organic compounds
N′-(5-Bromo-2-hydroxybenzylidene)-3-nitrobenzohydrazide methanol monosolvate
aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: chunbao_tang@yahoo.cn
In the title compound, C14H10BrN3O4·CH4O, the dihedral angle between the two benzene rings in the hydrazone molecule is 5.8 (3)° and an intramolecular O—H⋯N hydrogen bond generates an S(6) ring motif. An O—H⋯O hydrogen bond occurs between the hydrazone molecule and the methanol solvent molecule. In the crystal, the components are linked by intermolecular N—H⋯O hydrogen bonds, forming chains along the a axis.
Related literature
For general background to et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For related structures, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010, 2011). For reference bond-length data, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).
see: RasrasExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811042553/qm2037sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042553/qm2037Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811042553/qm2037Isup3.cml
5-Bromo-2-hydroxybenzaldehyde (0.1 mmol, 20.1 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear yellow solution. Yellow needle-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.
The amino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å, C(methyl)—H = 0.96 Å, and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and Cmethyl).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10BrN3O4·CH4O | Z = 2 |
Mr = 396.20 | F(000) = 400 |
Triclinic, P1 | Dx = 1.662 Mg m−3 |
a = 6.701 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.492 (3) Å | Cell parameters from 850 reflections |
c = 13.011 (3) Å | θ = 2.6–24.3° |
α = 105.866 (2)° | µ = 2.63 mm−1 |
β = 92.535 (2)° | T = 298 K |
γ = 94.496 (2)° | Cut from needle, yellow |
V = 791.7 (4) Å3 | 0.13 × 0.12 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 3356 independent reflections |
Radiation source: fine-focus sealed tube | 1142 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.109 |
ω scans | θmax = 27.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.726, Tmax = 0.779 | k = −12→11 |
6325 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.236 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0975P)2] where P = (Fo2 + 2Fc2)/3 |
3356 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 0.56 e Å−3 |
1 restraint | Δρmin = −0.83 e Å−3 |
C14H10BrN3O4·CH4O | γ = 94.496 (2)° |
Mr = 396.20 | V = 791.7 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.701 (2) Å | Mo Kα radiation |
b = 9.492 (3) Å | µ = 2.63 mm−1 |
c = 13.011 (3) Å | T = 298 K |
α = 105.866 (2)° | 0.13 × 0.12 × 0.10 mm |
β = 92.535 (2)° |
Bruker SMART CCD area-detector diffractometer | 3356 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1142 reflections with I > 2σ(I) |
Tmin = 0.726, Tmax = 0.779 | Rint = 0.109 |
6325 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 1 restraint |
wR(F2) = 0.236 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | Δρmax = 0.56 e Å−3 |
3356 reflections | Δρmin = −0.83 e Å−3 |
223 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.86686 (17) | −0.35734 (12) | −0.00940 (10) | 0.0719 (6) | |
N1 | 0.6581 (10) | 0.3028 (8) | 0.2164 (6) | 0.048 (2) | |
N2 | 0.7644 (11) | 0.4381 (8) | 0.2533 (7) | 0.053 (2) | |
N3 | 0.6919 (17) | 1.0932 (11) | 0.4149 (7) | 0.065 (3) | |
O1 | 0.3298 (9) | 0.1075 (7) | 0.1801 (6) | 0.065 (2) | |
H1 | 0.3900 | 0.1899 | 0.2010 | 0.097* | |
O2 | 0.4839 (9) | 0.5566 (7) | 0.2601 (7) | 0.075 (2) | |
O3 | 0.5095 (13) | 1.0768 (8) | 0.4134 (7) | 0.083 (3) | |
O4 | 0.7862 (12) | 1.2078 (9) | 0.4478 (7) | 0.095 (3) | |
O5 | 0.1684 (10) | 0.3998 (8) | 0.3110 (8) | 0.080 (2) | |
H5 | 0.2535 | 0.4451 | 0.2858 | 0.119* | |
C1 | 0.6692 (13) | 0.0452 (9) | 0.1409 (7) | 0.040 (2) | |
C2 | 0.4602 (13) | 0.0083 (10) | 0.1402 (7) | 0.045 (3) | |
C3 | 0.3811 (13) | −0.1355 (10) | 0.0995 (8) | 0.052 (3) | |
H3 | 0.2446 | −0.1599 | 0.1019 | 0.062* | |
C4 | 0.5030 (15) | −0.2441 (10) | 0.0548 (8) | 0.058 (3) | |
H4 | 0.4491 | −0.3409 | 0.0255 | 0.069* | |
C5 | 0.7013 (14) | −0.2068 (10) | 0.0547 (8) | 0.051 (3) | |
C6 | 0.7845 (13) | −0.0647 (10) | 0.0954 (7) | 0.045 (3) | |
H6 | 0.9214 | −0.0428 | 0.0920 | 0.054* | |
C7 | 0.7583 (13) | 0.1925 (10) | 0.1837 (8) | 0.049 (3) | |
H7 | 0.8975 | 0.2089 | 0.1880 | 0.058* | |
C8 | 0.6684 (15) | 0.5605 (10) | 0.2710 (8) | 0.050 (3) | |
C9 | 0.7917 (13) | 0.7039 (10) | 0.3036 (8) | 0.047 (3) | |
C10 | 0.6934 (13) | 0.8259 (11) | 0.3455 (7) | 0.048 (3) | |
H10 | 0.5569 | 0.8164 | 0.3553 | 0.058* | |
C11 | 0.7981 (15) | 0.9610 (10) | 0.3723 (8) | 0.050 (3) | |
C12 | 1.0014 (16) | 0.9800 (12) | 0.3593 (8) | 0.061 (3) | |
H12 | 1.0697 | 1.0735 | 0.3782 | 0.073* | |
C13 | 1.0973 (15) | 0.8607 (13) | 0.3191 (9) | 0.069 (3) | |
H13 | 1.2341 | 0.8716 | 0.3102 | 0.082* | |
C14 | 0.9956 (14) | 0.7203 (12) | 0.2903 (8) | 0.060 (3) | |
H14 | 1.0640 | 0.6382 | 0.2623 | 0.071* | |
C15 | 0.2258 (18) | 0.4128 (14) | 0.4176 (12) | 0.100 (5) | |
H15A | 0.2783 | 0.5124 | 0.4524 | 0.149* | |
H15B | 0.3272 | 0.3478 | 0.4208 | 0.149* | |
H15C | 0.1116 | 0.3873 | 0.4530 | 0.149* | |
H2 | 0.893 (5) | 0.462 (11) | 0.280 (8) | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0633 (8) | 0.0472 (7) | 0.0991 (11) | 0.0263 (5) | 0.0049 (6) | 0.0041 (6) |
N1 | 0.037 (5) | 0.039 (5) | 0.066 (6) | 0.010 (4) | −0.003 (4) | 0.010 (4) |
N2 | 0.037 (5) | 0.034 (5) | 0.079 (6) | 0.006 (4) | −0.003 (4) | −0.001 (4) |
N3 | 0.078 (7) | 0.050 (6) | 0.065 (7) | 0.014 (6) | −0.008 (6) | 0.011 (5) |
O1 | 0.046 (4) | 0.040 (4) | 0.105 (6) | 0.014 (3) | 0.000 (4) | 0.011 (4) |
O2 | 0.027 (4) | 0.058 (5) | 0.138 (7) | 0.009 (3) | −0.002 (4) | 0.027 (5) |
O3 | 0.072 (6) | 0.063 (5) | 0.116 (7) | 0.032 (4) | 0.010 (5) | 0.018 (5) |
O4 | 0.089 (6) | 0.045 (5) | 0.133 (8) | 0.013 (5) | −0.015 (5) | −0.003 (5) |
O5 | 0.041 (5) | 0.057 (5) | 0.135 (8) | 0.006 (4) | −0.005 (5) | 0.019 (5) |
C1 | 0.033 (5) | 0.035 (6) | 0.053 (7) | 0.006 (4) | 0.000 (5) | 0.013 (5) |
C2 | 0.038 (6) | 0.041 (6) | 0.061 (7) | 0.019 (5) | 0.014 (5) | 0.019 (5) |
C3 | 0.034 (5) | 0.037 (6) | 0.080 (8) | 0.003 (5) | 0.001 (5) | 0.009 (5) |
C4 | 0.060 (7) | 0.024 (5) | 0.085 (9) | 0.004 (5) | −0.008 (6) | 0.009 (5) |
C5 | 0.040 (6) | 0.039 (6) | 0.068 (8) | 0.006 (5) | −0.003 (5) | 0.005 (5) |
C6 | 0.030 (5) | 0.041 (6) | 0.061 (7) | 0.006 (4) | 0.002 (5) | 0.009 (5) |
C7 | 0.033 (5) | 0.052 (7) | 0.064 (7) | 0.012 (5) | −0.001 (5) | 0.020 (6) |
C8 | 0.045 (7) | 0.042 (6) | 0.065 (8) | 0.016 (5) | 0.003 (5) | 0.014 (5) |
C9 | 0.034 (6) | 0.044 (6) | 0.064 (7) | 0.015 (5) | 0.000 (5) | 0.017 (5) |
C10 | 0.034 (5) | 0.059 (7) | 0.055 (7) | 0.018 (5) | 0.002 (5) | 0.017 (5) |
C11 | 0.056 (7) | 0.036 (6) | 0.051 (7) | 0.004 (5) | −0.004 (5) | 0.002 (5) |
C12 | 0.058 (8) | 0.057 (7) | 0.063 (8) | −0.002 (6) | −0.011 (6) | 0.016 (6) |
C13 | 0.039 (6) | 0.072 (8) | 0.088 (9) | 0.011 (6) | −0.005 (6) | 0.011 (7) |
C14 | 0.035 (6) | 0.064 (8) | 0.069 (8) | 0.006 (5) | −0.002 (5) | 0.001 (6) |
C15 | 0.087 (10) | 0.090 (10) | 0.109 (12) | 0.017 (8) | −0.023 (9) | 0.008 (9) |
Br1—C5 | 1.910 (9) | C4—C5 | 1.348 (12) |
N1—C7 | 1.273 (10) | C4—H4 | 0.9300 |
N1—N2 | 1.370 (10) | C5—C6 | 1.370 (11) |
N2—C8 | 1.342 (11) | C6—H6 | 0.9300 |
N2—H2 | 0.901 (10) | C7—H7 | 0.9300 |
N3—O4 | 1.175 (10) | C8—C9 | 1.481 (13) |
N3—O3 | 1.219 (10) | C9—C10 | 1.370 (12) |
N3—C11 | 1.477 (12) | C9—C14 | 1.387 (12) |
O1—C2 | 1.349 (9) | C10—C11 | 1.360 (12) |
O1—H1 | 0.8200 | C10—H10 | 0.9300 |
O2—C8 | 1.235 (10) | C11—C12 | 1.384 (13) |
O5—C15 | 1.392 (13) | C12—C13 | 1.338 (13) |
O5—H5 | 0.8200 | C12—H12 | 0.9300 |
C1—C6 | 1.366 (11) | C13—C14 | 1.393 (13) |
C1—C2 | 1.416 (12) | C13—H13 | 0.9300 |
C1—C7 | 1.427 (12) | C14—H14 | 0.9300 |
C2—C3 | 1.375 (12) | C15—H15A | 0.9600 |
C3—C4 | 1.383 (12) | C15—H15B | 0.9600 |
C3—H3 | 0.9300 | C15—H15C | 0.9600 |
C7—N1—N2 | 117.1 (8) | C1—C7—H7 | 118.2 |
C8—N2—N1 | 119.9 (8) | O2—C8—N2 | 122.4 (9) |
C8—N2—H2 | 109 (7) | O2—C8—C9 | 119.9 (8) |
N1—N2—H2 | 130 (7) | N2—C8—C9 | 117.7 (8) |
O4—N3—O3 | 123.5 (10) | C10—C9—C14 | 119.5 (9) |
O4—N3—C11 | 118.9 (10) | C10—C9—C8 | 116.8 (8) |
O3—N3—C11 | 117.6 (9) | C14—C9—C8 | 123.7 (9) |
C2—O1—H1 | 109.5 | C11—C10—C9 | 119.1 (9) |
C15—O5—H5 | 109.5 | C11—C10—H10 | 120.4 |
C6—C1—C2 | 117.8 (8) | C9—C10—H10 | 120.4 |
C6—C1—C7 | 120.2 (8) | C10—C11—C12 | 122.3 (9) |
C2—C1—C7 | 122.0 (8) | C10—C11—N3 | 119.4 (9) |
O1—C2—C3 | 116.6 (8) | C12—C11—N3 | 118.3 (9) |
O1—C2—C1 | 123.4 (8) | C13—C12—C11 | 118.4 (10) |
C3—C2—C1 | 120.0 (8) | C13—C12—H12 | 120.8 |
C2—C3—C4 | 120.5 (9) | C11—C12—H12 | 120.8 |
C2—C3—H3 | 119.7 | C12—C13—C14 | 121.1 (10) |
C4—C3—H3 | 119.7 | C12—C13—H13 | 119.5 |
C5—C4—C3 | 118.7 (9) | C14—C13—H13 | 119.5 |
C5—C4—H4 | 120.6 | C9—C14—C13 | 119.5 (10) |
C3—C4—H4 | 120.6 | C9—C14—H14 | 120.2 |
C4—C5—C6 | 122.0 (9) | C13—C14—H14 | 120.2 |
C4—C5—Br1 | 118.2 (7) | O5—C15—H15A | 109.5 |
C6—C5—Br1 | 119.7 (7) | O5—C15—H15B | 109.5 |
C1—C6—C5 | 120.9 (8) | H15A—C15—H15B | 109.5 |
C1—C6—H6 | 119.6 | O5—C15—H15C | 109.5 |
C5—C6—H6 | 119.6 | H15A—C15—H15C | 109.5 |
N1—C7—C1 | 123.7 (8) | H15B—C15—H15C | 109.5 |
N1—C7—H7 | 118.2 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O5i | 0.90 (1) | 2.04 (5) | 2.854 (10) | 150 (9) |
O5—H5···O2 | 0.82 | 1.90 | 2.701 (10) | 166 |
O1—H1···N1 | 0.82 | 1.99 | 2.700 (10) | 144 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C14H10BrN3O4·CH4O |
Mr | 396.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.701 (2), 9.492 (3), 13.011 (3) |
α, β, γ (°) | 105.866 (2), 92.535 (2), 94.496 (2) |
V (Å3) | 791.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.63 |
Crystal size (mm) | 0.13 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.726, 0.779 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6325, 3356, 1142 |
Rint | 0.109 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.236, 0.93 |
No. of reflections | 3356 |
No. of parameters | 223 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.83 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O5i | 0.901 (10) | 2.04 (5) | 2.854 (10) | 150 (9) |
O5—H5···O2 | 0.82 | 1.90 | 2.701 (10) | 166.3 |
O1—H1···N1 | 0.82 | 1.99 | 2.700 (10) | 144.3 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
Financial support from the Jiaying University research fund is gratefully acknowledged.
References
Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. Web of Science CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062. Web of Science CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154. Web of Science CSD CrossRef CAS Google Scholar
Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tang, C.-B. (2010). Acta Cryst. E66, o2482. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tang, C.-B. (2011). Acta Cryst. E67, o271. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the title new hydrazone compound (Fig. 1).
The compound contains a hydrazone molecule and a methanol molecule of crystallization. The dihedral angle between the two benzene rings in the hydrazone molecule is 5.8 (3)°. An intramolecular O—H···N hydrogen bond generates a S(6) ring motif in the hydrazone molecule (Bernstein et al., 1995). Bond lengths in the compound are normal (Allen et al., 1987) and comparable to those in the similar compounds the author has reported previously (Tang, 2010; Tang, 2011). In the crystal structure, the hydrazone molecules are linked by the methanol molecules through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).