inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

La5Zn2Sn

aDepartment of Inorganic Chemistry, Ivan Franko Lviv National University, Kyryla i Mefodia 6,79005 Lviv, Ukraine, bInstitute for Complex Materials, IFW Dresden, Helmholz Strasse 20, D-01069 Dresden, Germany, and cKarlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
*Correspondence e-mail: romaniuk@ua.fm

(Received 25 September 2011; accepted 13 October 2011; online 22 October 2011)

A single crystal of penta­lanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetra­gonal anti­prisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetra­gonal anti­prisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m); La2 (4/m..); Zn (m.2m); Sn (422).

Related literature

For general background to {Tb,La}–Zn–{Sn,Pb} ternary systems, see: Manfrinetti & Pani, (2005[Manfrinetti, P. & Pani, M. (2005). J. Alloys Compd, 393, 180-184.]); Oshchapovsky et al. (2010[Oshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177-183.], 2011[Oshchapovsky, I., Pavlyuk, V., Dmytriv, G. & White, F. (2011). Acta Cryst. E67, i43.]); Pavlyuk et al. (2009[Pavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145-148.]). For related structures, see: Bertaut (1953[Bertaut, F. (1953). C. R. Hebd. Seances Acad. Sci. 236, 1055-1056.]). For isotypic structures, see: Aronsson (1958[Aronsson, B. (1958). Acta Chem. Scand. 12, 31-37.]).

Experimental

Crystal data
  • La5Zn2Sn

  • Mr = 944.04

  • Tetragonal, I 4/m c m

  • a = 8.3277 (12) Å

  • c = 14.334 (3) Å

  • V = 994.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 28.10 mm−1

  • T = 293 K

  • 0.04 × 0.04 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.340, Tmax = 0.765

  • 9291 measured reflections

  • 419 independent reflections

  • 346 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.056

  • S = 1.14

  • 419 reflections

  • 14 parameters

  • Δρmax = 1.60 e Å−3

  • Δρmin = −1.59 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and JANA2006 (Petricek et al., 2006[Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Ternary compounds formed by rare-earth, transition metal and d-metal often have interesting physical and chemical properties e. g. strong ferromagnetism, hydrogen storage capabilities and so on. The systematic investigation of the components interaction in the {Tb, La}-Zn-{Sn,Pb} ternary systems can lead to development of functional materials (for crystal structures of ternary compounds see: TbZnSn –Manfrinetti & Pani, (2005), Pavlyuk et al., (2009), TbZnSn2 - Pavlyuk et al., (2009), Tb13ZnSn13 -Oshchapovsky et al., (2010) and LaZn12.37 -Oshchapovsky et al., (2011)).

The title compound crystallizes in Mo5SiB2 (Aronsson, 1958) structure type which is an ordered superstructure of Cr5B3 type (Bertaut, 1953). Unit cell projection together with coordination polyhedra are given in Fig.1. Coordination polyhedra of the La1 atoms are 16- vertex polyhedra. Sn atoms are surrounded by ten neighbours forming bicapped tetragonal antiprism. La2 atoms are enclosed into trigon - tetrahexahedron with CN=14. And coordination polyhedra of the Zn atoms are bicapped trigonal prisms with CN=9. Coordination polyhedra of Sn atoms share their vertices forming three dimensional framework. The voids in this framework are filled by zinc atoms. (See graphical abstract).

The way of bond formation in this compound was assumed using only X-ray diffraction data. Further structure refinement was carried out by means of Jana2006 software package using anharmonic ADP for La1 and Zn atoms. Anharmonic displacement parameters for other atoms were not refined because in case of their refinement their standard deviations were larger than obtained values. As the result we gained lower absolute values of peak and hole in the difference Fourier map (1.02 and -1.17 e Å-3 respectively). The resulting isosurface drawn at the level 0.308 e/Å3 and sections of difference Fourier map are given in Fig. 2. These maps and sections are noisy but some trends in location of positive and negative regions can be noticed. Positive residual electron density is mostly situated around zinc atoms and near layers made of tin atoms. Negative residual density is mostly located between lanthanum atoms which means that lanthanum atoms donate their electrons to zinc and tin atoms. Similar behaviour of lanthanum atoms can be observed in the LaZn12.37 compound using electronic structure calculations (See Oshchapovsky et al., (2011)). As a conclusion this compound besides dominate metallic bonding has a weak ionic interaction between lanthanum and zinc and tin atoms.

Related literature top

For general background to {Tb, La}–Zn–{Sn,Pb} ternary systems, see: Manfrinetti & Pani, (2005); Oshchapovsky et al. (2010, 2011); Pavlyuk et al. (2009). For related structures, see: Bertaut (1953). For isostructural/isotypic structures, see: Aronsson (1958).

Experimental top

Small good quality single-crystal of title compound was isolated from alloy with composition La7ZnSn2 during systematic investigation of lanthanum-rich region of La—Zn—Sn ternary system. The samples with high lanthanum contents were prepared by melting of pieces of pure metals in evacuated quartz ampoule with subsequent annealing at 600 0C for 30 days. Further phase analysis showed the existence of title compound in sample with composition La7ZnSn2 as well as in the other lanthanum-rich ternary alloys. However they were non equilibrium.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008), JANA2006 (Petricek et al., 2006) and SUPERFLIP (Palatinus & Chapuis, 2007); molecular graphics: DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Unit cell projection and coordination polyhedra in the La5Zn2Sn compound
[Figure 2] Fig. 2. Isosurface drawn at 0.308 e/Å3 and sections of difference Fourier map after the refinement of crystal structure of the La5Zn2Sn compound
Pentalanthanum dizinc stannide top
Crystal data top
La5Zn2SnDx = 6.308 Mg m3
Mr = 944.04Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mcmCell parameters from 1223 reflections
Hall symbol: -I 4 2cθ = 5.7–26.1°
a = 8.3277 (12) ŵ = 28.10 mm1
c = 14.334 (3) ÅT = 293 K
V = 994.1 (3) Å3Plate, grey
Z = 40.04 × 0.04 × 0.01 mm
F(000) = 1580.0
Data collection top
Bruker APEXII CCD
diffractometer
419 independent reflections
Radiation source: sealed tube346 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 8.366 pixels mm-1θmax = 30.1°, θmin = 2.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1111
Tmin = 0.340, Tmax = 0.765l = 2019
9291 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.027Secondary atom site location: difference Fourier map
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.004
419 reflectionsΔρmax = 1.60 e Å3
14 parametersΔρmin = 1.59 e Å3
Crystal data top
La5Zn2SnZ = 4
Mr = 944.04Mo Kα radiation
Tetragonal, I4/mcmµ = 28.10 mm1
a = 8.3277 (12) ÅT = 293 K
c = 14.334 (3) Å0.04 × 0.04 × 0.01 mm
V = 994.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
419 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
346 reflections with I > 2σ(I)
Tmin = 0.340, Tmax = 0.765Rint = 0.091
9291 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P]
where P = (Fo2 + 2Fc2)/3
S = 1.14Δρmax = 1.60 e Å3
419 reflectionsΔρmin = 1.59 e Å3
14 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.66685 (5)0.16685 (5)0.14853 (4)0.02054 (16)
La20.00000.00000.00000.0357 (3)
Zn0.12383 (12)0.62383 (12)0.00000.0139 (3)
Sn0.00000.00000.25000.0145 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01937 (19)0.01937 (19)0.0229 (3)0.00430 (19)0.0000.000
La20.0291 (4)0.0291 (4)0.0490 (8)0.0000.0000.000
Zn0.0123 (4)0.0123 (4)0.0171 (7)0.0013 (5)0.0000.000
Sn0.0129 (3)0.0129 (3)0.0177 (5)0.0000.0000.000
Geometric parameters (Å, º) top
La1—Zni3.2436 (9)La2—La1xvii3.7630 (6)
La1—Znii3.2436 (9)Zn—Znx2.917 (3)
La1—Zniii3.2573 (12)Zn—La1xviii3.2436 (9)
La1—Sniv3.4268 (5)Zn—La1xvi3.2436 (9)
La1—Snv3.4268 (5)Zn—La1xix3.2436 (9)
La1—La1vi3.5068 (12)Zn—La1xiv3.2436 (9)
La1—La2iv3.7630 (6)Zn—La1xx3.2573 (12)
La1—La2vii3.7630 (6)Zn—La1iii3.2573 (12)
La1—La1viii3.9301 (12)Zn—La2xxi3.2980 (8)
La2—Znix3.2980 (8)Zn—La2vii3.2980 (8)
La2—Znii3.2980 (8)Sn—La1xxii3.4268 (5)
La2—Znx3.2980 (8)Sn—La1xvii3.4268 (5)
La2—Znxi3.2980 (8)Sn—La1xiv3.4268 (5)
La2—Snxii3.5835 (7)Sn—La1v3.4268 (5)
La2—Sn3.5835 (7)Sn—La1xxiii3.4268 (5)
La2—La1xiii3.7630 (6)Sn—La1xxiv3.4268 (5)
La2—La1xiv3.7630 (6)Sn—La1viii3.4268 (5)
La2—La1xv3.7630 (6)Sn—La1xxv3.4268 (5)
La2—La1viii3.7630 (6)Sn—La2xxvi3.5835 (7)
La2—La1xvi3.7630 (6)
Zni—La1—Znii53.44 (5)Znii—La2—La1xvi54.461 (17)
Zni—La1—Zniii91.69 (2)Znx—La2—La1xvi54.208 (18)
Znii—La1—Zniii91.69 (2)Znxi—La2—La1xvi125.792 (18)
Zni—La1—Sniv93.75 (2)Snxii—La2—La1xvi55.545 (10)
Znii—La1—Sniv146.93 (3)Sn—La2—La1xvi124.455 (10)
Zniii—La1—Sniv93.506 (15)La1xiii—La2—La1xvi111.09 (2)
Zni—La1—Snv146.93 (3)La1xiv—La2—La1xvi68.91 (2)
Znii—La1—Snv93.75 (2)La1xv—La2—La1xvi71.332 (10)
Zniii—La1—Snv93.506 (15)La1viii—La2—La1xvi108.668 (10)
Sniv—La1—Snv118.450 (18)Znix—La2—La1xvii54.461 (17)
Zni—La1—La1vi151.98 (2)Znii—La2—La1xvii125.539 (17)
Znii—La1—La1vi151.98 (2)Znx—La2—La1xvii125.792 (18)
Zniii—La1—La1vi96.86 (3)Znxi—La2—La1xvii54.208 (18)
Sniv—La1—La1vi59.225 (9)Snxii—La2—La1xvii124.455 (10)
Snv—La1—La1vi59.225 (9)Sn—La2—La1xvii55.545 (10)
Zni—La1—La2iv55.564 (18)La1xiii—La2—La1xvii68.91 (2)
Znii—La1—La2iv97.94 (3)La1xiv—La2—La1xvii111.09 (2)
Zniii—La1—La2iv55.477 (10)La1xv—La2—La1xvii108.668 (10)
Sniv—La1—La2iv59.571 (13)La1viii—La2—La1xvii71.332 (10)
Snv—La1—La2iv146.931 (17)La1xvi—La2—La1xvii180.000 (16)
La1vi—La1—La2iv108.903 (17)Znx—Zn—La1xviii63.28 (2)
Zni—La1—La2vii97.94 (3)Znx—Zn—La1xvi63.28 (2)
Znii—La1—La2vii55.564 (18)La1xviii—Zn—La1xvi74.58 (3)
Zniii—La1—La2vii55.477 (10)Znx—Zn—La1xix63.28 (2)
Sniv—La1—La2vii146.931 (17)La1xviii—Zn—La1xix82.05 (3)
Snv—La1—La2vii59.571 (13)La1xvi—Zn—La1xix126.56 (5)
La1vi—La1—La2vii108.903 (17)Znx—Zn—La1xiv63.28 (2)
La2iv—La1—La2vii102.966 (18)La1xviii—Zn—La1xiv126.56 (5)
Zni—La1—La1viii52.712 (14)La1xvi—Zn—La1xiv82.05 (3)
Znii—La1—La1viii52.712 (14)La1xix—Zn—La1xiv74.58 (3)
Zniii—La1—La1viii139.19 (2)Znx—Zn—La1xx139.19 (2)
Sniv—La1—La1viii106.604 (9)La1xviii—Zn—La1xx140.29 (2)
Snv—La1—La1viii106.604 (9)La1xvi—Zn—La1xx140.29 (2)
La1vi—La1—La1viii123.951 (19)La1xix—Zn—La1xx84.909 (18)
La2iv—La1—La1viii105.084 (8)La1xiv—Zn—La1xx84.909 (18)
La2vii—La1—La1viii105.084 (8)Znx—Zn—La1iii139.19 (2)
Zni—La1—La1xxvii87.66 (2)La1xviii—Zn—La1iii84.909 (18)
Znii—La1—La1xxvii113.473 (17)La1xvi—Zn—La1iii84.909 (18)
Zniii—La1—La1xxvii147.382 (8)La1xix—Zn—La1iii140.29 (2)
Sniv—La1—La1xxvii54.057 (10)La1xiv—Zn—La1iii140.29 (2)
Snv—La1—La1xxvii104.62 (2)La1xx—Zn—La1iii81.63 (4)
La1vi—La1—La1xxvii70.91 (2)Znx—Zn—La2xxi116.78 (2)
La2iv—La1—La1xxvii98.861 (14)La1xviii—Zn—La2xxi70.228 (8)
La2vii—La1—La1xxvii156.689 (9)La1xvi—Zn—La2xxi138.024 (12)
La1viii—La1—La1xxvii60.762 (9)La1xix—Zn—La2xxi70.228 (8)
Zni—La1—La1xxii113.473 (17)La1xiv—Zn—La2xxi138.024 (12)
Znii—La1—La1xxii87.66 (2)La1xx—Zn—La2xxi70.06 (2)
Zniii—La1—La1xxii147.382 (8)La1iii—Zn—La2xxi70.06 (2)
Sniv—La1—La1xxii104.62 (2)Znx—Zn—La2vii116.78 (2)
Snv—La1—La1xxii54.057 (10)La1xviii—Zn—La2vii138.024 (12)
La1vi—La1—La1xxii70.91 (2)La1xvi—Zn—La2vii70.228 (8)
La2iv—La1—La1xxii156.689 (9)La1xix—Zn—La2vii138.024 (12)
La2vii—La1—La1xxii98.861 (14)La1xiv—Zn—La2vii70.228 (8)
La1viii—La1—La1xxii60.762 (9)La1xx—Zn—La2vii70.06 (2)
La1xxvii—La1—La1xxii58.477 (18)La1iii—Zn—La2vii70.06 (2)
Znix—La2—Znii180.0La2xxi—Zn—La2vii126.44 (4)
Znix—La2—Znx90.0La1xxii—Sn—La1xvii146.791 (18)
Znii—La2—Znx90.0La1xxii—Sn—La1xiv61.550 (18)
Znix—La2—Znxi90.0La1xvii—Sn—La1xiv129.77 (2)
Znii—La2—Znxi90.0La1xxii—Sn—La1v79.622 (8)
Znx—La2—Znxi180.0La1xvii—Sn—La1v132.159 (17)
Znix—La2—Snxii90.0La1xiv—Sn—La1v71.89 (2)
Znii—La2—Snxii90.0La1xxii—Sn—La1xxiii129.77 (2)
Znx—La2—Snxii90.0La1xvii—Sn—La1xxiii61.550 (18)
Znxi—La2—Snxii90.0La1xiv—Sn—La1xxiii146.791 (18)
Znix—La2—Sn90.0La1v—Sn—La1xxiii79.622 (8)
Znii—La2—Sn90.0La1xxii—Sn—La1xxiv132.159 (17)
Znx—La2—Sn90.0La1xvii—Sn—La1xxiv79.622 (8)
Znxi—La2—Sn90.0La1xiv—Sn—La1xxiv79.622 (8)
Snxii—La2—Sn180.0La1v—Sn—La1xxiv61.550 (18)
Znix—La2—La1xiii54.461 (17)La1xxiii—Sn—La1xxiv71.89 (2)
Znii—La2—La1xiii125.539 (17)La1xxii—Sn—La1viii71.89 (2)
Znx—La2—La1xiii125.792 (18)La1xvii—Sn—La1viii79.622 (8)
Znxi—La2—La1xiii54.208 (18)La1xiv—Sn—La1viii79.622 (8)
Snxii—La2—La1xiii55.544 (10)La1v—Sn—La1viii146.791 (18)
Sn—La2—La1xiii124.456 (10)La1xxiii—Sn—La1viii132.159 (17)
Znix—La2—La1xiv125.539 (17)La1xxiv—Sn—La1viii129.77 (2)
Znii—La2—La1xiv54.461 (17)La1xxii—Sn—La1xxv79.622 (8)
Znx—La2—La1xiv54.208 (18)La1xvii—Sn—La1xxv71.89 (2)
Znxi—La2—La1xiv125.792 (18)La1xiv—Sn—La1xxv132.159 (17)
Snxii—La2—La1xiv124.456 (10)La1v—Sn—La1xxv129.77 (2)
Sn—La2—La1xiv55.544 (10)La1xxiii—Sn—La1xxv79.622 (8)
La1xiii—La2—La1xiv180.000 (16)La1xxiv—Sn—La1xxv146.791 (18)
Znix—La2—La1xv54.208 (18)La1viii—Sn—La1xxv61.550 (18)
Znii—La2—La1xv125.792 (18)La1xxii—Sn—La2xxvi64.885 (10)
Znx—La2—La1xv54.461 (17)La1xvii—Sn—La2xxvi115.115 (10)
Znxi—La2—La1xv125.539 (17)La1xiv—Sn—La2xxvi115.115 (10)
Snxii—La2—La1xv55.544 (10)La1v—Sn—La2xxvi64.885 (10)
Sn—La2—La1xv124.456 (10)La1xxiii—Sn—La2xxvi64.885 (10)
La1xiii—La2—La1xv71.332 (10)La1xxiv—Sn—La2xxvi115.115 (10)
La1xiv—La2—La1xv108.668 (10)La1viii—Sn—La2xxvi115.115 (10)
Znix—La2—La1viii125.792 (18)La1xxv—Sn—La2xxvi64.885 (10)
Znii—La2—La1viii54.208 (18)La1xxii—Sn—La2115.115 (10)
Znx—La2—La1viii125.539 (17)La1xvii—Sn—La264.885 (10)
Znxi—La2—La1viii54.461 (17)La1xiv—Sn—La264.885 (10)
Snxii—La2—La1viii124.456 (10)La1v—Sn—La2115.115 (10)
Sn—La2—La1viii55.544 (10)La1xxiii—Sn—La2115.115 (10)
La1xiii—La2—La1viii108.668 (10)La1xxiv—Sn—La264.885 (10)
La1xiv—La2—La1viii71.332 (10)La1viii—Sn—La264.885 (10)
La1xv—La2—La1viii180.000 (18)La1xxv—Sn—La2115.115 (10)
Znix—La2—La1xvi125.539 (17)La2xxvi—Sn—La2180.0
Symmetry codes: (i) y, x, z; (ii) y+1, x, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1, y, z; (ix) y1, x, z; (x) x, y+1, z; (xi) x, y1, z; (xii) x, y, z; (xiii) y, x1, z; (xiv) y, x+1, z; (xv) x1, y, z; (xvi) y, x+1, z; (xvii) y, x1, z; (xviii) y, x, z; (xix) y, x, z; (xx) x+1, y+1, z; (xxi) x, y+1, z; (xxii) y+1/2, x1/2, z+1/2; (xxiii) y1/2, x+1/2, z+1/2; (xxiv) x1, y, z; (xxv) x1/2, y1/2, z+1/2; (xxvi) x, y, z+1/2; (xxvii) y+1/2, x+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaLa5Zn2Sn
Mr944.04
Crystal system, space groupTetragonal, I4/mcm
Temperature (K)293
a, c (Å)8.3277 (12), 14.334 (3)
V3)994.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)28.10
Crystal size (mm)0.04 × 0.04 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.340, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
9291, 419, 346
Rint0.091
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 1.14
No. of reflections419
No. of parameters14
w = 1/[σ2(Fo2) + (0.0144P)2 + 16.4322P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.60, 1.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), JANA2006 (Petricek et al., 2006) and SUPERFLIP (Palatinus & Chapuis, 2007), DIAMOND (Brandenburg, 2006) and VESTA (Momma & Izumi, 2008), publCIF (Westrip, 2010).

 

Footnotes

Also at: Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University, Armii Krajowej 13/15 Ave., 42-200 Czestochowa, Poland.

Acknowledgements

Financial support from the Ministry of Education and Science, Youth and Sport of Ukraine (N 0111U001089) is gratefully acknowledged.

References

First citationAronsson, B. (1958). Acta Chem. Scand. 12, 31–37.  CrossRef CAS Web of Science Google Scholar
First citationBertaut, F. (1953). C. R. Hebd. Seances Acad. Sci. 236, 1055–1056.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationManfrinetti, P. & Pani, M. (2005). J. Alloys Compd, 393, 180–184.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOshchapovsky, I., Pavlyuk, V., Dmytriv, G. & White, F. (2011). Acta Cryst. E67, i43.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOshchapovsky, I., Pavlyuk, V., Fässler, T. F. & Hlukhyy, V. (2010). Chem. Met. Alloys, 3, 177–183.  Google Scholar
First citationPavlyuk, V., Oshchapovsky, I. & Marciniak, B. (2009). J. Alloys Compd, 477, 145–148.  Web of Science CrossRef CAS Google Scholar
First citationPetricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds