organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Benzo­thia­zole-2(3H)-selone

aBaku State University, Z. Khalilov Street 23, Baku AZ-1148, Azerbaijan, bR. E. Alekseev Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod 603950, Russian Federation, and cX-ray Structural Centre, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
*Correspondence e-mail: gunka479@mail.ru

(Received 10 October 2011; accepted 19 October 2011; online 29 October 2011)

The title compound, C7H5NSSe, is the product of the reaction of 2-chloro­benzothia­zole with sodium hydro­selenide. The mol­ecule is almost planar (r.m.s. deviation = 0.018 Å) owing to the presence of the long chain of conjugated bonds (Se=C—N—C=C—C=C—C=C). The geometrical parameters correspond well to those of the analog N-methyl­benzothia­zole-2(3H)-selone, demonstrating that the S atom does not take a significant role in the electron delocalization within the mol­ecule. In the crystal, mol­ecules form centrosymmetric dimers by means of inter­molecular N—H⋯Se hydrogen bonds. The dimers have a nonplanar ladder-like structure. Furthermore, the dimers are linked into ribbons propagating in [010] by weak attractive Se⋯S [3.7593 (4) Å] inter­actions.

Related literature

For selones as potential anti­thyroid drugs, see: Taurog et al. (1994[Taurog, A., Dorris, M. L., Guziec, L. J. & Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447-1453.]); Roy & Mugesh (2005[Roy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207-15217.], 2006[Roy, G. & Mugesh, G. (2006). Bioorg. Chem. Appl. 1-9.]); Roy et al. (2007[Roy, G., Das, D. & Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303-316.], 2011[Roy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279-2286.]). For 2,3-dihydro-1,3-benzothia­zolo-2-selone synthesis, see: Warner (1963[Warner, J. S. (1963). J. Org. Chem. 28, 1642-1644.]); Shibata & Mitsunobu (1992[Shibata, K. & Mitsunobu, O. (1992). Bull. Chem. Soc. Jpn, 65, 3163-3173.]). For related compounds, see: Guziec & Guziec (1994[Guziec, F. S. & Guziec, L. J. (1994). J. Org. Chem. 59, 4691-4692.]); Husebye et al. (1997[Husebye, S., Lindeman, S. V. & Rudd, M. D. (1997). Acta Cryst. C53, 809-811.]); Landry et al. (2006[Landry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490-12497.]); Nakanishi et al. (2008[Nakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. & Tokitoh, N. (2008). New J. Chem. 32, 1881-1889.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NSSe

  • Mr = 214.15

  • Monoclinic, P 21 /n

  • a = 8.0420 (4) Å

  • b = 6.0818 (3) Å

  • c = 15.1836 (7) Å

  • β = 101.195 (1)°

  • V = 728.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.35 mm−1

  • T = 100 K

  • 0.30 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.297, Tmax = 0.446

  • 8129 measured reflections

  • 2108 independent reflections

  • 2042 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.00

  • 2108 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Se1i 0.88 2.56 3.4165 (10) 163
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last years, the selone derivatives have attracted considerable attention owing to their antithyroid properties (Taurog et al., 1994; Roy & Mugesh, 2005, 2006; Roy et al., 2007, 2011) as well as selone-selenol tautomerism (Guziec & Guziec, 1994; Husebye et al., 1997; Landry et al., 2006).

This article describes the structure of 2,3-dihydro-1,3-benzothiazolo-2-selone, which was obtained by a reaction of 2-chlorobenzothiazole with sodium hydroselenide. It should be noted that, before us, the attempt to prepare this compound by the same reaction was unsuccessful (Shibata & Mitsunobu, 1992). Moreover, the preparation method of the title compound by the reaction of o-aminobenzothiol with CSe2 was previously known, but conclusive evidences were not provided (Warner, 1963).

The molecule of C7H5NSSe, I, is practically planar (r.m.s. deviation = 0.018Å) due to the presence of the long chain of conjugated bonds (Se1C2–N3–C3AC4–C5C6–C7C7A, Fig. 1). The geometrical parameters of I correspond well to those of the closer analog of I - N-methylbenzothiazole-2(3H)-selone (Husebye et al., 1997) demonstrating that the sulfur atom does not take a significant part in the electron delocalization within the molecule.

In the crystal, the molecules of I form centrosymmetrical dimers by the intermolecular N3–H3···Se1i hydrogen bonds (Fig. 2, Table 1). It is interesting to point out that the dimers have non-planar ladder-like structure (Fig. 3). The dimers are further linked into ribbons propagating in [0 1 0] by the weak attractive intermolecular Se1···S1ii [Se···S distances are 3.7593 (4)Å] interactions (Nakanishi et al., 2008) (Fig. 3). Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, -1+y, z.

Related literature top

For selones as potential antithyroid drugs, see: Taurog et al. (1994); Roy & Mugesh (2005, 2006); Roy et al. (2007, 2011). For 2,3-dihydro-1,3-benzothiazolo-2-selone synthesis, see: Warner (1963); Shibata & Mitsunobu (1992). For related compounds, see: Guziec & Guziec (1994); Husebye et al. (1997); Landry et al. (2006); Nakanishi et al. (2008).

Experimental top

To a suspension of selenium (1.92 g, 24.3 mmol) in water (15 ml) was added a solution of NaBH4 (1.93 g, 50.8 mmol) in water (15 ml) with stirring at room temperature under argon. After 10 min, 2-chlorobenzothiazole (2.6 ml, 20 mmol) was added. The mixture was heated 3 h at 353 K and cooled to room temperature. Then to the solution was added 1M H2SO4 (20 ml) to give yellow precipitate (Figure 4). The crystalline powder was separated by filtration, washed with water and dried on air at 413 K. The solid was recrystallized from CH2Cl2 to give the selone as pale-yellow prisms. Yield is 73%. M.P. = 346-347 K. IR (KBr), ν (cm-1): 3431, 3010, 2343, 1595, 1490, 1456, 1421, 1319, 1244, 983, 750, 669; 1H NMR (DMSO-d6, 600 MHz, 303 K): δ = 7.34 (t, 1H, H6, J = 7.3), 7.41 (t, 1H, H5, J = 7.3), 7.47 (d, 1H, H7, J = 7.3), 7.75 (d, 1H, H4, J = 7.3), 14.40 (s, 1H, H3). Anal. Calcd. for C7H5NSSe: C, 39.27; H, 2.35; N, 6.54. Found: C, 39.18; H, 2.30; N, 6.47.

Refinement top

The amino hydrogen atom was localized in the difference Fourier map and included in the refinement with fixed positional and isotropic displacement parameters Uiso(H) = 1.2Ueq(N). The other hydrogen atoms were placed in calculated positions with C–H = 0.95Å and refined in the riding model with fixed isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. The H atoms are presented as a small cyrcles of arbitrary radius.
[Figure 2] Fig. 2. The centrosymmetrical dimers in crystal structure of I. Dashed lines indicate the intermolecular hydrogen bonds N3–H3···Se1i. Symmetry code: (i) -x+2, -y, -z+1.
[Figure 3] Fig. 3. Crystal packing of dimers of I. Dashed lines indicate the intermolecular N–H···Se hydrogen bonding and weak attractive Se···S interactions.
[Figure 4] Fig. 4. Reaction of 2-chlorobenzothiazole with sodium hydroselenide.
1,3-Benzothiazole-2(3H)-selone top
Crystal data top
C7H5NSSeF(000) = 416
Mr = 214.15Dx = 1.952 Mg m3
Monoclinic, P21/nMelting point = 346–347 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.0420 (4) ÅCell parameters from 6338 reflections
b = 6.0818 (3) Åθ = 2.6–30.0°
c = 15.1836 (7) ŵ = 5.35 mm1
β = 101.195 (1)°T = 100 K
V = 728.50 (6) Å3Prism, pale-yellow
Z = 40.30 × 0.21 × 0.18 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2108 independent reflections
Radiation source: fine-focus sealed tube2042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1111
Tmin = 0.297, Tmax = 0.446k = 88
8129 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: difference Fourier map
wR(F2) = 0.041H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.023P)2 + 0.371P]
where P = (Fo2 + 2Fc2)/3
2108 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H5NSSeV = 728.50 (6) Å3
Mr = 214.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0420 (4) ŵ = 5.35 mm1
b = 6.0818 (3) ÅT = 100 K
c = 15.1836 (7) Å0.30 × 0.21 × 0.18 mm
β = 101.195 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
2042 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.446Rint = 0.020
8129 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
2108 reflectionsΔρmin = 0.29 e Å3
91 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σF2 is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se11.277060 (14)0.076249 (19)0.579287 (8)0.01478 (5)
S11.17970 (3)0.51668 (5)0.661496 (19)0.01522 (6)
C21.12217 (14)0.27701 (18)0.60187 (7)0.01301 (19)
N30.95281 (12)0.26504 (16)0.57732 (6)0.01391 (18)
H30.90220.15430.54570.017*
C3A0.86204 (14)0.43853 (18)0.60496 (8)0.0126 (2)
C40.68634 (15)0.4594 (2)0.59126 (8)0.0155 (2)
H40.61350.35000.56010.019*
C50.62189 (15)0.6465 (2)0.62499 (8)0.0170 (2)
H50.50260.66590.61600.020*
C60.72815 (15)0.8072 (2)0.67190 (8)0.0167 (2)
H60.68010.93350.69400.020*
C70.90347 (15)0.7839 (2)0.68649 (8)0.0160 (2)
H70.97620.89230.71850.019*
C7A0.96916 (14)0.59737 (19)0.65275 (8)0.0133 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01251 (7)0.01418 (7)0.01708 (7)0.00142 (4)0.00145 (4)0.00172 (4)
S10.01046 (12)0.01552 (13)0.01887 (13)0.00113 (9)0.00088 (10)0.00449 (10)
C20.0133 (5)0.0130 (5)0.0125 (5)0.0000 (4)0.0020 (4)0.0006 (4)
N30.0125 (4)0.0132 (4)0.0155 (4)0.0010 (3)0.0015 (3)0.0021 (3)
C3A0.0121 (5)0.0134 (5)0.0123 (5)0.0008 (4)0.0022 (4)0.0001 (4)
C40.0124 (5)0.0177 (5)0.0158 (5)0.0016 (4)0.0013 (4)0.0001 (4)
C50.0128 (5)0.0219 (6)0.0168 (5)0.0018 (4)0.0040 (4)0.0019 (4)
C60.0172 (5)0.0179 (5)0.0159 (5)0.0032 (4)0.0052 (4)0.0001 (4)
C70.0160 (5)0.0163 (5)0.0154 (5)0.0000 (4)0.0024 (4)0.0026 (4)
C7A0.0114 (5)0.0149 (5)0.0134 (5)0.0012 (4)0.0021 (4)0.0009 (4)
Geometric parameters (Å, º) top
Se1—C21.8236 (11)C4—C51.3890 (17)
S1—C21.7308 (12)C4—H40.9500
S1—C7A1.7430 (12)C5—C61.3986 (17)
C2—N31.3425 (14)C5—H50.9500
N3—C3A1.3933 (14)C6—C71.3913 (16)
N3—H30.8800C6—H60.9500
C3A—C41.3935 (16)C7—C7A1.3906 (16)
C3A—C7A1.3997 (15)C7—H70.9500
C2—S1—C7A92.31 (5)C4—C5—C6121.69 (11)
N3—C2—S1110.16 (8)C4—C5—H5119.2
N3—C2—Se1127.21 (9)C6—C5—H5119.2
S1—C2—Se1122.63 (6)C7—C6—C5120.67 (11)
C2—N3—C3A115.97 (10)C7—C6—H6119.7
C2—N3—H3122.0C5—C6—H6119.7
C3A—N3—H3122.0C7A—C7—C6118.04 (11)
N3—C3A—C4126.82 (10)C7A—C7—H7121.0
N3—C3A—C7A111.91 (10)C6—C7—H7121.0
C4—C3A—C7A121.25 (10)C7—C7A—C3A120.96 (11)
C5—C4—C3A117.37 (11)C7—C7A—S1129.39 (9)
C5—C4—H4121.3C3A—C7A—S1109.64 (8)
C3A—C4—H4121.3
C7A—S1—C2—N30.42 (9)C5—C6—C7—C7A0.29 (18)
C7A—S1—C2—Se1179.05 (7)C6—C7—C7A—C3A0.46 (17)
S1—C2—N3—C3A1.00 (13)C6—C7—C7A—S1178.39 (9)
Se1—C2—N3—C3A178.44 (8)N3—C3A—C7A—C7179.85 (10)
C2—N3—C3A—C4177.14 (11)C4—C3A—C7A—C71.41 (17)
C2—N3—C3A—C7A1.19 (14)N3—C3A—C7A—S10.80 (12)
N3—C3A—C4—C5179.72 (11)C4—C3A—C7A—S1177.64 (9)
C7A—C3A—C4—C51.53 (17)C2—S1—C7A—C7179.17 (12)
C3A—C4—C5—C60.77 (18)C2—S1—C7A—C3A0.22 (9)
C4—C5—C6—C70.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Se1i0.882.563.4165 (10)163
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H5NSSe
Mr214.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.0420 (4), 6.0818 (3), 15.1836 (7)
β (°) 101.195 (1)
V3)728.50 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.35
Crystal size (mm)0.30 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.297, 0.446
No. of measured, independent and
observed [I > 2σ(I)] reflections
8129, 2108, 2042
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.00
No. of reflections2108
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.29

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Se1i0.882.563.4165 (10)163
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuziec, F. S. & Guziec, L. J. (1994). J. Org. Chem. 59, 4691–4692.  CrossRef CAS Web of Science Google Scholar
First citationHusebye, S., Lindeman, S. V. & Rudd, M. D. (1997). Acta Cryst. C53, 809–811.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLandry, V. K., Minoura, M., Pang, K., Buccella, D., Kelly, B. V. & Parkin, G. (2006). J. Am. Chem. Soc. 128, 12490–12497.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakanishi, W., Hayashi, S., Morinaka, S., Sasamori, T. & Tokitoh, N. (2008). New J. Chem. 32, 1881–1889.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G., Bhabak, K. P. & Mugesh, G. (2011). Cryst. Growth Des. 11, 2279–2286.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G., Das, D. & Mugesh, G. (2007). Inorg. Chim. Acta, 360, 303–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207–15217.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoy, G. & Mugesh, G. (2006). Bioorg. Chem. Appl. 1–9.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, K. & Mitsunobu, O. (1992). Bull. Chem. Soc. Jpn, 65, 3163–3173.  CrossRef CAS Web of Science Google Scholar
First citationTaurog, A., Dorris, M. L., Guziec, L. J. & Guziec, F. S. (1994). Biochem. Pharmacol. 48, 1447–1453.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarner, J. S. (1963). J. Org. Chem. 28, 1642–1644.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds