organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzyl-3-nitro­aniline

aLaboratory of General and Inorganic Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102 A, HR-10000 Zagreb, Croatia, and bDepartment of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia
*Correspondence e-mail: vstilinovic@chem.pmf.hr

(Received 15 September 2011; accepted 14 October 2011; online 22 October 2011)

The mol­ecule of the title compound, C13H12N2O2, has a bent conformation with a torsion angle about the central C—N bond of 72.55 (19)°. In the crystal, the mol­ecules are connected via classical N—H⋯O and non-classical C—H⋯O hydrogen bonds into chains along [10[\overline{1}]]. The dihedral angle between the ring planes is 86.0 (6)°.

Related literature

For the synthesis of the title compound, see: Magyarfalvi (2008[Magyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.]). For related structures, see: Betz et al. (2011[Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.]); Iwasaki et al. (1988[Iwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085-1090.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O2

  • Mr = 228.25

  • Monoclinic, P 21

  • a = 5.3359 (2) Å

  • b = 19.2285 (6) Å

  • c = 5.6017 (2) Å

  • β = 97.334 (3)°

  • V = 570.04 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.41 × 0.29 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • 7072 measured reflections

  • 1280 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.01

  • 1280 reflections

  • 158 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.44 (2) 3.263 (2) 166 (2)
C6—H6⋯O2i 0.93 2.45 3.364 (2) 169
C13—H13⋯O1ii 0.93 2.67 3.293 (2) 125
C7—H7A⋯O1iii 0.97 2.61 3.318 (2) 130
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), POV-RAY (Cason et al., 2002[Cason, C. J., Froehlich, T., Kopp, N. & Parker, R. (2002). POV-Ray. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The synthesis of the title compound was a part of Preparatory problems for the 40th International Chemistry Olympiad (Magyarfalvi, 2008). It was prepared and crystalized as a part of the laboratory work with high–school students.

The N–methyl–3–nitroaniline system is almost perfectly planar (the mean plane of the the phenyl ring is at an angle of 1.5 (2)° with the mean plane of the angle nitro group, and 1.4 (2)° with the mean plane of the central C1—N1—C7. The phenyl substituent is at an angle of 86.0 (2)° to the rest of the molecule. The C1—N1—C7—C8 torsion angle is 72.55 (19)°. This conforamtion is similar to thet reported by Betz et al. (2011) for the unsubstituited N–benzylaniline.

The molecules are connected into chains along the [1 0 1] direction by N1—H1···O1i classical hydrogen bonds of (N1···O1i = 3.263 (2)Å), which are further fortified by non–classical one C6—H6···O2i with contact C6···O2ii of 3.364 (2)Å. Interestingly, in a similar compound, N–benzyl–4–nitroaniline (Iwasaki et al., 1988), the N—H···O bonding is entirely absent, which demonstrates the effect of changing the position of the nitro group on tha supramolecular aggregation.

The chains are further interconnected via long non–classical C—H···O (C13—H13···O1ii of 3.293 (2)Å and C7—H7A···O1iii of 3.318 (1)Å) contacts into layers perpendicular to the b axis.

Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1; (iii) x+1, y, z.

Related literature top

For the synthesis of the title compound, see: Magyarfalvi (2008). For related structures, see: Betz et al. (2011); Iwasaki et al. (1988).

Experimental top

The title compound was prepared using a slightly modified procedure (Magyarfalvi, 2008) and isolated in a form of yellow crystalline powder. A sample of approximately 100 mg of the compound was dissolved in approximately 10 ml of hot ethanol. The solution was left to cool to room temperature, filtered, and the filtrate was left to crystallize by slow evaporation. The single crystalls suitable for X–ray study were obtained after aproximatelly 4 days.

Refinement top

The amine hydrogen atom was locates from the electron fifference map and isotropical refined. All H atoms bonded to carbon atoms were placed geometrically and included in the refinement in the riding–model approximation with C—H distances of 0.93Å for aryl and 0.97Å for CH2. In the refinement these H atoms were included with Uiso = 1.2Ueq(C).

Since there are no heavy atoms in the structure, the Friedel pairs (1186) were merged for the final refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), POV-RAY (Cason et al., 2002) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom labeling scheme. Displacement ellipsoids are shown at 30% probability level. Hydrogen atoms are shown as a spheres of arbitrary radius.
[Figure 2] Fig. 2. Chains in the structure of the title compound viewed along the [1 0 1] direction. Hydrogen bonds are indicated by dashed lines.
N-benzyl-3-nitroaniline top
Crystal data top
C13H12N2O2Z = 2
Mr = 228.25F(000) = 240
Monoclinic, P21Dx = 1.33 Mg m3
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 5.3359 (2) Åθ = 4.6–54.0°
b = 19.2285 (6) ŵ = 0.09 mm1
c = 5.6017 (2) ÅT = 295 K
β = 97.334 (3)°Plate, yellow
V = 570.04 (3) Å30.41 × 0.29 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1093 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.0°, θmin = 3.8°
ϕ and ω scansh = 66
7072 measured reflectionsk = 2424
1280 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0615P)2]
where P = (Fo2 + 2Fc2)/3
1280 reflections(Δ/σ)max = 0.003
158 parametersΔρmax = 0.14 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H12N2O2V = 570.04 (3) Å3
Mr = 228.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.3359 (2) ŵ = 0.09 mm1
b = 19.2285 (6) ÅT = 295 K
c = 5.6017 (2) Å0.41 × 0.29 × 0.23 mm
β = 97.334 (3)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
1093 reflections with I > 2σ(I)
7072 measured reflectionsRint = 0.017
1280 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.14 e Å3
1280 reflectionsΔρmin = 0.26 e Å3
158 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.844 (5)0.2074 (13)0.076 (5)0.063 (6)*
C30.2527 (3)0.28407 (9)0.4595 (3)0.0412 (4)
C20.4146 (3)0.23191 (9)0.4090 (3)0.0423 (4)
H20.41810.18960.48960.051*
C10.5737 (3)0.24414 (9)0.2335 (3)0.0454 (4)
N20.0876 (3)0.27154 (8)0.6441 (3)0.0489 (4)
C60.5584 (3)0.30889 (10)0.1187 (4)0.0516 (4)
H60.66260.3180.00130.062*
C40.2364 (4)0.34794 (9)0.3472 (4)0.0528 (5)
H40.12440.3820.38580.063*
N10.7446 (4)0.19560 (9)0.1759 (4)0.0663 (5)
O20.0522 (3)0.31801 (9)0.6928 (3)0.0763 (5)
O10.0942 (3)0.21462 (8)0.7433 (3)0.0645 (4)
C50.3954 (4)0.35886 (10)0.1740 (4)0.0579 (5)
H50.39050.40130.09390.069*
C80.5655 (3)0.07735 (9)0.2164 (3)0.0496 (4)
C70.7768 (4)0.12849 (11)0.2881 (5)0.0616 (5)
H7A0.79370.13470.46120.074*
H7B0.93350.10850.24920.074*
C110.1852 (4)0.01992 (12)0.0930 (5)0.0705 (6)
H110.05760.05230.05180.085*
C130.4114 (4)0.08153 (12)0.0021 (3)0.0666 (6)
H130.43480.11720.10930.08*
C100.3354 (5)0.02457 (12)0.3060 (5)0.0739 (6)
H100.31180.06060.41150.089*
C90.5222 (4)0.02354 (12)0.3673 (4)0.0651 (5)
H90.62240.01970.51520.078*
C120.2233 (5)0.03297 (16)0.0607 (4)0.0764 (6)
H120.12070.03630.20750.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0386 (7)0.0460 (9)0.0405 (8)0.0039 (7)0.0116 (6)0.0028 (6)
C20.0431 (8)0.0405 (8)0.0456 (9)0.0033 (7)0.0142 (7)0.0021 (7)
C10.0417 (8)0.0458 (9)0.0515 (10)0.0066 (7)0.0164 (7)0.0044 (7)
N20.0472 (8)0.0573 (9)0.0444 (8)0.0030 (7)0.0150 (6)0.0023 (7)
C60.0508 (10)0.0569 (10)0.0510 (10)0.0126 (9)0.0211 (8)0.0032 (8)
C40.0524 (10)0.0441 (10)0.0643 (12)0.0042 (8)0.0163 (9)0.0017 (8)
N10.0602 (10)0.0540 (10)0.0943 (13)0.0002 (8)0.0470 (10)0.0012 (9)
O20.0773 (10)0.0795 (11)0.0811 (11)0.0173 (9)0.0447 (9)0.0031 (8)
O10.0718 (9)0.0671 (9)0.0601 (8)0.0025 (7)0.0301 (7)0.0108 (7)
C50.0603 (11)0.0484 (11)0.0671 (12)0.0028 (9)0.0164 (10)0.0147 (8)
C80.0481 (9)0.0457 (10)0.0577 (10)0.0089 (8)0.0171 (8)0.0069 (7)
C70.0468 (10)0.0517 (10)0.0892 (16)0.0051 (8)0.0201 (10)0.0067 (10)
C110.0620 (12)0.0589 (12)0.0913 (17)0.0032 (10)0.0128 (12)0.0219 (9)
C130.0778 (14)0.0645 (12)0.0581 (13)0.0059 (11)0.0112 (11)0.0051 (9)
C100.0851 (16)0.0572 (12)0.0803 (16)0.0117 (12)0.0134 (13)0.0030 (11)
C90.0722 (12)0.0600 (12)0.0617 (12)0.0029 (11)0.0030 (10)0.0041 (10)
C120.0778 (14)0.0816 (14)0.0653 (13)0.0054 (13)0.0079 (11)0.0111 (10)
Geometric parameters (Å, º) top
C3—C21.376 (2)C5—H50.93
C3—C41.378 (2)C8—C91.374 (3)
C3—N21.461 (2)C8—C131.3868 (17)
C2—C11.398 (2)C8—C71.511 (3)
C2—H20.93C7—H7A0.97
C1—N11.372 (2)C7—H7B0.97
C1—C61.399 (3)C11—C101.353 (4)
N2—O21.217 (2)C11—C121.364 (4)
N2—O11.226 (2)C11—H110.93
C6—C51.358 (3)C13—C121.379 (4)
C6—H60.93C13—H130.93
C4—C51.384 (3)C10—C91.371 (3)
C4—H40.93C10—H100.93
N1—C71.436 (3)C9—H90.93
N1—H10.85 (3)C12—H120.93
C2—C3—C4124.08 (15)C9—C8—C13117.32 (18)
C2—C3—N2118.44 (14)C9—C8—C7120.31 (17)
C4—C3—N2117.48 (15)C13—C8—C7122.36 (19)
C3—C2—C1118.37 (15)N1—C7—C8115.13 (19)
C3—C2—H2120.8N1—C7—H7A108.5
C1—C2—H2120.8C8—C7—H7A108.5
N1—C1—C2122.14 (17)N1—C7—H7B108.5
N1—C1—C6119.94 (16)C8—C7—H7B108.5
C2—C1—C6117.90 (16)H7A—C7—H7B107.5
O2—N2—O1122.47 (15)C10—C11—C12119.1 (2)
O2—N2—C3118.66 (16)C10—C11—H11120.4
O1—N2—C3118.87 (14)C12—C11—H11120.4
C5—C6—C1121.74 (16)C12—C13—C8120.2 (2)
C5—C6—H6119.1C12—C13—H13119.9
C1—C6—H6119.1C8—C13—H13119.9
C3—C4—C5116.54 (16)C11—C10—C9120.4 (2)
C3—C4—H4121.7C11—C10—H10119.8
C5—C4—H4121.7C9—C10—H10119.8
C1—N1—C7123.70 (18)C10—C9—C8121.9 (2)
C1—N1—H1117.6 (17)C10—C9—H9119.1
C7—N1—H1118.6 (17)C8—C9—H9119.1
C6—C5—C4121.36 (17)C11—C12—C13121.1 (2)
C6—C5—H5119.3C11—C12—H12119.4
C4—C5—H5119.3C13—C12—H12119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (2)2.44 (2)3.263 (2)166 (2)
C6—H6···O2i0.932.453.364 (2)169
C13—H13···O1ii0.932.673.293 (2)125
C7—H7A···O1iii0.972.613.318 (2)130
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H12N2O2
Mr228.25
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)5.3359 (2), 19.2285 (6), 5.6017 (2)
β (°) 97.334 (3)
V3)570.04 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.29 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7072, 1280, 1093
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.01
No. of reflections1280
No. of parameters158
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), POV-RAY (Cason et al., 2002) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (2)2.44 (2)3.263 (2)166 (2)
C6—H6···O2i0.932.4463.364 (2)169
C13—H13···O1ii0.932.6703.293 (2)125
C7—H7A···O1iii0.972.6053.318 (2)130
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1; (iii) x+1, y, z.
 

Acknowledgements

The authors would like to thank the Ministry of Science, Education and Sport, Republic of Croatia, for financial support of this work through grants 119–1193079–3069, 006–0000000–3216 and 098–0982904–2912.

References

First citationBetz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCason, C. J., Froehlich, T., Kopp, N. & Parker, R. (2002). POV–Ray. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIwasaki, F., Masuko, Y., Monma, S., Watanabe, T. & Mutai, K. (1988). Bull. Chem. Soc. Jpn, 61, 1085–1090.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds