organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3-dicarb­­oxy­lic acid–1,2-bis­­(4-pyrid­yl)ethene (1/1)

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China
*Correspondence e-mail: dongliu@chnu.edu.cn

(Received 4 October 2011; accepted 19 October 2011; online 29 October 2011)

In the title compound, C12H10N2·C8H6O4, the asymmetric unit contains two halves of 1,2-bis­(4-pyrid­yl)ethene (bpe) mol­ecules and one benzene-1,3-dicarb­oxy­lic acid (1,3-H2BDC) mol­ecule. These bpe and 1,3-H2BDC mol­ecules are linked by classical O—H⋯N hydrogen bonds, forming an extended one-dimensional zigzag chain. Each chain is further linked with neighboring ones by ππ inter­actions between the pyridine and aromatic rings [centroid–centroid distances = 3.9306 (15) Å] and the pyridine rings of pairs of symmetry-related mol­ecules [centroid–centroid distances = 3.5751 (15), 3.7350 (15) and 3.6882 (15) Å], with the formation of a three-dimensional supra­molecular framework.

Related literature

For structures and properties of self-assembled supramolecular compounds, see: Lehn (1990[Lehn, M. L. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.]). For hydrogen-bonding inter­actions and ππ inter­actions in supramolecular compounds, see: Biradha (2003[Biradha, K. (2003). CrystEngComm, 5, 374-384.]); Shan & Jones (2003[Shan, N. & Jones, W. (2003). Tetrahedron Lett. 44, 3687-3689.]); Weyna et al. (2009[Weyna, D., Shattock, R. T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2·C8H6O4

  • Mr = 348.35

  • Triclinic, [P \overline 1]

  • a = 6.8331 (14) Å

  • b = 6.8804 (14) Å

  • c = 18.618 (4) Å

  • α = 99.47 (3)°

  • β = 93.87 (3)°

  • γ = 102.69 (3)°

  • V = 837.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.40 × 0.40 × 0.35 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.962, Tmax = 0.967

  • 8280 measured reflections

  • 3054 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.137

  • S = 1.06

  • 3054 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.83 1.77 2.597 (2) 176
O3—H3⋯N2 0.83 1.79 2.618 (2) 176
Symmetry code: (i) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the past decades, the supramolecular synthesis of multicomponent organic materials has attracted considerable attention due to their functional properties (Lehn, 1990). The facile way of synthesizing these co-crystals is to employ the components containing complementary functional groups such as pyridine and carboxylic acid. Owing to the hydrogen-bonds and ππ stacking between these types of groups, several multicomponent cocrystals containing various network geometries were prepared using these two functional groups (Biradha, 2003; Shan & Jones, 2003; Weyna et al., 2009).

The hydrothermal reaction of 1,2-bis(4-pyridyl)ethene (bpe) with benzene-1,3-dicarboxylic acid (1,3-H2BDC) resulted in the cocrystals of C12H10N2.C8H6O4, I. In I, the asymmetric unit is formed by two halves of bpe molecules and one 1,3-H2BDC molecule (Fig. 1). These molecular units are linked by classical O–H···N hydrogen-bonds (O1–H1···N1iii, O1···N1iii = 2.597 (2)Å; O3–H3···N2, O3···N2 = 2.618 (2)Å) forming an extended one-dimensional zigzag chain (Table 1, Fig. 2). Furthermore, the adjacent one-dimensional chains are interconnected each other through ππ interactions between pairs of molecules [Cg1···Cg1iv = 3.5751 (15)Å; Cg1···Cg3 = 3.9306 (15)Å; Cg2···Cg2v = 3.7350 (15)Å; Cg2···Cg2vi = 3.7350 (15)Å form a three-dimensional framework (Fig. 3). The Cg1, Cg2 and Cg3, are the centroids of the rings N1/C9-C13, N2/C15-C19 and C1-C6. Symmetry codes: (iii) -x+1, y, z; (iv) -x+1, -y+1, -z+2; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z+1 .

Related literature top

For structures and properties of self-assembled supermolecular compounds, see: Lehn (1990). For hydrogen-bonding interactions and ππ interactions in supermolecular compounds, see: Biradha (2003); Shan & Jones (2003); Weyna et al. (2009).

Experimental top

To a 10 mL Pyrex glass tube was loaded 1,2-bis(4-pyridyl)ethene (18 mg, 0.1 mmol), benzene-1,3-dicarboxylic acid (17 mg, 0.1 mmol) and 3 ml of H2O. The tube was sealed and heated in an oven to 423 K for three days, and then cooled to ambient temperature at the rate of 5 K h-1 to form yellow crystals.

Refinement top

All H atoms were placed in geometrically idealized positions (C–H = 0.94Å for phenyl, pyridyl and vinyl groups, O–H = 0.83Å for OH group) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are presented at the 30% probability level. Symmetry codes: (i) -x+2, -y+2, -z+1; (ii): -x, -y+1, -z+2; (iii) x+1, y, z.
[Figure 2] Fig. 2. The one-dimensional zigzag chain linked by hydrogen-bonding interactions. The blue dashed lines represent the hydrogen-bonds.
[Figure 3] Fig. 3. The three-dimensional supramolecular framework linked by hydrogen-bonding interactions and ππ interactions. The blue and cyan dashed lines represent the hydrogen-bonds and ππ interactions, respectively.
Benzene-1,3-dicarboxylic acid111,2-bis(4-pyridyl)ethene (1/1) top
Crystal data top
C12H10N2·C8H6O4Z = 2
Mr = 348.35F(000) = 364
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8331 (14) ÅCell parameters from 2779 reflections
b = 6.8804 (14) Åθ = 3.1–25.4°
c = 18.618 (4) ŵ = 0.10 mm1
α = 99.47 (3)°T = 223 K
β = 93.87 (3)°Block, yellow
γ = 102.69 (3)°0.40 × 0.40 × 0.35 mm
V = 837.4 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
3054 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 88
Tmin = 0.962, Tmax = 0.967k = 78
8280 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1982P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3054 reflectionsΔρmax = 0.23 e Å3
238 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C12H10N2·C8H6O4γ = 102.69 (3)°
Mr = 348.35V = 837.4 (3) Å3
Triclinic, P1Z = 2
a = 6.8331 (14) ÅMo Kα radiation
b = 6.8804 (14) ŵ = 0.10 mm1
c = 18.618 (4) ÅT = 223 K
α = 99.47 (3)°0.40 × 0.40 × 0.35 mm
β = 93.87 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
3054 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2153 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.967Rint = 0.037
8280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3054 reflectionsΔρmin = 0.19 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1898 (3)0.1743 (2)0.81468 (9)0.0437 (5)
H10.28350.19990.83780.065*
O20.2446 (3)0.0994 (3)0.86694 (10)0.0528 (5)
O30.5207 (2)0.0878 (2)0.62885 (9)0.0417 (4)
H30.57960.17790.60790.063*
O40.4236 (3)0.3460 (2)0.69323 (9)0.0495 (5)
N10.5203 (3)0.2721 (3)0.88516 (10)0.0348 (5)
N20.6910 (3)0.3812 (3)0.56392 (10)0.0353 (5)
C10.0121 (3)0.0583 (3)0.78717 (11)0.0306 (5)
C20.1342 (3)0.0735 (3)0.75112 (11)0.0292 (5)
H20.11090.20300.75070.035*
C30.2909 (3)0.0166 (3)0.71557 (11)0.0283 (5)
C40.3240 (3)0.1741 (3)0.71652 (11)0.0346 (5)
H40.42930.21410.69250.041*
C50.2028 (4)0.3062 (3)0.75262 (12)0.0403 (6)
H50.22600.43570.75300.048*
C60.0478 (4)0.2489 (3)0.78806 (12)0.0369 (6)
H60.03370.33890.81280.044*
C70.1539 (3)0.0031 (3)0.82700 (12)0.0347 (5)
C80.4193 (3)0.1663 (3)0.67866 (11)0.0327 (5)
C90.4644 (3)0.4451 (4)0.88158 (12)0.0380 (6)
H90.53390.53350.85330.046*
C100.3099 (3)0.4988 (3)0.91739 (12)0.0372 (6)
H100.27520.62160.91320.045*
C110.2046 (3)0.3725 (3)0.95979 (11)0.0334 (5)
C120.2643 (3)0.1941 (4)0.96377 (12)0.0390 (6)
H120.19890.10410.99230.047*
C130.4199 (3)0.1495 (4)0.92569 (12)0.0379 (6)
H130.45680.02700.92840.046*
C140.0399 (3)0.4214 (4)1.00081 (13)0.0391 (6)
H140.01390.33141.03130.047*
C150.7001 (3)0.3777 (3)0.49225 (12)0.0342 (5)
H150.65060.25380.45970.041*
C160.7789 (3)0.5474 (3)0.46388 (12)0.0332 (5)
H160.78050.53800.41300.040*
C170.8558 (3)0.7326 (3)0.51039 (12)0.0324 (5)
C180.8411 (3)0.7367 (4)0.58473 (12)0.0383 (6)
H180.88650.85900.61840.046*
C190.7600 (3)0.5615 (4)0.60859 (12)0.0404 (6)
H190.75220.56770.65910.049*
C200.9500 (3)0.9104 (3)0.48071 (12)0.0353 (5)
H200.93900.89690.42940.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (11)0.0443 (10)0.0532 (10)0.0215 (8)0.0243 (8)0.0151 (8)
O20.0570 (12)0.0512 (11)0.0617 (11)0.0181 (9)0.0331 (9)0.0247 (9)
O30.0466 (11)0.0339 (9)0.0481 (10)0.0108 (8)0.0249 (8)0.0073 (8)
O40.0646 (12)0.0296 (10)0.0625 (11)0.0167 (8)0.0341 (9)0.0129 (8)
N10.0284 (11)0.0395 (11)0.0360 (10)0.0086 (9)0.0060 (8)0.0037 (9)
N20.0294 (11)0.0360 (11)0.0406 (11)0.0080 (8)0.0077 (8)0.0058 (9)
C10.0326 (12)0.0319 (12)0.0271 (11)0.0088 (10)0.0034 (9)0.0033 (9)
C20.0339 (13)0.0262 (11)0.0285 (11)0.0099 (10)0.0037 (9)0.0038 (9)
C30.0305 (12)0.0267 (11)0.0278 (11)0.0087 (9)0.0033 (9)0.0024 (9)
C40.0389 (14)0.0348 (13)0.0330 (12)0.0150 (11)0.0077 (10)0.0049 (10)
C50.0506 (16)0.0309 (13)0.0443 (14)0.0174 (12)0.0113 (11)0.0074 (11)
C60.0436 (15)0.0317 (12)0.0378 (13)0.0094 (11)0.0097 (10)0.0103 (10)
C70.0343 (13)0.0349 (13)0.0348 (12)0.0085 (11)0.0055 (10)0.0049 (10)
C80.0341 (13)0.0335 (13)0.0324 (12)0.0127 (10)0.0082 (9)0.0035 (10)
C90.0341 (13)0.0397 (14)0.0416 (13)0.0083 (11)0.0118 (10)0.0091 (11)
C100.0361 (14)0.0354 (13)0.0423 (13)0.0121 (11)0.0096 (10)0.0060 (11)
C110.0289 (12)0.0397 (13)0.0293 (11)0.0080 (10)0.0022 (9)0.0003 (10)
C120.0383 (14)0.0419 (14)0.0396 (13)0.0112 (11)0.0115 (10)0.0103 (11)
C130.0353 (14)0.0399 (13)0.0413 (13)0.0149 (11)0.0059 (10)0.0063 (11)
C140.0341 (13)0.0451 (14)0.0398 (12)0.0111 (11)0.0133 (10)0.0067 (11)
C150.0281 (12)0.0332 (13)0.0408 (13)0.0094 (10)0.0055 (9)0.0018 (10)
C160.0299 (12)0.0346 (13)0.0356 (12)0.0105 (10)0.0035 (9)0.0037 (10)
C170.0246 (12)0.0319 (12)0.0394 (12)0.0067 (10)0.0016 (9)0.0037 (10)
C180.0349 (13)0.0347 (13)0.0385 (13)0.0006 (11)0.0038 (10)0.0021 (11)
C190.0360 (14)0.0473 (15)0.0344 (12)0.0041 (11)0.0074 (10)0.0036 (11)
C200.0332 (13)0.0345 (12)0.0387 (13)0.0082 (10)0.0028 (10)0.0083 (10)
Geometric parameters (Å, º) top
O1—C71.307 (3)C9—C101.371 (3)
O1—H10.8300C9—H90.9400
O2—C71.215 (3)C10—C111.387 (3)
O3—C81.310 (2)C10—H100.9400
O3—H30.8300C11—C121.387 (3)
O4—C81.215 (3)C11—C141.470 (3)
N1—C131.333 (3)C12—C131.378 (3)
N1—C91.338 (3)C12—H120.9400
N2—C151.336 (3)C13—H130.9400
N2—C191.343 (3)C14—C14i1.318 (5)
C1—C21.383 (3)C14—H140.9400
C1—C61.387 (3)C15—C161.378 (3)
C1—C71.495 (3)C15—H150.9400
C2—C31.390 (3)C16—C171.390 (3)
C2—H20.9400C16—H160.9400
C3—C41.383 (3)C17—C181.390 (3)
C3—C81.490 (3)C17—C201.463 (3)
C4—C51.382 (3)C18—C191.369 (3)
C4—H40.9400C18—H180.9400
C5—C61.381 (3)C19—H190.9400
C5—H50.9400C20—C20ii1.333 (4)
C6—H60.9400C20—H200.9400
C7—O1—H1109.5C9—C10—H10119.9
C8—O3—H3109.5C11—C10—H10119.9
C13—N1—C9117.51 (19)C10—C11—C12116.8 (2)
C15—N2—C19116.9 (2)C10—C11—C14123.4 (2)
C2—C1—C6119.4 (2)C12—C11—C14119.8 (2)
C2—C1—C7121.13 (19)C13—C12—C11119.7 (2)
C6—C1—C7119.4 (2)C13—C12—H12120.2
C1—C2—C3120.74 (19)C11—C12—H12120.2
C1—C2—H2119.6N1—C13—C12123.1 (2)
C3—C2—H2119.6N1—C13—H13118.5
C4—C3—C2119.2 (2)C12—C13—H13118.5
C4—C3—C8122.45 (19)C14i—C14—C11126.6 (3)
C2—C3—C8118.30 (18)C14i—C14—H14116.7
C5—C4—C3120.3 (2)C11—C14—H14116.7
C5—C4—H4119.9N2—C15—C16123.0 (2)
C3—C4—H4119.9N2—C15—H15118.5
C6—C5—C4120.3 (2)C16—C15—H15118.5
C6—C5—H5119.9C15—C16—C17120.1 (2)
C4—C5—H5119.9C15—C16—H16120.0
C5—C6—C1120.1 (2)C17—C16—H16120.0
C5—C6—H6120.0C16—C17—C18116.7 (2)
C1—C6—H6120.0C16—C17—C20120.1 (2)
O2—C7—O1124.3 (2)C18—C17—C20123.1 (2)
O2—C7—C1121.9 (2)C19—C18—C17119.6 (2)
O1—C7—C1113.81 (19)C19—C18—H18120.2
O4—C8—O3123.6 (2)C17—C18—H18120.2
O4—C8—C3121.53 (19)N2—C19—C18123.7 (2)
O3—C8—C3114.84 (18)N2—C19—H19118.2
N1—C9—C10122.7 (2)C18—C19—H19118.2
N1—C9—H9118.6C20ii—C20—C17126.3 (3)
C10—C9—H9118.6C20ii—C20—H20116.8
C9—C10—C11120.2 (2)C17—C20—H20116.8
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1iii0.831.772.597 (2)176
O3—H3···N20.831.792.618 (2)176
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H10N2·C8H6O4
Mr348.35
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)6.8331 (14), 6.8804 (14), 18.618 (4)
α, β, γ (°)99.47 (3), 93.87 (3), 102.69 (3)
V3)837.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.40 × 0.35
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.962, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
8280, 3054, 2153
Rint0.037
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 1.06
No. of reflections3054
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.831.772.597 (2)175.8
O3—H3···N20.831.792.618 (2)175.6
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (grant No. 600581).

References

First citationBiradha, K. (2003). CrystEngComm, 5, 374–384.  Web of Science CrossRef CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLehn, M. L. (1990). Angew. Chem. Int. Ed. 29, 1304-1319.  CrossRef Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, N. & Jones, W. (2003). Tetrahedron Lett. 44, 3687–3689.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D., Shattock, R. T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds