organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hy­dr­oxy­benzyl­­idene)-3-nitro­benzohydrazide methanol mono­solvate

aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn

(Received 10 October 2011; accepted 14 October 2011; online 22 October 2011)

In the title compound, C14H10BrN3O4·CH4O, the dihedral angle between the two benzene rings in the hydrazone mol­ecule is 5.8 (3)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. An O—H⋯O hydrogen bond occurs between the hydrazone mol­ecule and the methanol solvent mol­ecule. In the crystal, the components are linked by inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For general background to hydrazones, see: Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]); Pyta et al. (2010[Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147-154.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Tang (2010[Tang, C.-B. (2010). Acta Cryst. E66, o2482.], 2011[Tang, C.-B. (2011). Acta Cryst. E67, o271.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrN3O4·CH4O

  • Mr = 396.20

  • Triclinic, [P \overline 1]

  • a = 6.701 (2) Å

  • b = 9.492 (3) Å

  • c = 13.011 (3) Å

  • α = 105.866 (2)°

  • β = 92.535 (2)°

  • γ = 94.496 (2)°

  • V = 791.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.726, Tmax = 0.779

  • 6325 measured reflections

  • 3356 independent reflections

  • 1142 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.236

  • S = 0.93

  • 3356 reflections

  • 223 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 0.90 (1) 2.04 (5) 2.854 (10) 150 (9)
O5—H5⋯O2 0.82 1.90 2.701 (10) 166
O1—H1⋯N1 0.82 1.99 2.700 (10) 144
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).

The compound contains a hydrazone molecule and a methanol molecule of crystallization. The dihedral angle between the two benzene rings in the hydrazone molecule is 5.8 (3)°. An intramolecular O—H···N hydrogen bond generates a S(6) ring motif in the hydrazone molecule (Bernstein et al., 1995). Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds the author has reported previously (Tang, 2010; Tang, 2011). In the crystal structure, the hydrazone molecules are linked by the methanol molecules through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For general background to hydrazones, see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

5-Bromo-2-hydroxybenzaldehyde (0.1 mmol, 20.1 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.

Refinement top

The amino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius and hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. Molecular packing of the title compound, with hydrogen bonds shown as dashed lines.
N'-(5-Bromo-2-hydroxybenzylidene)-3-nitrobenzohydrazide methanol monosolvate top
Crystal data top
C14H10BrN3O4·CH4OZ = 2
Mr = 396.20F(000) = 400
Triclinic, P1Dx = 1.662 Mg m3
a = 6.701 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.492 (3) ÅCell parameters from 850 reflections
c = 13.011 (3) Åθ = 2.6–24.3°
α = 105.866 (2)°µ = 2.63 mm1
β = 92.535 (2)°T = 298 K
γ = 94.496 (2)°Cut from needle, yellow
V = 791.7 (4) Å30.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3356 independent reflections
Radiation source: fine-focus sealed tube1142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.109
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.726, Tmax = 0.779k = 1211
6325 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0975P)2]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.56 e Å3
1 restraintΔρmin = 0.83 e Å3
Crystal data top
C14H10BrN3O4·CH4Oγ = 94.496 (2)°
Mr = 396.20V = 791.7 (4) Å3
Triclinic, P1Z = 2
a = 6.701 (2) ÅMo Kα radiation
b = 9.492 (3) ŵ = 2.63 mm1
c = 13.011 (3) ÅT = 298 K
α = 105.866 (2)°0.13 × 0.12 × 0.10 mm
β = 92.535 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1142 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.779Rint = 0.109
6325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0731 restraint
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.56 e Å3
3356 reflectionsΔρmin = 0.83 e Å3
223 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86686 (17)0.35734 (12)0.00940 (10)0.0719 (6)
N10.6581 (10)0.3028 (8)0.2164 (6)0.048 (2)
N20.7644 (11)0.4381 (8)0.2533 (7)0.053 (2)
N30.6919 (17)1.0932 (11)0.4149 (7)0.065 (3)
O10.3298 (9)0.1075 (7)0.1801 (6)0.065 (2)
H10.39000.18990.20100.097*
O20.4839 (9)0.5566 (7)0.2601 (7)0.075 (2)
O30.5095 (13)1.0768 (8)0.4134 (7)0.083 (3)
O40.7862 (12)1.2078 (9)0.4478 (7)0.095 (3)
O50.1684 (10)0.3998 (8)0.3110 (8)0.080 (2)
H50.25350.44510.28580.119*
C10.6692 (13)0.0452 (9)0.1409 (7)0.040 (2)
C20.4602 (13)0.0083 (10)0.1402 (7)0.045 (3)
C30.3811 (13)0.1355 (10)0.0995 (8)0.052 (3)
H30.24460.15990.10190.062*
C40.5030 (15)0.2441 (10)0.0548 (8)0.058 (3)
H40.44910.34090.02550.069*
C50.7013 (14)0.2068 (10)0.0547 (8)0.051 (3)
C60.7845 (13)0.0647 (10)0.0954 (7)0.045 (3)
H60.92140.04280.09200.054*
C70.7583 (13)0.1925 (10)0.1837 (8)0.049 (3)
H70.89750.20890.18800.058*
C80.6684 (15)0.5605 (10)0.2710 (8)0.050 (3)
C90.7917 (13)0.7039 (10)0.3036 (8)0.047 (3)
C100.6934 (13)0.8259 (11)0.3455 (7)0.048 (3)
H100.55690.81640.35530.058*
C110.7981 (15)0.9610 (10)0.3723 (8)0.050 (3)
C121.0014 (16)0.9800 (12)0.3593 (8)0.061 (3)
H121.06971.07350.37820.073*
C131.0973 (15)0.8607 (13)0.3191 (9)0.069 (3)
H131.23410.87160.31020.082*
C140.9956 (14)0.7203 (12)0.2903 (8)0.060 (3)
H141.06400.63820.26230.071*
C150.2258 (18)0.4128 (14)0.4176 (12)0.100 (5)
H15A0.27830.51240.45240.149*
H15B0.32720.34780.42080.149*
H15C0.11160.38730.45300.149*
H20.893 (5)0.462 (11)0.280 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0633 (8)0.0472 (7)0.0991 (11)0.0263 (5)0.0049 (6)0.0041 (6)
N10.037 (5)0.039 (5)0.066 (6)0.010 (4)0.003 (4)0.010 (4)
N20.037 (5)0.034 (5)0.079 (6)0.006 (4)0.003 (4)0.001 (4)
N30.078 (7)0.050 (6)0.065 (7)0.014 (6)0.008 (6)0.011 (5)
O10.046 (4)0.040 (4)0.105 (6)0.014 (3)0.000 (4)0.011 (4)
O20.027 (4)0.058 (5)0.138 (7)0.009 (3)0.002 (4)0.027 (5)
O30.072 (6)0.063 (5)0.116 (7)0.032 (4)0.010 (5)0.018 (5)
O40.089 (6)0.045 (5)0.133 (8)0.013 (5)0.015 (5)0.003 (5)
O50.041 (5)0.057 (5)0.135 (8)0.006 (4)0.005 (5)0.019 (5)
C10.033 (5)0.035 (6)0.053 (7)0.006 (4)0.000 (5)0.013 (5)
C20.038 (6)0.041 (6)0.061 (7)0.019 (5)0.014 (5)0.019 (5)
C30.034 (5)0.037 (6)0.080 (8)0.003 (5)0.001 (5)0.009 (5)
C40.060 (7)0.024 (5)0.085 (9)0.004 (5)0.008 (6)0.009 (5)
C50.040 (6)0.039 (6)0.068 (8)0.006 (5)0.003 (5)0.005 (5)
C60.030 (5)0.041 (6)0.061 (7)0.006 (4)0.002 (5)0.009 (5)
C70.033 (5)0.052 (7)0.064 (7)0.012 (5)0.001 (5)0.020 (6)
C80.045 (7)0.042 (6)0.065 (8)0.016 (5)0.003 (5)0.014 (5)
C90.034 (6)0.044 (6)0.064 (7)0.015 (5)0.000 (5)0.017 (5)
C100.034 (5)0.059 (7)0.055 (7)0.018 (5)0.002 (5)0.017 (5)
C110.056 (7)0.036 (6)0.051 (7)0.004 (5)0.004 (5)0.002 (5)
C120.058 (8)0.057 (7)0.063 (8)0.002 (6)0.011 (6)0.016 (6)
C130.039 (6)0.072 (8)0.088 (9)0.011 (6)0.005 (6)0.011 (7)
C140.035 (6)0.064 (8)0.069 (8)0.006 (5)0.002 (5)0.001 (6)
C150.087 (10)0.090 (10)0.109 (12)0.017 (8)0.023 (9)0.008 (9)
Geometric parameters (Å, º) top
Br1—C51.910 (9)C4—C51.348 (12)
N1—C71.273 (10)C4—H40.9300
N1—N21.370 (10)C5—C61.370 (11)
N2—C81.342 (11)C6—H60.9300
N2—H20.901 (10)C7—H70.9300
N3—O41.175 (10)C8—C91.481 (13)
N3—O31.219 (10)C9—C101.370 (12)
N3—C111.477 (12)C9—C141.387 (12)
O1—C21.349 (9)C10—C111.360 (12)
O1—H10.8200C10—H100.9300
O2—C81.235 (10)C11—C121.384 (13)
O5—C151.392 (13)C12—C131.338 (13)
O5—H50.8200C12—H120.9300
C1—C61.366 (11)C13—C141.393 (13)
C1—C21.416 (12)C13—H130.9300
C1—C71.427 (12)C14—H140.9300
C2—C31.375 (12)C15—H15A0.9600
C3—C41.383 (12)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C7—N1—N2117.1 (8)C1—C7—H7118.2
C8—N2—N1119.9 (8)O2—C8—N2122.4 (9)
C8—N2—H2109 (7)O2—C8—C9119.9 (8)
N1—N2—H2130 (7)N2—C8—C9117.7 (8)
O4—N3—O3123.5 (10)C10—C9—C14119.5 (9)
O4—N3—C11118.9 (10)C10—C9—C8116.8 (8)
O3—N3—C11117.6 (9)C14—C9—C8123.7 (9)
C2—O1—H1109.5C11—C10—C9119.1 (9)
C15—O5—H5109.5C11—C10—H10120.4
C6—C1—C2117.8 (8)C9—C10—H10120.4
C6—C1—C7120.2 (8)C10—C11—C12122.3 (9)
C2—C1—C7122.0 (8)C10—C11—N3119.4 (9)
O1—C2—C3116.6 (8)C12—C11—N3118.3 (9)
O1—C2—C1123.4 (8)C13—C12—C11118.4 (10)
C3—C2—C1120.0 (8)C13—C12—H12120.8
C2—C3—C4120.5 (9)C11—C12—H12120.8
C2—C3—H3119.7C12—C13—C14121.1 (10)
C4—C3—H3119.7C12—C13—H13119.5
C5—C4—C3118.7 (9)C14—C13—H13119.5
C5—C4—H4120.6C9—C14—C13119.5 (10)
C3—C4—H4120.6C9—C14—H14120.2
C4—C5—C6122.0 (9)C13—C14—H14120.2
C4—C5—Br1118.2 (7)O5—C15—H15A109.5
C6—C5—Br1119.7 (7)O5—C15—H15B109.5
C1—C6—C5120.9 (8)H15A—C15—H15B109.5
C1—C6—H6119.6O5—C15—H15C109.5
C5—C6—H6119.6H15A—C15—H15C109.5
N1—C7—C1123.7 (8)H15B—C15—H15C109.5
N1—C7—H7118.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.90 (1)2.04 (5)2.854 (10)150 (9)
O5—H5···O20.821.902.701 (10)166
O1—H1···N10.821.992.700 (10)144
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10BrN3O4·CH4O
Mr396.20
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.701 (2), 9.492 (3), 13.011 (3)
α, β, γ (°)105.866 (2), 92.535 (2), 94.496 (2)
V3)791.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.726, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
6325, 3356, 1142
Rint0.109
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.236, 0.93
No. of reflections3356
No. of parameters223
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.83

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O5i0.901 (10)2.04 (5)2.854 (10)150 (9)
O5—H5···O20.821.902.701 (10)166.3
O1—H1···N10.821.992.700 (10)144.3
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Financial support from the Jiaying University research fund is gratefully acknowledged.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2010). Acta Cryst. E66, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTang, C.-B. (2011). Acta Cryst. E67, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds