organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[2-(4-Acetyl­oxyphen­yl)ethen­yl]benzene-1,3-diyl di­acetate

aZhejiang Pharmaceutical College, Ningbo 315100, People's Republic of China, bKey Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315104, People's Republic of China, cState Key Laboratory of Bio-Organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, People's Republic of China, and dShanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (West), Shanghai 200040, People's Republic of China
*Correspondence e-mail: gongyanqing@sioc.ac.cn

(Received 3 October 2011; accepted 26 October 2011; online 29 October 2011)

The title compound, C20H18O6, was prepared from resveratrol {systematic name: 5-[(E)-2-(4-hy­droxy­phen­yl)ethen­yl]ben­z­ene-1,3-diol}, which can be isolated from grapes, through triacetyl­ation with using acetic anhydride in pyridine. The two benzene rings are approximately coplanar, making a dihedral angle of 6.64 (14)°, and the three acet­oxy group are located on the same side of the plane. The skeleton of the compound resembles a table with three legs. In the crystal, mol­ecules are linked via C—H⋯O interactions, forming inversion dimers. These dimers are further linked via C—H⋯O interactions, forming a three-dimensional structure.

Related literature

For background to this class of compound, see: González-Barrio et al. (2006[González-Barrio, R., Beltrán, D., Cantos, E., Gil, M. I., Espín, J.-C. & Tomás-Barberan, F. (2006). J. Agric. Food Chem. 54, 4222-4228.]). For the preparation of the title compound, see: Sarpierto et al. (2007[Sarpierto, M. G., Spatafora, C., Tringali, C., Micieli, D. & Castelli, F. (2007). J. Agric. Food Chem. 55, 3720-3728.]). For a study of its potential use in radioprotective drug development, see: Koide et al. (2011[Koide, K., Osman, S., Garner, A. L., Song, F. L., Dixon, T., Greenberger, J. S. & Epperly, M. W. (2011). Am. Chem. Soc. Med. Chem. Lett. 2, 270-274.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18O6

  • Mr = 354.34

  • Monoclinic, C 2/c

  • a = 31.520 (6) Å

  • b = 6.1211 (12) Å

  • c = 20.110 (4) Å

  • β = 110.92 (3)°

  • V = 3624.2 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 296 K

  • 0.23 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.939

  • 11742 measured reflections

  • 3181 independent reflections

  • 2532 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.191

  • S = 1.05

  • 3181 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20C⋯O1i 0.96 2.56 3.402 (4) 147
C16—H16B⋯O5ii 0.96 2.56 3.438 (4) 153
C18—H18A⋯O3iii 0.96 2.60 3.494 (4) 156
C8—H8A⋯O6iv 0.93 2.58 3.441 (4) 154
Symmetry codes: (i) [-x, y-1, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title molecule, 3,4',5-triacetoxy-trans-stilbene (Fig. 1), is the triacetylation product of resveratrol, which can be isolated from grapes (González-Barrio et al., 2006). In the molecular structure of the title compound, two benzene rings were substantially coplanar with dihedral angle 6.64 (14)°. Three acetoxy group located in the same side of the plane. As a result, the whole structure looks like an interesting long table with three legs.

In the crystal, molecules of title compound packed with formation an infinite Z form (Fig. 2). Molecules are linked by non-classical C–H···O hydrogen bonds, which played an important role for the stability of the crystal structure (Table 1).

Koide's study (Koide et al., 2011) showed that the title compound effectively protected the live cells after γ-irradiation and it may be a leading candidate for radioprotective drug development.

Related literature top

For background to this class of compound, see: González-Barrio et al. (2006). For the preparation of the title compound, see: Sarpierto et al. (2007). For a study of its potential use in radioprotective drug development, see: Koide et al. (2011).

Experimental top

The title compound was prepared according to the procedure (Sarpierto et al., 2007) through triacetylation by using acetic anhydride in pyridine (1:1, v/v). Crystals appropriate for X-ray diffraction data collection were obtained from methanol solution, yielding colourless block-like crystals after a week at room temperature.

Refinement top

All H atoms were placed in geometically idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93Å (0.96Å for methyl group) and Uiso(H) = 1.2(1.5 for CH3)Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule structure with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b axis.
5-[2-(4-Acetyloxyphenyl)ethenyl]benzene-1,3-diyl diacetate top
Crystal data top
C20H18O6F(000) = 1488
Mr = 354.34Dx = 1.299 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 3228 reflections
a = 31.520 (6) Åθ = 4.7–67.0°
b = 6.1211 (12) ŵ = 0.80 mm1
c = 20.110 (4) ÅT = 296 K
β = 110.92 (3)°Block, colourless
V = 3624.2 (14) Å30.23 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 67.0°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3736
Tmin = 0.837, Tmax = 0.939k = 77
11742 measured reflectionsl = 1924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1023P)2 + 2.2789P]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H18O6V = 3624.2 (14) Å3
Mr = 354.34Z = 8
Monoclinic, C2/cCu Kα radiation
a = 31.520 (6) ŵ = 0.80 mm1
b = 6.1211 (12) ÅT = 296 K
c = 20.110 (4) Å0.23 × 0.10 × 0.08 mm
β = 110.92 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2532 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.939Rint = 0.020
11742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
3181 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16481 (6)0.7332 (3)0.46756 (9)0.0754 (5)
O20.21472 (8)0.5358 (4)0.43718 (12)0.0992 (7)
O30.21702 (7)1.1732 (4)0.29763 (12)0.0906 (6)
O40.14826 (6)1.2873 (3)0.29000 (10)0.0714 (5)
O50.11728 (7)0.1955 (4)0.02189 (12)0.1001 (7)
O60.07902 (11)0.0003 (4)0.07410 (13)0.1110 (8)
C10.08924 (7)0.7665 (4)0.28105 (13)0.0645 (6)
C20.10294 (7)0.9669 (4)0.26198 (12)0.0646 (6)
H2A0.08871.02150.21620.077*
C30.13752 (7)1.0835 (4)0.31104 (12)0.0600 (5)
C40.15881 (7)1.0105 (4)0.37985 (12)0.0620 (6)
H4A0.18151.09180.41300.074*
C50.14503 (8)0.8119 (4)0.39738 (12)0.0617 (6)
C60.11048 (8)0.6919 (4)0.34968 (13)0.0642 (6)
H6A0.10150.56050.36380.077*
C70.05373 (8)0.6257 (5)0.23138 (15)0.0767 (7)
H7A0.04690.49750.25020.092*
C80.03135 (9)0.6616 (5)0.16494 (15)0.0761 (7)
H8A0.03890.78720.14560.091*
C90.00525 (8)0.5237 (5)0.11593 (16)0.0741 (7)
C100.01673 (9)0.3156 (5)0.13435 (16)0.0803 (8)
H10A0.00040.25480.17810.096*
C110.05336 (9)0.2001 (5)0.08785 (16)0.0792 (7)
H11A0.06130.06330.10000.095*
C120.07737 (9)0.2943 (5)0.02379 (16)0.0772 (7)
C130.06570 (10)0.4942 (5)0.00422 (17)0.0835 (8)
H13A0.08230.55240.04020.100*
C140.02968 (10)0.6077 (5)0.05012 (16)0.0808 (7)
H14A0.02170.74240.03660.097*
C150.19909 (8)0.5858 (4)0.48039 (14)0.0699 (6)
C160.21382 (11)0.5035 (6)0.55443 (17)0.0948 (9)
H16A0.23810.40060.56230.142*
H16B0.18870.43300.56210.142*
H16C0.22420.62350.58700.142*
C170.18971 (9)1.3158 (4)0.28572 (12)0.0668 (6)
C180.19501 (12)1.5425 (5)0.26272 (19)0.0925 (9)
H18A0.22471.55900.26020.139*
H18B0.19141.64490.29650.139*
H18C0.17241.56980.21670.139*
C190.11458 (13)0.0548 (5)0.07061 (14)0.0847 (8)
C200.16046 (14)0.0225 (7)0.11694 (17)0.1184 (14)
H20A0.15750.12270.15180.178*
H20B0.17850.10020.14060.178*
H20C0.17490.09490.08830.178*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (10)0.0922 (12)0.0612 (10)0.0095 (9)0.0228 (8)0.0065 (8)
O20.0966 (14)0.1150 (17)0.0855 (14)0.0354 (13)0.0319 (12)0.0047 (12)
O30.0806 (12)0.1032 (15)0.1010 (15)0.0186 (11)0.0483 (11)0.0178 (11)
O40.0629 (9)0.0650 (10)0.0877 (12)0.0039 (7)0.0287 (8)0.0061 (8)
O50.0743 (12)0.1182 (17)0.0978 (15)0.0211 (11)0.0186 (11)0.0451 (13)
O60.141 (2)0.1095 (18)0.0868 (15)0.0075 (16)0.0461 (15)0.0264 (12)
C10.0513 (11)0.0761 (15)0.0679 (14)0.0055 (10)0.0235 (10)0.0116 (11)
C20.0519 (11)0.0831 (16)0.0554 (12)0.0072 (11)0.0150 (10)0.0011 (11)
C30.0544 (11)0.0611 (12)0.0664 (13)0.0046 (10)0.0239 (10)0.0005 (10)
C40.0534 (11)0.0670 (14)0.0632 (13)0.0008 (10)0.0178 (10)0.0098 (10)
C50.0565 (12)0.0715 (14)0.0577 (12)0.0044 (10)0.0212 (10)0.0025 (10)
C60.0607 (13)0.0670 (14)0.0685 (14)0.0035 (10)0.0275 (11)0.0031 (11)
C70.0627 (14)0.0930 (18)0.0749 (16)0.0060 (13)0.0252 (12)0.0037 (14)
C80.0691 (15)0.0825 (17)0.0778 (17)0.0064 (13)0.0277 (13)0.0042 (13)
C90.0584 (13)0.0822 (17)0.0881 (18)0.0114 (12)0.0338 (13)0.0290 (14)
C100.0642 (14)0.097 (2)0.0773 (16)0.0033 (13)0.0220 (12)0.0157 (14)
C110.0681 (15)0.0801 (17)0.0874 (19)0.0074 (12)0.0255 (14)0.0200 (14)
C120.0637 (14)0.0838 (18)0.0844 (18)0.0133 (13)0.0266 (13)0.0318 (14)
C130.0751 (16)0.096 (2)0.0774 (17)0.0051 (14)0.0248 (14)0.0176 (14)
C140.0764 (16)0.0869 (18)0.0805 (18)0.0104 (14)0.0299 (14)0.0170 (14)
C150.0592 (13)0.0694 (14)0.0734 (15)0.0003 (11)0.0143 (11)0.0024 (12)
C160.0807 (18)0.110 (2)0.085 (2)0.0081 (17)0.0194 (15)0.0267 (17)
C170.0672 (14)0.0792 (16)0.0565 (12)0.0017 (12)0.0253 (11)0.0013 (11)
C180.104 (2)0.088 (2)0.102 (2)0.0070 (17)0.0569 (19)0.0091 (16)
C190.114 (2)0.0813 (18)0.0563 (14)0.0215 (17)0.0277 (15)0.0038 (13)
C200.147 (3)0.118 (3)0.0649 (17)0.054 (2)0.0076 (19)0.0127 (17)
Geometric parameters (Å, º) top
O1—C151.360 (3)C9—C141.372 (4)
O1—C51.409 (3)C9—C101.409 (4)
O2—C151.182 (3)C10—C111.392 (4)
O3—C171.188 (3)C10—H10A0.9300
O4—C171.351 (3)C11—C121.367 (4)
O4—C31.397 (3)C11—H11A0.9300
O5—C191.330 (4)C12—C131.375 (4)
O5—C121.403 (3)C13—C141.369 (4)
O6—C191.195 (4)C13—H13A0.9300
C1—C61.379 (3)C14—H14A0.9300
C1—C21.399 (4)C15—C161.481 (4)
C1—C71.481 (4)C16—H16A0.9600
C2—C31.380 (3)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C3—C41.379 (3)C17—C181.491 (4)
C4—C51.378 (3)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.378 (3)C18—H18C0.9600
C6—H6A0.9300C19—C201.490 (5)
C7—C81.288 (4)C20—H20A0.9600
C7—H7A0.9300C20—H20B0.9600
C8—C91.484 (4)C20—H20C0.9600
C8—H8A0.9300
C15—O1—C5117.03 (19)C11—C12—C13122.0 (3)
C17—O4—C3118.62 (19)C11—C12—O5120.0 (3)
C19—O5—C12118.9 (2)C13—C12—O5117.7 (3)
C6—C1—C2118.5 (2)C14—C13—C12120.0 (3)
C6—C1—C7117.5 (2)C14—C13—H13A120.0
C2—C1—C7123.9 (2)C12—C13—H13A120.0
C3—C2—C1120.0 (2)C13—C14—C9120.3 (3)
C3—C2—H2A120.0C13—C14—H14A119.8
C1—C2—H2A120.0C9—C14—H14A119.8
C4—C3—C2121.8 (2)O2—C15—O1123.0 (2)
C4—C3—O4120.6 (2)O2—C15—C16126.0 (3)
C2—C3—O4117.4 (2)O1—C15—C16111.0 (2)
C5—C4—C3117.2 (2)C15—C16—H16A109.5
C5—C4—H4A121.4C15—C16—H16B109.5
C3—C4—H4A121.4H16A—C16—H16B109.5
C4—C5—C6122.3 (2)C15—C16—H16C109.5
C4—C5—O1119.4 (2)H16A—C16—H16C109.5
C6—C5—O1118.2 (2)H16B—C16—H16C109.5
C5—C6—C1120.0 (2)O3—C17—O4122.7 (2)
C5—C6—H6A120.0O3—C17—C18126.3 (3)
C1—C6—H6A120.0O4—C17—C18111.0 (2)
C8—C7—C1127.1 (3)C17—C18—H18A109.5
C8—C7—H7A116.5C17—C18—H18B109.5
C1—C7—H7A116.5H18A—C18—H18B109.5
C7—C8—C9126.9 (3)C17—C18—H18C109.5
C7—C8—H8A116.6H18A—C18—H18C109.5
C9—C8—H8A116.6H18B—C18—H18C109.5
C14—C9—C10118.9 (2)O6—C19—O5122.2 (3)
C14—C9—C8117.6 (3)O6—C19—C20126.5 (3)
C10—C9—C8123.4 (3)O5—C19—C20111.3 (3)
C11—C10—C9120.8 (3)C19—C20—H20A109.5
C11—C10—H10A119.6C19—C20—H20B109.5
C9—C10—H10A119.6H20A—C20—H20B109.5
C12—C11—C10117.8 (3)C19—C20—H20C109.5
C12—C11—H11A121.1H20A—C20—H20C109.5
C10—C11—H11A121.1H20B—C20—H20C109.5
C6—C1—C2—C31.1 (3)C7—C8—C9—C108.3 (4)
C7—C1—C2—C3177.6 (2)C14—C9—C10—C112.5 (4)
C1—C2—C3—C41.4 (3)C8—C9—C10—C11175.7 (2)
C1—C2—C3—O4177.03 (19)C9—C10—C11—C120.6 (4)
C17—O4—C3—C468.8 (3)C10—C11—C12—C131.4 (4)
C17—O4—C3—C2115.5 (2)C10—C11—C12—O5173.5 (2)
C2—C3—C4—C51.8 (3)C19—O5—C12—C1191.5 (3)
O4—C3—C4—C5177.33 (19)C19—O5—C12—C1393.4 (3)
C3—C4—C5—C62.1 (3)C11—C12—C13—C141.6 (4)
C3—C4—C5—O1178.2 (2)O5—C12—C13—C14173.4 (3)
C15—O1—C5—C498.1 (3)C12—C13—C14—C90.4 (4)
C15—O1—C5—C685.7 (3)C10—C9—C14—C132.4 (4)
C4—C5—C6—C11.9 (3)C8—C9—C14—C13175.9 (2)
O1—C5—C6—C1178.0 (2)C5—O1—C15—O25.8 (4)
C2—C1—C6—C51.3 (3)C5—O1—C15—C16175.1 (2)
C7—C1—C6—C5177.4 (2)C3—O4—C17—O31.7 (4)
C6—C1—C7—C8177.1 (3)C3—O4—C17—C18179.9 (2)
C2—C1—C7—C81.5 (4)C12—O5—C19—O64.4 (5)
C1—C7—C8—C9177.9 (2)C12—O5—C19—C20176.5 (3)
C7—C8—C9—C14170.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20C···O1i0.962.563.402 (4)147
C16—H16B···O5ii0.962.563.438 (4)153
C18—H18A···O3iii0.962.603.494 (4)156
C8—H8A···O6iv0.932.583.441 (4)154
C16—H16A···O3v0.962.703.185 (4)112
Symmetry codes: (i) x, y1, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H18O6
Mr354.34
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)31.520 (6), 6.1211 (12), 20.110 (4)
β (°) 110.92 (3)
V3)3624.2 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.23 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.837, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
11742, 3181, 2532
Rint0.020
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.191, 1.05
No. of reflections3181
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20C···O1i0.962.563.402 (4)146.5
C16—H16B···O5ii0.962.563.438 (4)152.6
C18—H18A···O3iii0.962.603.494 (4)155.6
C8—H8A···O6iv0.932.583.441 (4)154.1
C16—H16A···O3v0.962.703.185 (4)111.7
Symmetry codes: (i) x, y1, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z; (v) x+1/2, y+3/2, z+1.
 

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGonzález-Barrio, R., Beltrán, D., Cantos, E., Gil, M. I., Espín, J.-C. & Tomás-Barberan, F. (2006). J. Agric. Food Chem. 54, 4222–4228.  PubMed Google Scholar
First citationKoide, K., Osman, S., Garner, A. L., Song, F. L., Dixon, T., Greenberger, J. S. & Epperly, M. W. (2011). Am. Chem. Soc. Med. Chem. Lett. 2, 270–274.  Web of Science CrossRef CAS Google Scholar
First citationSarpierto, M. G., Spatafora, C., Tringali, C., Micieli, D. & Castelli, F. (2007). J. Agric. Food Chem. 55, 3720–3728.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds