
Z = 80.20 × 0.18 × 0.17 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube2551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.981, Tmax = 0.983k = 99
14877 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2161P]
where P = (Fo2 + 2Fc2)/3
4994 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.19 e Å3
8 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H11N3O2·H2OV = 2351.7 (8) Å3
Mr = 235.24Z = 8
Monoclinic, P21/nMo Kα radiation
a = 17.387 (3) ŵ = 0.10 mm1
b = 7.576 (2) ÅT = 298 K
c = 17.855 (3) Å0.20 × 0.18 × 0.17 mm
β = 90.962 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4994 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2551 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.060
14877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0708 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
4994 reflectionsΔρmin = 0.18 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.04236 (11)0.8041 (3)0.03832 (12)0.0382 (5)
N20.11383 (11)0.8825 (3)0.04497 (12)0.0384 (6)
N30.23967 (15)1.1713 (4)0.24440 (16)0.0695 (8)
N40.52913 (12)0.2797 (3)1.02064 (12)0.0413 (6)
N50.52601 (12)0.3436 (3)1.09279 (13)0.0448 (6)
N60.7097 (2)0.4674 (6)1.28277 (19)0.1359 (17)
O10.07228 (11)0.6992 (3)0.11129 (11)0.0655 (6)
H10.02940.74220.10600.098*
O20.09556 (10)0.9093 (3)0.16978 (10)0.0584 (6)
O30.61680 (9)0.1973 (3)0.91423 (10)0.0626 (6)
H3A0.60610.23420.95600.094*
O40.65614 (10)0.3548 (3)1.10066 (11)0.0614 (6)
O50.10243 (14)0.9509 (4)0.32426 (12)0.0823 (8)
O60.76091 (12)0.0749 (3)0.05910 (11)0.0669 (7)
C10.06363 (13)0.6818 (3)0.02411 (15)0.0364 (6)
C20.10201 (15)0.6524 (4)0.04338 (17)0.0452 (7)
C30.17375 (16)0.5708 (4)0.04299 (19)0.0577 (8)
H30.19920.55390.08780.069*
C40.20720 (16)0.5150 (4)0.0231 (2)0.0608 (9)
H40.25460.45820.02250.073*
C50.17115 (17)0.5424 (4)0.0898 (2)0.0580 (9)
H5C0.19400.50520.13460.070*
C60.10039 (15)0.6262 (4)0.08989 (16)0.0480 (8)
H60.07660.64600.13540.058*
C70.01282 (13)0.7672 (3)0.02630 (15)0.0345 (6)
C80.05050 (15)0.8057 (4)0.09932 (15)0.0515 (8)
H8A0.08880.89570.09210.077*
H8B0.01250.84570.13500.077*
H8C0.07440.70040.11770.077*
C90.13657 (14)0.9254 (4)0.11518 (17)0.0406 (7)
C100.21757 (14)0.9977 (4)0.12086 (16)0.0496 (8)
H10A0.25390.90090.11860.060*
H10B0.22671.07490.07860.060*
C110.23035 (14)1.0954 (4)0.19022 (18)0.0471 (8)
C120.47824 (13)0.1629 (3)0.90922 (15)0.0389 (7)
C130.55132 (15)0.1436 (4)0.87800 (15)0.0465 (8)
C140.55919 (17)0.0688 (4)0.80791 (17)0.0619 (9)
H140.60800.05520.78820.074*
C150.4960 (2)0.0143 (4)0.76702 (17)0.0643 (9)
H150.50230.03720.72020.077*
C160.42393 (19)0.0356 (4)0.79496 (19)0.0624 (9)
H160.38100.00120.76690.075*
C170.41539 (16)0.1081 (4)0.86462 (18)0.0536 (8)
H170.36600.12150.88310.064*
C180.46728 (14)0.2340 (3)0.98523 (15)0.0400 (7)
C190.38820 (15)0.2469 (5)1.01681 (17)0.0688 (10)
H19A0.39190.25761.07030.103*
H19B0.35950.14271.00400.103*
H19C0.36250.34870.99640.103*
C200.59330 (16)0.3755 (4)1.12859 (15)0.0443 (7)
C210.58370 (16)0.4428 (4)1.20823 (15)0.0546 (8)
H21A0.55950.55821.20650.066*
H21B0.54990.36371.23480.066*
C220.6557 (2)0.4559 (5)1.24854 (19)0.0759 (11)
H20.1463 (13)0.880 (4)0.0059 (11)0.080*
H50.4823 (10)0.368 (4)1.1171 (15)0.080*
H5A0.1041 (17)0.937 (4)0.2772 (6)0.080*
H6A0.7337 (16)0.163 (3)0.0707 (15)0.080*
H5B0.1286 (16)1.039 (3)0.3379 (15)0.080*
H6B0.7723 (17)0.019 (3)0.0987 (11)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0374 (12)0.0357 (14)0.0415 (15)0.0014 (10)0.0027 (10)0.0008 (12)
N20.0390 (12)0.0451 (15)0.0310 (15)0.0014 (10)0.0022 (10)0.0015 (12)
N30.0771 (19)0.074 (2)0.057 (2)0.0111 (15)0.0134 (15)0.0057 (17)
N40.0430 (13)0.0508 (15)0.0303 (14)0.0010 (11)0.0024 (10)0.0005 (12)
N50.0449 (14)0.0549 (16)0.0348 (15)0.0034 (12)0.0067 (11)0.0013 (13)
N60.092 (3)0.233 (5)0.082 (3)0.017 (3)0.021 (2)0.051 (3)
O10.0614 (13)0.0916 (18)0.0436 (14)0.0126 (12)0.0070 (10)0.0058 (12)
O20.0450 (11)0.0912 (17)0.0389 (13)0.0068 (10)0.0018 (9)0.0022 (11)
O30.0386 (10)0.1050 (18)0.0441 (13)0.0030 (11)0.0005 (9)0.0131 (13)
O40.0458 (11)0.0855 (17)0.0530 (14)0.0069 (11)0.0077 (9)0.0082 (12)
O50.0884 (17)0.108 (2)0.0508 (15)0.0382 (14)0.0206 (13)0.0045 (15)
O60.0567 (13)0.090 (2)0.0542 (15)0.0036 (11)0.0051 (11)0.0093 (13)
C10.0382 (14)0.0330 (16)0.0378 (17)0.0080 (12)0.0024 (12)0.0038 (14)
C20.0454 (15)0.0450 (19)0.045 (2)0.0040 (14)0.0027 (14)0.0052 (16)
C30.0477 (17)0.060 (2)0.065 (2)0.0003 (15)0.0080 (16)0.0150 (19)
C40.0408 (16)0.049 (2)0.092 (3)0.0020 (14)0.0071 (18)0.009 (2)
C50.0531 (18)0.053 (2)0.067 (2)0.0006 (15)0.0208 (17)0.0009 (18)
C60.0485 (16)0.0470 (19)0.048 (2)0.0045 (14)0.0059 (14)0.0026 (15)
C70.0385 (14)0.0317 (16)0.0334 (17)0.0075 (11)0.0017 (12)0.0033 (13)
C80.0453 (15)0.067 (2)0.0417 (19)0.0043 (14)0.0018 (13)0.0024 (16)
C90.0366 (14)0.0436 (18)0.0415 (19)0.0054 (12)0.0011 (13)0.0041 (15)
C100.0384 (15)0.066 (2)0.045 (2)0.0052 (14)0.0032 (13)0.0046 (16)
C110.0392 (15)0.055 (2)0.047 (2)0.0027 (13)0.0065 (14)0.0077 (17)
C120.0426 (15)0.0383 (17)0.0357 (17)0.0015 (12)0.0007 (12)0.0086 (14)
C130.0465 (16)0.060 (2)0.0327 (18)0.0011 (14)0.0028 (13)0.0050 (16)
C140.0600 (19)0.087 (3)0.038 (2)0.0016 (17)0.0045 (15)0.0049 (19)
C150.090 (3)0.070 (2)0.033 (2)0.0125 (19)0.0023 (18)0.0001 (17)
C160.071 (2)0.064 (2)0.052 (2)0.0215 (18)0.0126 (17)0.0075 (19)
C170.0477 (17)0.061 (2)0.052 (2)0.0074 (15)0.0003 (15)0.0073 (18)
C180.0392 (15)0.0393 (18)0.0414 (18)0.0016 (12)0.0012 (13)0.0083 (14)
C190.0436 (17)0.098 (3)0.065 (2)0.0001 (17)0.0098 (15)0.010 (2)
C200.0498 (17)0.0450 (19)0.0383 (18)0.0031 (14)0.0052 (14)0.0070 (15)
C210.0664 (19)0.057 (2)0.0404 (19)0.0009 (16)0.0021 (15)0.0048 (16)
C220.074 (2)0.105 (3)0.049 (2)0.012 (2)0.0000 (19)0.021 (2)
Geometric parameters (Å, º) top
N1—C71.286 (3)C5—H5C0.9300
N1—N21.381 (3)C6—H60.9300
N2—C91.348 (3)C7—C81.498 (3)
N2—H20.904 (10)C8—H8A0.9600
N3—C111.135 (3)C8—H8B0.9600
N4—C181.286 (3)C8—H8C0.9600
N4—N51.378 (3)C9—C101.513 (3)
N5—C201.346 (3)C10—C111.457 (4)
N5—H50.901 (10)C10—H10A0.9700
N6—C221.115 (4)C10—H10B0.9700
O1—C21.357 (3)C12—C131.404 (3)
O1—H10.8200C12—C171.404 (4)
O2—C91.224 (3)C12—C181.476 (3)
O3—C131.362 (3)C13—C141.383 (4)
O3—H3A0.8200C14—C151.372 (4)
O4—C201.219 (3)C14—H140.9300
O5—H5A0.848 (10)C15—C161.367 (4)
O5—H5B0.845 (10)C15—H150.9300
O6—H6A0.848 (10)C16—C171.370 (4)
O6—H6B0.843 (10)C16—H160.9300
C1—C61.393 (3)C17—H170.9300
C1—C21.405 (4)C18—C191.498 (3)
C1—C71.480 (3)C19—H19A0.9600
C2—C31.392 (4)C19—H19B0.9600
C3—C41.373 (4)C19—H19C0.9600
C3—H30.9300C20—C211.523 (4)
C4—C51.372 (4)C21—C221.437 (4)
C4—H40.9300C21—H21A0.9700
C5—C61.384 (4)C21—H21B0.9700
C7—N1—N2121.1 (2)C11—C10—H10A109.3
C9—N2—N1115.7 (2)C9—C10—H10A109.3
C9—N2—H2123.0 (19)C11—C10—H10B109.3
N1—N2—H2119.9 (19)C9—C10—H10B109.3
C18—N4—N5120.6 (2)H10A—C10—H10B107.9
C20—N5—N4117.4 (2)N3—C11—C10179.4 (3)
C20—N5—H5117.9 (19)C13—C12—C17116.4 (3)
N4—N5—H5124.7 (19)C13—C12—C18122.3 (2)
C2—O1—H1109.5C17—C12—C18121.2 (2)
C13—O3—H3A109.5O3—C13—C14117.2 (2)
H5A—O5—H5B111 (2)O3—C13—C12122.4 (3)
H6A—O6—H6B108 (2)C14—C13—C12120.4 (3)
C6—C1—C2117.2 (2)C15—C14—C13121.0 (3)
C6—C1—C7120.6 (2)C15—C14—H14119.5
C2—C1—C7122.1 (2)C13—C14—H14119.5
O1—C2—C3116.6 (3)C16—C15—C14120.1 (3)
O1—C2—C1123.1 (2)C16—C15—H15120.0
C3—C2—C1120.3 (3)C14—C15—H15120.0
C4—C3—C2120.5 (3)C15—C16—C17119.5 (3)
C4—C3—H3119.7C15—C16—H16120.2
C2—C3—H3119.7C17—C16—H16120.2
C5—C4—C3120.5 (3)C16—C17—C12122.6 (3)
C5—C4—H4119.8C16—C17—H17118.7
C3—C4—H4119.8C12—C17—H17118.7
C4—C5—C6119.3 (3)N4—C18—C12115.5 (2)
C4—C5—H5C120.4N4—C18—C19124.2 (3)
C6—C5—H5C120.4C12—C18—C19120.2 (2)
C5—C6—C1122.2 (3)C18—C19—H19A109.5
C5—C6—H6118.9C18—C19—H19B109.5
C1—C6—H6118.9H19A—C19—H19B109.5
N1—C7—C1114.6 (2)C18—C19—H19C109.5
N1—C7—C8124.4 (2)H19A—C19—H19C109.5
C1—C7—C8121.0 (2)H19B—C19—H19C109.5
C7—C8—H8A109.5O4—C20—N5124.1 (3)
C7—C8—H8B109.5O4—C20—C21122.6 (3)
H8A—C8—H8B109.5N5—C20—C21113.3 (2)
C7—C8—H8C109.5C22—C21—C20112.5 (3)
H8A—C8—H8C109.5C22—C21—H21A109.1
H8B—C8—H8C109.5C20—C21—H21A109.1
O2—C9—N2123.5 (2)C22—C21—H21B109.1
O2—C9—C10122.5 (3)C20—C21—H21B109.1
N2—C9—C10114.1 (2)H21A—C21—H21B107.8
C11—C10—C9111.7 (2)N6—C22—C21176.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···N6i0.84 (1)2.17 (2)2.975 (4)159 (3)
O5—H5B···O3ii0.85 (1)2.43 (2)3.120 (4)140 (3)
O6—H6A···O4iii0.85 (1)2.06 (1)2.900 (3)173 (3)
O5—H5A···O20.85 (1)1.93 (1)2.777 (3)174 (3)
N5—H5···O5iv0.90 (1)1.93 (1)2.820 (3)171 (3)
N2—H2···O6v0.90 (1)2.03 (1)2.905 (3)162 (3)
O3—H3A···N40.821.822.534 (3)145
O1—H1···N10.821.812.528 (3)145
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x, y, z1; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H11N3O2·H2O
Mr235.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)17.387 (3), 7.576 (2), 17.855 (3)
β (°) 90.962 (2)
V3)2351.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
14877, 4994, 2551
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.147, 1.02
No. of reflections4994
No. of parameters329
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···N6i0.843 (10)2.170 (15)2.975 (4)159 (3)
O5—H5B···O3ii0.845 (10)2.43 (2)3.120 (4)140 (3)
O6—H6A···O4iii0.848 (10)2.057 (11)2.900 (3)173 (3)
O5—H5A···O20.848 (10)1.933 (10)2.777 (3)174 (3)
N5—H5···O5iv0.901 (10)1.926 (11)2.820 (3)171 (3)
N2—H2···O6v0.904 (10)2.032 (14)2.905 (3)162 (3)
O3—H3A···N40.821.822.534 (3)145.4
O1—H1···N10.821.812.528 (3)144.8
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2; (iii) x, y, z1; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y+1, z.
 

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashemian, S., Ghaeinee, V. & Notash, B. (2011). Acta Cryst. E67, o171.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, H. & Chen, P. (2011). Acta Cryst. E67, o2001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. & Ni, X. (2011). Acta Cryst. E67, o2002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, F., Liu, D.-Y., Wang, H.-B., Meng, X.-S. & Kang, T.-G. (2011). Acta Cryst. E67, o810.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds