inorganic compounds
La5Zn2Sn
aDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla i Mefodia 6,79005 Lviv, Ukraine, bInstitute for Complex Materials, IFW Dresden, Helmholz Strasse 20, D-01069 Dresden, Germany, and cKarlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: romaniuk@ua.fm
A single crystal of pentalanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetragonal antiprisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetragonal antiprisms. All four atoms in the reside on special positions with the following site symmetries: La1 (..m); La2 (4/m..); Zn (m.2m); Sn (422).
Related literature
For general background to {Tb,La}–Zn–{Sn,Pb} ternary systems, see: Manfrinetti & Pani, (2005); Oshchapovsky et al. (2010, 2011); Pavlyuk et al. (2009). For related structures, see: Bertaut (1953). For isotypic structures, see: Aronsson (1958).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and JANA2006 (Petricek et al., 2006); molecular graphics: DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811042413/ru2016sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042413/ru2016Isup2.hkl
Small good quality single-crystal of title compound was isolated from alloy with composition La7ZnSn2 during systematic investigation of lanthanum-rich region of La—Zn—Sn ternary system. The samples with high lanthanum contents were prepared by melting of pieces of pure metals in evacuated quartz ampoule with subsequent annealing at 600 0C for 30 days. Further phase analysis showed the existence of title compound in sample with composition La7ZnSn2 as well as in the other lanthanum-rich ternary alloys. However they were non equilibrium.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008), JANA2006 (Petricek et al., 2006) and SUPERFLIP (Palatinus & Chapuis, 2007); molecular graphics: DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).La5Zn2Sn | Dx = 6.308 Mg m−3 |
Mr = 944.04 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I4/mcm | Cell parameters from 1223 reflections |
Hall symbol: -I 4 2c | θ = 5.7–26.1° |
a = 8.3277 (12) Å | µ = 28.10 mm−1 |
c = 14.334 (3) Å | T = 293 K |
V = 994.1 (3) Å3 | Plate, grey |
Z = 4 | 0.04 × 0.04 × 0.01 mm |
F(000) = 1580.0 |
Bruker APEXII CCD diffractometer | 419 independent reflections |
Radiation source: sealed tube | 346 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.091 |
Detector resolution: 8.366 pixels mm-1 | θmax = 30.1°, θmin = 2.8° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −11→11 |
Tmin = 0.340, Tmax = 0.765 | l = −20→19 |
9291 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.027 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | (Δ/σ)max = 0.004 |
419 reflections | Δρmax = 1.60 e Å−3 |
14 parameters | Δρmin = −1.59 e Å−3 |
La5Zn2Sn | Z = 4 |
Mr = 944.04 | Mo Kα radiation |
Tetragonal, I4/mcm | µ = 28.10 mm−1 |
a = 8.3277 (12) Å | T = 293 K |
c = 14.334 (3) Å | 0.04 × 0.04 × 0.01 mm |
V = 994.1 (3) Å3 |
Bruker APEXII CCD diffractometer | 419 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 346 reflections with I > 2σ(I) |
Tmin = 0.340, Tmax = 0.765 | Rint = 0.091 |
9291 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.056 | w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P] where P = (Fo2 + 2Fc2)/3 |
S = 1.14 | Δρmax = 1.60 e Å−3 |
419 reflections | Δρmin = −1.59 e Å−3 |
14 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.66685 (5) | 0.16685 (5) | 0.14853 (4) | 0.02054 (16) | |
La2 | 0.0000 | 0.0000 | 0.0000 | 0.0357 (3) | |
Zn | 0.12383 (12) | 0.62383 (12) | 0.0000 | 0.0139 (3) | |
Sn | 0.0000 | 0.0000 | 0.2500 | 0.0145 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.01937 (19) | 0.01937 (19) | 0.0229 (3) | 0.00430 (19) | 0.000 | 0.000 |
La2 | 0.0291 (4) | 0.0291 (4) | 0.0490 (8) | 0.000 | 0.000 | 0.000 |
Zn | 0.0123 (4) | 0.0123 (4) | 0.0171 (7) | 0.0013 (5) | 0.000 | 0.000 |
Sn | 0.0129 (3) | 0.0129 (3) | 0.0177 (5) | 0.000 | 0.000 | 0.000 |
La1—Zni | 3.2436 (9) | La2—La1xvii | 3.7630 (6) |
La1—Znii | 3.2436 (9) | Zn—Znx | 2.917 (3) |
La1—Zniii | 3.2573 (12) | Zn—La1xviii | 3.2436 (9) |
La1—Sniv | 3.4268 (5) | Zn—La1xvi | 3.2436 (9) |
La1—Snv | 3.4268 (5) | Zn—La1xix | 3.2436 (9) |
La1—La1vi | 3.5068 (12) | Zn—La1xiv | 3.2436 (9) |
La1—La2iv | 3.7630 (6) | Zn—La1xx | 3.2573 (12) |
La1—La2vii | 3.7630 (6) | Zn—La1iii | 3.2573 (12) |
La1—La1viii | 3.9301 (12) | Zn—La2xxi | 3.2980 (8) |
La2—Znix | 3.2980 (8) | Zn—La2vii | 3.2980 (8) |
La2—Znii | 3.2980 (8) | Sn—La1xxii | 3.4268 (5) |
La2—Znx | 3.2980 (8) | Sn—La1xvii | 3.4268 (5) |
La2—Znxi | 3.2980 (8) | Sn—La1xiv | 3.4268 (5) |
La2—Snxii | 3.5835 (7) | Sn—La1v | 3.4268 (5) |
La2—Sn | 3.5835 (7) | Sn—La1xxiii | 3.4268 (5) |
La2—La1xiii | 3.7630 (6) | Sn—La1xxiv | 3.4268 (5) |
La2—La1xiv | 3.7630 (6) | Sn—La1viii | 3.4268 (5) |
La2—La1xv | 3.7630 (6) | Sn—La1xxv | 3.4268 (5) |
La2—La1viii | 3.7630 (6) | Sn—La2xxvi | 3.5835 (7) |
La2—La1xvi | 3.7630 (6) | ||
Zni—La1—Znii | 53.44 (5) | Znii—La2—La1xvi | 54.461 (17) |
Zni—La1—Zniii | 91.69 (2) | Znx—La2—La1xvi | 54.208 (18) |
Znii—La1—Zniii | 91.69 (2) | Znxi—La2—La1xvi | 125.792 (18) |
Zni—La1—Sniv | 93.75 (2) | Snxii—La2—La1xvi | 55.545 (10) |
Znii—La1—Sniv | 146.93 (3) | Sn—La2—La1xvi | 124.455 (10) |
Zniii—La1—Sniv | 93.506 (15) | La1xiii—La2—La1xvi | 111.09 (2) |
Zni—La1—Snv | 146.93 (3) | La1xiv—La2—La1xvi | 68.91 (2) |
Znii—La1—Snv | 93.75 (2) | La1xv—La2—La1xvi | 71.332 (10) |
Zniii—La1—Snv | 93.506 (15) | La1viii—La2—La1xvi | 108.668 (10) |
Sniv—La1—Snv | 118.450 (18) | Znix—La2—La1xvii | 54.461 (17) |
Zni—La1—La1vi | 151.98 (2) | Znii—La2—La1xvii | 125.539 (17) |
Znii—La1—La1vi | 151.98 (2) | Znx—La2—La1xvii | 125.792 (18) |
Zniii—La1—La1vi | 96.86 (3) | Znxi—La2—La1xvii | 54.208 (18) |
Sniv—La1—La1vi | 59.225 (9) | Snxii—La2—La1xvii | 124.455 (10) |
Snv—La1—La1vi | 59.225 (9) | Sn—La2—La1xvii | 55.545 (10) |
Zni—La1—La2iv | 55.564 (18) | La1xiii—La2—La1xvii | 68.91 (2) |
Znii—La1—La2iv | 97.94 (3) | La1xiv—La2—La1xvii | 111.09 (2) |
Zniii—La1—La2iv | 55.477 (10) | La1xv—La2—La1xvii | 108.668 (10) |
Sniv—La1—La2iv | 59.571 (13) | La1viii—La2—La1xvii | 71.332 (10) |
Snv—La1—La2iv | 146.931 (17) | La1xvi—La2—La1xvii | 180.000 (16) |
La1vi—La1—La2iv | 108.903 (17) | Znx—Zn—La1xviii | 63.28 (2) |
Zni—La1—La2vii | 97.94 (3) | Znx—Zn—La1xvi | 63.28 (2) |
Znii—La1—La2vii | 55.564 (18) | La1xviii—Zn—La1xvi | 74.58 (3) |
Zniii—La1—La2vii | 55.477 (10) | Znx—Zn—La1xix | 63.28 (2) |
Sniv—La1—La2vii | 146.931 (17) | La1xviii—Zn—La1xix | 82.05 (3) |
Snv—La1—La2vii | 59.571 (13) | La1xvi—Zn—La1xix | 126.56 (5) |
La1vi—La1—La2vii | 108.903 (17) | Znx—Zn—La1xiv | 63.28 (2) |
La2iv—La1—La2vii | 102.966 (18) | La1xviii—Zn—La1xiv | 126.56 (5) |
Zni—La1—La1viii | 52.712 (14) | La1xvi—Zn—La1xiv | 82.05 (3) |
Znii—La1—La1viii | 52.712 (14) | La1xix—Zn—La1xiv | 74.58 (3) |
Zniii—La1—La1viii | 139.19 (2) | Znx—Zn—La1xx | 139.19 (2) |
Sniv—La1—La1viii | 106.604 (9) | La1xviii—Zn—La1xx | 140.29 (2) |
Snv—La1—La1viii | 106.604 (9) | La1xvi—Zn—La1xx | 140.29 (2) |
La1vi—La1—La1viii | 123.951 (19) | La1xix—Zn—La1xx | 84.909 (18) |
La2iv—La1—La1viii | 105.084 (8) | La1xiv—Zn—La1xx | 84.909 (18) |
La2vii—La1—La1viii | 105.084 (8) | Znx—Zn—La1iii | 139.19 (2) |
Zni—La1—La1xxvii | 87.66 (2) | La1xviii—Zn—La1iii | 84.909 (18) |
Znii—La1—La1xxvii | 113.473 (17) | La1xvi—Zn—La1iii | 84.909 (18) |
Zniii—La1—La1xxvii | 147.382 (8) | La1xix—Zn—La1iii | 140.29 (2) |
Sniv—La1—La1xxvii | 54.057 (10) | La1xiv—Zn—La1iii | 140.29 (2) |
Snv—La1—La1xxvii | 104.62 (2) | La1xx—Zn—La1iii | 81.63 (4) |
La1vi—La1—La1xxvii | 70.91 (2) | Znx—Zn—La2xxi | 116.78 (2) |
La2iv—La1—La1xxvii | 98.861 (14) | La1xviii—Zn—La2xxi | 70.228 (8) |
La2vii—La1—La1xxvii | 156.689 (9) | La1xvi—Zn—La2xxi | 138.024 (12) |
La1viii—La1—La1xxvii | 60.762 (9) | La1xix—Zn—La2xxi | 70.228 (8) |
Zni—La1—La1xxii | 113.473 (17) | La1xiv—Zn—La2xxi | 138.024 (12) |
Znii—La1—La1xxii | 87.66 (2) | La1xx—Zn—La2xxi | 70.06 (2) |
Zniii—La1—La1xxii | 147.382 (8) | La1iii—Zn—La2xxi | 70.06 (2) |
Sniv—La1—La1xxii | 104.62 (2) | Znx—Zn—La2vii | 116.78 (2) |
Snv—La1—La1xxii | 54.057 (10) | La1xviii—Zn—La2vii | 138.024 (12) |
La1vi—La1—La1xxii | 70.91 (2) | La1xvi—Zn—La2vii | 70.228 (8) |
La2iv—La1—La1xxii | 156.689 (9) | La1xix—Zn—La2vii | 138.024 (12) |
La2vii—La1—La1xxii | 98.861 (14) | La1xiv—Zn—La2vii | 70.228 (8) |
La1viii—La1—La1xxii | 60.762 (9) | La1xx—Zn—La2vii | 70.06 (2) |
La1xxvii—La1—La1xxii | 58.477 (18) | La1iii—Zn—La2vii | 70.06 (2) |
Znix—La2—Znii | 180.0 | La2xxi—Zn—La2vii | 126.44 (4) |
Znix—La2—Znx | 90.0 | La1xxii—Sn—La1xvii | 146.791 (18) |
Znii—La2—Znx | 90.0 | La1xxii—Sn—La1xiv | 61.550 (18) |
Znix—La2—Znxi | 90.0 | La1xvii—Sn—La1xiv | 129.77 (2) |
Znii—La2—Znxi | 90.0 | La1xxii—Sn—La1v | 79.622 (8) |
Znx—La2—Znxi | 180.0 | La1xvii—Sn—La1v | 132.159 (17) |
Znix—La2—Snxii | 90.0 | La1xiv—Sn—La1v | 71.89 (2) |
Znii—La2—Snxii | 90.0 | La1xxii—Sn—La1xxiii | 129.77 (2) |
Znx—La2—Snxii | 90.0 | La1xvii—Sn—La1xxiii | 61.550 (18) |
Znxi—La2—Snxii | 90.0 | La1xiv—Sn—La1xxiii | 146.791 (18) |
Znix—La2—Sn | 90.0 | La1v—Sn—La1xxiii | 79.622 (8) |
Znii—La2—Sn | 90.0 | La1xxii—Sn—La1xxiv | 132.159 (17) |
Znx—La2—Sn | 90.0 | La1xvii—Sn—La1xxiv | 79.622 (8) |
Znxi—La2—Sn | 90.0 | La1xiv—Sn—La1xxiv | 79.622 (8) |
Snxii—La2—Sn | 180.0 | La1v—Sn—La1xxiv | 61.550 (18) |
Znix—La2—La1xiii | 54.461 (17) | La1xxiii—Sn—La1xxiv | 71.89 (2) |
Znii—La2—La1xiii | 125.539 (17) | La1xxii—Sn—La1viii | 71.89 (2) |
Znx—La2—La1xiii | 125.792 (18) | La1xvii—Sn—La1viii | 79.622 (8) |
Znxi—La2—La1xiii | 54.208 (18) | La1xiv—Sn—La1viii | 79.622 (8) |
Snxii—La2—La1xiii | 55.544 (10) | La1v—Sn—La1viii | 146.791 (18) |
Sn—La2—La1xiii | 124.456 (10) | La1xxiii—Sn—La1viii | 132.159 (17) |
Znix—La2—La1xiv | 125.539 (17) | La1xxiv—Sn—La1viii | 129.77 (2) |
Znii—La2—La1xiv | 54.461 (17) | La1xxii—Sn—La1xxv | 79.622 (8) |
Znx—La2—La1xiv | 54.208 (18) | La1xvii—Sn—La1xxv | 71.89 (2) |
Znxi—La2—La1xiv | 125.792 (18) | La1xiv—Sn—La1xxv | 132.159 (17) |
Snxii—La2—La1xiv | 124.456 (10) | La1v—Sn—La1xxv | 129.77 (2) |
Sn—La2—La1xiv | 55.544 (10) | La1xxiii—Sn—La1xxv | 79.622 (8) |
La1xiii—La2—La1xiv | 180.000 (16) | La1xxiv—Sn—La1xxv | 146.791 (18) |
Znix—La2—La1xv | 54.208 (18) | La1viii—Sn—La1xxv | 61.550 (18) |
Znii—La2—La1xv | 125.792 (18) | La1xxii—Sn—La2xxvi | 64.885 (10) |
Znx—La2—La1xv | 54.461 (17) | La1xvii—Sn—La2xxvi | 115.115 (10) |
Znxi—La2—La1xv | 125.539 (17) | La1xiv—Sn—La2xxvi | 115.115 (10) |
Snxii—La2—La1xv | 55.544 (10) | La1v—Sn—La2xxvi | 64.885 (10) |
Sn—La2—La1xv | 124.456 (10) | La1xxiii—Sn—La2xxvi | 64.885 (10) |
La1xiii—La2—La1xv | 71.332 (10) | La1xxiv—Sn—La2xxvi | 115.115 (10) |
La1xiv—La2—La1xv | 108.668 (10) | La1viii—Sn—La2xxvi | 115.115 (10) |
Znix—La2—La1viii | 125.792 (18) | La1xxv—Sn—La2xxvi | 64.885 (10) |
Znii—La2—La1viii | 54.208 (18) | La1xxii—Sn—La2 | 115.115 (10) |
Znx—La2—La1viii | 125.539 (17) | La1xvii—Sn—La2 | 64.885 (10) |
Znxi—La2—La1viii | 54.461 (17) | La1xiv—Sn—La2 | 64.885 (10) |
Snxii—La2—La1viii | 124.456 (10) | La1v—Sn—La2 | 115.115 (10) |
Sn—La2—La1viii | 55.544 (10) | La1xxiii—Sn—La2 | 115.115 (10) |
La1xiii—La2—La1viii | 108.668 (10) | La1xxiv—Sn—La2 | 64.885 (10) |
La1xiv—La2—La1viii | 71.332 (10) | La1viii—Sn—La2 | 64.885 (10) |
La1xv—La2—La1viii | 180.000 (18) | La1xxv—Sn—La2 | 115.115 (10) |
Znix—La2—La1xvi | 125.539 (17) | La2xxvi—Sn—La2 | 180.0 |
Symmetry codes: (i) y, −x, −z; (ii) −y+1, x, z; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) −x+3/2, −y+1/2, −z+1/2; (vii) −x+1/2, y+1/2, −z; (viii) −x+1, −y, z; (ix) y−1, −x, −z; (x) −x, −y+1, −z; (xi) x, y−1, z; (xii) −x, −y, −z; (xiii) −y, x−1, −z; (xiv) y, −x+1, z; (xv) x−1, y, −z; (xvi) y, −x+1, −z; (xvii) −y, x−1, z; (xviii) −y, x, −z; (xix) −y, x, z; (xx) −x+1, −y+1, z; (xxi) x, y+1, z; (xxii) −y+1/2, x−1/2, −z+1/2; (xxiii) y−1/2, −x+1/2, −z+1/2; (xxiv) x−1, y, z; (xxv) x−1/2, y−1/2, −z+1/2; (xxvi) −x, y, −z+1/2; (xxvii) y+1/2, −x+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | La5Zn2Sn |
Mr | 944.04 |
Crystal system, space group | Tetragonal, I4/mcm |
Temperature (K) | 293 |
a, c (Å) | 8.3277 (12), 14.334 (3) |
V (Å3) | 994.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 28.10 |
Crystal size (mm) | 0.04 × 0.04 × 0.01 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.340, 0.765 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9291, 419, 346 |
Rint | 0.091 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.056, 1.14 |
No. of reflections | 419 |
No. of parameters | 14 |
w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 1.60, −1.59 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), JANA2006 (Petricek et al., 2006) and SUPERFLIP (Palatinus & Chapuis, 2007), DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008), publCIF (Westrip, 2010).
Footnotes
‡Also at: Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland.
Acknowledgements
Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (N 0111U001089) is gratefully acknowledged.
References
Aronsson, B. (1958). Acta Chem. Scand. 12, 31–37. CrossRef CAS Web of Science Google Scholar
Bertaut, F. (1953). C. R. Hebd. Seances Acad. Sci. 236, 1055–1056. CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Manfrinetti, P. & Pani, M. (2005). J. Alloys Compd, 393, 180–184. CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oshchapovsky, I., Pavlyuk, V., Dmytriv, G. & White, F. (2011). Acta Cryst. E67, i43. Web of Science CrossRef IUCr Journals Google Scholar
Oshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177–183. Google Scholar
Pavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145–148. Web of Science CrossRef CAS Google Scholar
Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ternary compounds formed by rare-earth, transition metal and d-metal often have interesting physical and chemical properties e. g. strong ferromagnetism, hydrogen storage capabilities and so on. The systematic investigation of the components interaction in the {Tb, La}-Zn-{Sn,Pb} ternary systems can lead to development of functional materials (for crystal structures of ternary compounds see: TbZnSn –Manfrinetti & Pani, (2005), Pavlyuk et al., (2009), TbZnSn2 - Pavlyuk et al., (2009), Tb13ZnSn13 -Oshchapovsky et al., (2010) and LaZn12.37 -Oshchapovsky et al., (2011)).
The title compound crystallizes in Mo5SiB2 (Aronsson, 1958) structure type which is an ordered superstructure of Cr5B3 type (Bertaut, 1953). Unit cell projection together with coordination polyhedra are given in Fig.1. Coordination polyhedra of the La1 atoms are 16- vertex polyhedra. Sn atoms are surrounded by ten neighbours forming bicapped tetragonal antiprism. La2 atoms are enclosed into trigon - tetrahexahedron with CN=14. And coordination polyhedra of the Zn atoms are bicapped trigonal prisms with CN=9. Coordination polyhedra of Sn atoms share their vertices forming three dimensional framework. The voids in this framework are filled by zinc atoms. (See graphical abstract).
The way of bond formation in this compound was assumed using only X-ray diffraction data. Further structure refinement was carried out by means of Jana2006 software package using anharmonic ADP for La1 and Zn atoms. Anharmonic displacement parameters for other atoms were not refined because in case of their refinement their standard deviations were larger than obtained values. As the result we gained lower absolute values of peak and hole in the difference Fourier map (1.02 and -1.17 e Å-3 respectively). The resulting isosurface drawn at the level 0.308 e/Å3 and sections of difference Fourier map are given in Fig. 2. These maps and sections are noisy but some trends in location of positive and negative regions can be noticed. Positive residual electron density is mostly situated around zinc atoms and near layers made of tin atoms. Negative residual density is mostly located between lanthanum atoms which means that lanthanum atoms donate their electrons to zinc and tin atoms. Similar behaviour of lanthanum atoms can be observed in the LaZn12.37 compound using electronic structure calculations (See Oshchapovsky et al., (2011)). As a conclusion this compound besides dominate metallic bonding has a weak ionic interaction between lanthanum and zinc and tin atoms.