metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-Tricarbon­yl(η4-1,3-diacet­­oxy-5,5-di­methyl­cyclo­hexa-1,3-diene)iron(0)

aDepartment für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
*Correspondence e-mail: schmalz@uni-koeln.de

(Received 17 August 2011; accepted 7 October 2011; online 12 October 2011)

In the title compound, [Fe(C12H16O4)(CO)3], the diene moiety of the mol­ecule is virtually planar, with a C—C—C—C torsion angle of −1.4 (2)°. The six-membered ring exhibits a boat conformation, with torsion angles of 46.2 (2) and 46.5 (3)° for a double-bond and the two attached Csp3 atoms. The Fe atom is coordinated to all four of the diene C atoms, with bond lengths between 2.041 (2) and 2.117 (2) Å. The Fe(CO)3 tripod adopts a conformation with one CO ligand eclipsing the Csp3—Csp3 single bond.

Related literature

For a short overview of CO as a signaling mol­ecule and of CO-releasing mol­ecules (CO-RMs), see: Choi & Otterbein (2002[Choi, M. K. & Otterbein, L. E. (2002). Antioxid. Redox Signal. 4, 227-338.]); Johnson et al. (2003[Johnson, T. R., Mann, B. E., Clark, J. E., Foresti, R., Green, C. J. & Motterlini, R. (2003). Angew. Chem. Int. Ed. 42, 3722-3729.]); Alberto & Motterlini (2007[Alberto, R. & Motterlini, R. (2007). Dalton Trans. pp. 1651-1660.]); Mann & Motterlini (2007[Mann, B. E. & Motterlini, R. (2007). Chem. Commun. pp. 4197-4208.]). For a very recent review of the biological activity of carbon monoxide gas and CO-RMs, see: Motterlini & Otterbein (2010[Motterlini, R. & Otterbein, L. E. (2010). Nat. Rev. Drug Discov., 9, 728-743.]). For the first use of the title compound as a CO-RM, see: Romanski et al. (2011[Romanski, S., Kraus, B., Schatzschneider, U., Neudörfl, J.-M., Amslinger, S. & Schmalz, H.-G. (2011). Angew. Chem. Int. Ed. 50, 2392-2396.]). For a known synthesis of this mol­ecule in racemic form, see: Boháč et al. (1996[Boháč, A., Lettrichová, M., Hrnčiac, P. & Hutta, M. (1996). J. Organomet. Chem. 507, 23-29.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C12H16O4)(CO)3]

  • Mr = 364.13

  • Monoclinic, P 21 /c

  • a = 10.9977 (6) Å

  • b = 11.9586 (5) Å

  • c = 13.0364 (5) Å

  • β = 108.739 (3)°

  • V = 1623.63 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 100 K

  • 0.30 × 0.15 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.700, Tmax = 0.931

  • 15588 measured reflections

  • 3538 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.06

  • 3538 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, CO has been recognized as an important signaling molecule (Choi & Otterbein, 2002). As CO is a toxic gas with a low bioavailability, an alternative way for its delivery is attractive and CO–releasing molecules (CO–RMs) proofed to be suitable tools (Johnson et al., 2003; Alberto & Motterlini, 2007; Mann & Motterlini, 2007). CO–RMs as well as CO gas have successfully been used in various biological model systems to induce a broad scope of effects (Motterlini & Otterbein, 2010). In the context of our work we used acyloxy–diene iron carbonyl complexes as enzymatically–triggered CO–RMs (ET–CORMs) representing a new class of CO–RMs. The biological evaluation of the title compound showed that it efficiently inhibits iNOS in murine macrophage cell line RAW264.7 and is to the best of our knowledge the most potent CO–RMs ever studied in this type of assay (Romanski et al., 2011). Originally the complex was used as a precursor for non–racemic iron carbonyl complexes by exchange of one CO ligand with a chiral phosphinite and separation of the resulting diastereomers (Boháč et al., 1996). The C—C and Fe—C bond length of the diene fit in with the already published dienylester ironcaronyl complex (Romanski et al., 2011) and the data of the CSD database (Allen, 2002). In comparison to non–complexed dienes the inner bond of the diene system is noticeably shorter while the CC are significantly longer. The contraction of the C—C single bond of the diene is most distinct in the case of the diacetoxy substituted title compound. Despite the electronic dissymmetry of the diene unit, the diene–Fe(CO)3 substructure is virtually symmetric (Fig. 1).

Related literature top

For a short overview of CO as a signaling molecule and of CO-releasing molecules (CO-RMs), see: Choi & Otterbein (2002); Johnson et al. (2003); Alberto & Motterlini (2007); Mann & Motterlini (2007). For a very recent review of the biological activity of carbon monoxide gas and CO-RMs, see: Motterlini & Otterbein (2010). For the first use of the title compound as a CO-RM, see: Romanski et al. (2011). For a known synthesis of this molecule in racemic form, see: Boháč et al. (1996). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound C15H16FeO7 was prepared in good yield by thermal complexation of 5,5–dimethylcyclohexa–1,3–diene–1,3–diyl diacetate with Fe2(CO)9 in toluene. In a dry, argon flushed 50 ml flask 1.34 mmol of 5,5–dimethylcyclohexa–1,3–diene–1,3–diyl diacetate and 4.13 mmol of Fe2(CO)9 were heated in 20 ml of dry toluene to 314 K for 4.5 h (Fig. 2). The solvent was evaporated and the crude mixture was purified by column chromatography (silica gel, ethylacetate/cyclohexane = 1:15) to give 1.10 mmol (82%) of the desired complex as a yellow oil that solidified after several weeks at 255 K. A portion of the complex was recrystallized by diffusion of a methanolic solution of the complex into water. Colourless crystals were obtained from the yellow oil.

Refinement top

All Hydrogen atoms were placed in geometrically idealized positions and refined with using riding model with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.99Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.98Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Synthesis path for the title compound.
(RS)-Tricarbonyl(η4-1,3-diacetoxy-5,5-dimethylcyclohexa-1,3- diene)iron(0) top
Crystal data top
[Fe(C12H16O4)(CO)3]F(000) = 752
Mr = 364.13Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15588 reflections
a = 10.9977 (6) Åθ = 2.0–27.0°
b = 11.9586 (5) ŵ = 0.96 mm1
c = 13.0364 (5) ÅT = 100 K
β = 108.739 (3)°Prism, colourless
V = 1623.63 (13) Å30.3 × 0.15 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3538 independent reflections
Radiation source: fine–focus sealed tube2814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(PLATON; Spek, 2009)
h = 1413
Tmin = 0.700, Tmax = 0.931k = 1415
15588 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1094P]
where P = (Fo2 + 2Fc2)/3
3538 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Fe(C12H16O4)(CO)3]V = 1623.63 (13) Å3
Mr = 364.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9977 (6) ŵ = 0.96 mm1
b = 11.9586 (5) ÅT = 100 K
c = 13.0364 (5) Å0.3 × 0.15 × 0.07 mm
β = 108.739 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3538 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2009)
2814 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.931Rint = 0.059
15588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 0.66 e Å3
3538 reflectionsΔρmin = 0.62 e Å3
212 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.66661 (3)0.30437 (2)0.424274 (19)0.01185 (9)
O10.94976 (13)0.27963 (10)0.43516 (10)0.0147 (3)
O20.86658 (15)0.20345 (11)0.26861 (10)0.0227 (3)
O30.68135 (13)0.47430 (10)0.60010 (9)0.0141 (3)
O40.86120 (14)0.57754 (12)0.67162 (11)0.0229 (3)
O50.41698 (15)0.28056 (11)0.46063 (11)0.0204 (3)
O60.75961 (16)0.08729 (12)0.52412 (12)0.0301 (4)
O70.57537 (14)0.24054 (12)0.19457 (10)0.0220 (3)
C10.84627 (19)0.35591 (15)0.42037 (14)0.0126 (4)
C20.8298 (2)0.38305 (15)0.52183 (14)0.0142 (4)
H20.88650.35890.58980.017*
C30.72175 (19)0.44864 (15)0.51032 (14)0.0127 (4)
C40.64858 (19)0.47985 (15)0.40352 (13)0.0123 (4)
H40.55760.47360.37890.015*
C50.72083 (19)0.52401 (15)0.32899 (14)0.0141 (4)
C60.8340 (2)0.44474 (15)0.33460 (14)0.0152 (4)
H6A0.81930.40870.26330.018*
H6B0.91470.48830.35230.018*
C70.6296 (2)0.53454 (16)0.21245 (14)0.0180 (4)
H7A0.55860.58470.21100.027*
H7B0.59550.46060.18560.027*
H7C0.67650.56500.16630.027*
C80.7709 (2)0.64176 (16)0.37013 (16)0.0202 (5)
H8A0.69880.68900.37200.030*
H8B0.81260.67500.32130.030*
H8C0.83310.63600.44320.030*
C90.9517 (2)0.20967 (15)0.35318 (15)0.0174 (4)
C101.0733 (2)0.14411 (19)0.38555 (17)0.0262 (5)
H10A1.06770.08490.33230.039*
H10B1.08690.11060.45700.039*
H10C1.14530.19370.38870.039*
C110.7642 (2)0.53864 (15)0.67896 (14)0.0153 (4)
C120.7140 (2)0.55145 (17)0.77265 (14)0.0194 (5)
H12A0.63390.59440.74960.029*
H12B0.77770.59090.83180.029*
H12C0.69770.47740.79770.029*
C130.5151 (2)0.29061 (15)0.44952 (14)0.0148 (4)
C140.7219 (2)0.17132 (17)0.48471 (15)0.0186 (5)
C150.6127 (2)0.26595 (16)0.28408 (15)0.0157 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01399 (17)0.01153 (15)0.01009 (14)0.00017 (12)0.00396 (11)0.00037 (10)
O10.0157 (8)0.0155 (7)0.0131 (6)0.0044 (6)0.0049 (6)0.0016 (5)
O20.0245 (9)0.0251 (8)0.0161 (7)0.0045 (7)0.0034 (6)0.0063 (6)
O30.0159 (8)0.0169 (7)0.0107 (6)0.0001 (6)0.0061 (5)0.0034 (5)
O40.0199 (9)0.0266 (8)0.0235 (7)0.0063 (7)0.0088 (6)0.0079 (6)
O50.0189 (9)0.0234 (8)0.0205 (7)0.0015 (6)0.0083 (6)0.0010 (6)
O60.0403 (11)0.0190 (9)0.0315 (8)0.0094 (8)0.0124 (8)0.0088 (7)
O70.0239 (9)0.0271 (8)0.0131 (7)0.0021 (7)0.0032 (6)0.0037 (6)
C10.0101 (11)0.0124 (10)0.0141 (9)0.0013 (8)0.0024 (8)0.0006 (7)
C20.0142 (11)0.0138 (10)0.0128 (9)0.0026 (8)0.0019 (8)0.0025 (7)
C30.0157 (11)0.0109 (10)0.0127 (9)0.0035 (8)0.0062 (8)0.0036 (7)
C40.0108 (11)0.0120 (10)0.0131 (9)0.0037 (8)0.0023 (8)0.0016 (7)
C50.0157 (11)0.0134 (10)0.0139 (9)0.0007 (8)0.0060 (8)0.0007 (7)
C60.0163 (12)0.0156 (10)0.0144 (9)0.0014 (8)0.0060 (8)0.0001 (7)
C70.0204 (12)0.0198 (11)0.0155 (9)0.0033 (9)0.0081 (8)0.0036 (8)
C80.0229 (13)0.0160 (11)0.0246 (11)0.0028 (9)0.0115 (9)0.0002 (8)
C90.0233 (13)0.0142 (11)0.0171 (10)0.0022 (9)0.0098 (9)0.0005 (8)
C100.0265 (14)0.0272 (12)0.0244 (11)0.0099 (10)0.0075 (10)0.0038 (9)
C110.0189 (12)0.0124 (10)0.0129 (9)0.0026 (8)0.0030 (8)0.0010 (7)
C120.0244 (13)0.0212 (11)0.0137 (9)0.0005 (9)0.0076 (9)0.0044 (8)
C130.0207 (12)0.0128 (10)0.0102 (9)0.0001 (8)0.0039 (8)0.0013 (7)
C140.0203 (12)0.0221 (12)0.0150 (9)0.0026 (9)0.0081 (8)0.0033 (8)
C150.0154 (12)0.0136 (10)0.0200 (10)0.0006 (8)0.0081 (9)0.0016 (8)
Geometric parameters (Å, º) top
Fe1—C151.7907 (19)C4—C51.533 (2)
Fe1—C141.793 (2)C4—H40.9500
Fe1—C131.807 (2)C5—C71.533 (3)
Fe1—C32.0410 (18)C5—C81.544 (3)
Fe1—C22.0632 (19)C5—C61.547 (3)
Fe1—C12.086 (2)C6—H6A0.9900
Fe1—C42.1171 (18)C6—H6B0.9900
O1—C91.363 (2)C7—H7A0.9800
O1—C11.423 (2)C7—H7B0.9800
O2—C91.197 (2)C7—H7C0.9800
O3—C111.370 (2)C8—H8A0.9800
O3—C31.413 (2)C8—H8B0.9800
O4—C111.195 (2)C8—H8C0.9800
O5—C131.140 (2)C9—C101.490 (3)
O6—C141.144 (2)C10—H10A0.9800
O7—C151.147 (2)C10—H10B0.9800
C1—C21.429 (2)C10—H10C0.9800
C1—C61.517 (2)C11—C121.501 (2)
C2—C31.391 (3)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C3—C41.416 (2)C12—H12C0.9800
C15—Fe1—C14100.09 (9)Fe1—C4—H490.6
C15—Fe1—C1398.05 (9)C4—C5—C7110.43 (16)
C14—Fe1—C1392.40 (9)C4—C5—C8107.07 (14)
C15—Fe1—C3136.08 (8)C7—C5—C8108.42 (15)
C14—Fe1—C3120.64 (8)C4—C5—C6109.38 (15)
C13—Fe1—C396.05 (8)C7—C5—C6110.93 (14)
C15—Fe1—C2133.11 (8)C8—C5—C6110.52 (17)
C14—Fe1—C291.64 (8)C1—C6—C5110.10 (15)
C13—Fe1—C2126.85 (8)C1—C6—H6A109.6
C3—Fe1—C239.62 (7)C5—C6—H6A109.6
C15—Fe1—C193.24 (8)C1—C6—H6B109.6
C14—Fe1—C194.73 (8)C5—C6—H6B109.6
C13—Fe1—C1165.38 (8)H6A—C6—H6B108.2
C3—Fe1—C169.34 (7)C5—C7—H7A109.5
C2—Fe1—C140.28 (7)C5—C7—H7B109.5
C15—Fe1—C497.89 (8)H7A—C7—H7B109.5
C14—Fe1—C4160.13 (8)C5—C7—H7C109.5
C13—Fe1—C493.41 (8)H7A—C7—H7C109.5
C3—Fe1—C439.77 (7)H7B—C7—H7C109.5
C2—Fe1—C469.75 (7)C5—C8—H8A109.5
C1—Fe1—C475.79 (7)C5—C8—H8B109.5
C9—O1—C1120.04 (15)H8A—C8—H8B109.5
C11—O3—C3115.66 (15)C5—C8—H8C109.5
O1—C1—C2110.73 (15)H8A—C8—H8C109.5
O1—C1—C6115.27 (15)H8B—C8—H8C109.5
C2—C1—C6121.04 (16)O2—C9—O1123.76 (18)
O1—C1—Fe1122.01 (12)O2—C9—C10126.38 (17)
C2—C1—Fe169.01 (11)O1—C9—C10109.86 (17)
C6—C1—Fe1111.37 (13)C9—C10—H10A109.5
C3—C2—C1112.72 (16)C9—C10—H10B109.5
C3—C2—Fe169.33 (11)H10A—C10—H10B109.5
C1—C2—Fe170.71 (11)C9—C10—H10C109.5
C3—C2—H2123.6H10A—C10—H10C109.5
C1—C2—H2123.6H10B—C10—H10C109.5
Fe1—C2—H2128.1O4—C11—O3123.65 (17)
C2—C3—O3121.22 (16)O4—C11—C12126.61 (18)
C2—C3—C4116.78 (16)O3—C11—C12109.74 (17)
O3—C3—C4121.78 (17)C11—C12—H12A109.5
C2—C3—Fe171.05 (11)C11—C12—H12B109.5
O3—C3—Fe1121.47 (12)H12A—C12—H12B109.5
C4—C3—Fe173.01 (10)C11—C12—H12C109.5
C3—C4—C5117.86 (17)H12A—C12—H12C109.5
C3—C4—Fe167.22 (10)H12B—C12—H12C109.5
C5—C4—Fe1112.09 (12)O5—C13—Fe1176.88 (16)
C3—C4—H4121.1O6—C14—Fe1178.7 (2)
C5—C4—H4121.1O7—C15—Fe1178.33 (18)
C9—O1—C1—C2153.86 (16)C14—Fe1—C3—O367.18 (18)
C9—O1—C1—C664.1 (2)C13—Fe1—C3—O329.24 (16)
C9—O1—C1—Fe176.28 (18)C2—Fe1—C3—O3115.62 (19)
C15—Fe1—C1—C2172.64 (12)C1—Fe1—C3—O3150.23 (16)
C14—Fe1—C1—C286.95 (12)C4—Fe1—C3—O3117.3 (2)
C13—Fe1—C1—C232.0 (3)C15—Fe1—C3—C420.20 (17)
C3—Fe1—C1—C234.07 (11)C14—Fe1—C3—C4175.53 (12)
C4—Fe1—C1—C275.32 (11)C13—Fe1—C3—C488.06 (12)
C15—Fe1—C1—C656.35 (13)C2—Fe1—C3—C4127.08 (16)
C14—Fe1—C1—C6156.76 (13)C1—Fe1—C3—C492.47 (12)
C13—Fe1—C1—C684.3 (3)C2—C3—C4—C546.2 (2)
C3—Fe1—C1—C682.22 (13)O3—C3—C4—C5139.23 (17)
C2—Fe1—C1—C6116.29 (17)Fe1—C3—C4—C5103.85 (15)
C4—Fe1—C1—C640.97 (12)C2—C3—C4—Fe157.69 (15)
O1—C1—C2—C3174.00 (16)O3—C3—C4—Fe1116.92 (17)
C6—C1—C2—C346.5 (3)C15—Fe1—C4—C3166.01 (12)
Fe1—C1—C2—C356.50 (14)C14—Fe1—C4—C311.4 (3)
O1—C1—C2—Fe1117.50 (14)C13—Fe1—C4—C395.37 (12)
C6—C1—C2—Fe1102.98 (17)C2—Fe1—C4—C332.83 (11)
C15—Fe1—C2—C3114.62 (13)C1—Fe1—C4—C374.64 (11)
C14—Fe1—C2—C3139.90 (11)C15—Fe1—C4—C553.89 (14)
C13—Fe1—C2—C345.67 (14)C14—Fe1—C4—C5100.7 (2)
C1—Fe1—C2—C3124.71 (15)C13—Fe1—C4—C5152.51 (13)
C4—Fe1—C2—C332.95 (10)C3—Fe1—C4—C5112.12 (18)
C15—Fe1—C2—C110.09 (16)C2—Fe1—C4—C579.29 (13)
C14—Fe1—C2—C195.39 (11)C1—Fe1—C4—C537.48 (13)
C13—Fe1—C2—C1170.38 (11)C3—C4—C5—C7170.42 (16)
C3—Fe1—C2—C1124.71 (15)Fe1—C4—C5—C795.38 (15)
C4—Fe1—C2—C191.76 (11)C3—C4—C5—C871.7 (2)
C1—C2—C3—O3173.19 (16)Fe1—C4—C5—C8146.77 (13)
Fe1—C2—C3—O3115.93 (16)C3—C4—C5—C648.1 (2)
C1—C2—C3—C41.4 (2)Fe1—C4—C5—C626.98 (18)
Fe1—C2—C3—C458.71 (15)O1—C1—C6—C5178.32 (15)
C1—C2—C3—Fe157.27 (14)C2—C1—C6—C540.5 (2)
C11—O3—C3—C264.8 (2)Fe1—C1—C6—C537.17 (18)
C11—O3—C3—C4120.82 (19)C4—C5—C6—C16.0 (2)
C11—O3—C3—Fe1150.55 (14)C7—C5—C6—C1128.02 (16)
C15—Fe1—C3—C2106.89 (14)C8—C5—C6—C1111.68 (17)
C14—Fe1—C3—C248.44 (14)C1—O1—C9—O24.1 (3)
C13—Fe1—C3—C2144.86 (11)C1—O1—C9—C10176.09 (16)
C1—Fe1—C3—C234.61 (10)C3—O3—C11—O44.5 (3)
C4—Fe1—C3—C2127.08 (16)C3—O3—C11—C12175.53 (15)
C15—Fe1—C3—O3137.49 (15)

Experimental details

Crystal data
Chemical formula[Fe(C12H16O4)(CO)3]
Mr364.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9977 (6), 11.9586 (5), 13.0364 (5)
β (°) 108.739 (3)
V3)1623.63 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.3 × 0.15 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2009)
Tmin, Tmax0.700, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
15588, 3538, 2814
Rint0.059
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.06
No. of reflections3538
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.62

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), PLATON (Spek, 2009).

 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (FOR 630) and the Fonds der chemischen Industrie (doctorate stipend to SR).

References

First citationAlberto, R. & Motterlini, R. (2007). Dalton Trans. pp. 1651–1660.  Web of Science CrossRef Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoháč, A., Lettrichová, M., Hrnčiac, P. & Hutta, M. (1996). J. Organomet. Chem. 507, 23–29.  Google Scholar
First citationChoi, M. K. & Otterbein, L. E. (2002). Antioxid. Redox Signal. 4, 227–338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, T. R., Mann, B. E., Clark, J. E., Foresti, R., Green, C. J. & Motterlini, R. (2003). Angew. Chem. Int. Ed. 42, 3722-3729.  Web of Science CrossRef CAS Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationMann, B. E. & Motterlini, R. (2007). Chem. Commun. pp. 4197–4208.  CrossRef Google Scholar
First citationMotterlini, R. & Otterbein, L. E. (2010). Nat. Rev. Drug Discov., 9, 728–743.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationRomanski, S., Kraus, B., Schatzschneider, U., Neudörfl, J.-M., Amslinger, S. & Schmalz, H.-G. (2011). Angew. Chem. Int. Ed. 50, 2392–2396.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds