organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3084-o3085

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(2-nitro­phen­yl)ethyl­­idene]hydrazine

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 19 September 2011; accepted 14 October 2011; online 29 October 2011)

The title compound, C14H11N5O6, was obtained from the condensation reaction of 2,4-dinitro­phenyl­hydrazine and 2-nitro­acetophenone. The mol­ecule displays an E conformation about the C=N double bond and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. The dihedral angle between the benzene rings is 7.84 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.6447 (8) Å] into a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o1034-o1035.]); Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]). For background to and the physiological and biological activity of hydro­zones, see: Bendre et al. (1998[Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59-66.]); Nakamura & Goto (1996[Nakamura, A. & Goto, S. (1996). J. Biochem. 119, 768-774.]); Rollas & Küçükgüzel (2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]); Singh et al. (2005[Singh, K. S., Mozharivskyj, Y. A., Thöne, C. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 3720-3729.]); Yacorb (1999[Yacorb, Y. (1999). Proc. IMechE Part D J. Automobile Eng. 213, 503-517.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N5O6

  • Mr = 345.28

  • Monoclinic, P 21 /c

  • a = 11.9313 (9) Å

  • b = 8.6700 (7) Å

  • c = 15.2363 (9) Å

  • β = 112.455 (5)°

  • V = 1456.61 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.40 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.984

  • 16360 measured reflections

  • 4244 independent reflections

  • 3361 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.04

  • 4244 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.88 1.94 2.6026 (13) 131
C10—H10A⋯O4i 0.93 2.42 3.2313 (16) 146
C12—H12A⋯O4ii 0.93 2.55 3.4353 (18) 159
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones exhibit physiological and biological activities in the treatment of several diseases with anticonvulsant, antidepressant, analgesic, antiinflammatory, antiplatelet, antimalarial, antimicrobial, antimycobacterial, antitumor, vasodilator, antiviral, antischistosomiasis (Singh et al., 2005; Rollas & Küçükgüzel, 2007) and tyrosinase inhibitory properties (Bendre et al., 1998). Furthermore, they were used in engineering and analytical studies for aldehydes and ketones sampling (Yacorb, 1999) and analysis of protein carbonyls (Nakamura & Goto, 1996). These interesting activities have led us to synthesize the title hydrazone derivative (I). It was screened for antioxidant and antibacterial activities. Our results found that (I) is inactive for these tests. Herein we report the synthesis and crystal structure of (I).

The whole molecule of (I) (Fig. 1), C14H11N5O6, is not planar and exists in an E configuration with respect to the ethylidene CN double bond [1.2905 (15) Å] with the torsion angle N1–N2–C7–C8 = 177.22 (10)°. The dihedral angle between the two benzene rings is 7.84 (6)°. The middle ethylidenehydrazine fragment (C7/C14/N1/N2) is planar with the r.m.s deviation of 0.0047 (1) Å. This middle C/C/N/N plane makes the dihedral angles of 11.28 (8) and 9.78 (8)° with the C1–C6 and C8–C13 benzene rings, respectively. The two nitro groups of 2,4-dinitrophenyl are co-planar with the bound benzene ring with the r.m.s. deviation of 0.0369 (1) Å for the twelve non H-atoms. However the nitro group of the 2-nitrophenyl tilts away from its bound benzene ring with the dihedral angle of 81.19 (7)° between the C9/N5/O5/O6 plane and C8–C13 benzene ring. This orientation is caused by the steric interaction between the hydrazine and nitro group. An intramolecular N1—H1···O2 hydrogen bond between the hydrazone-NH and the ortho nitro group (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein et al., 1995). The bond distances are within the expected range (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2011; Shan et al., 2003).

In the crystal structure, the molecules are linked by weak C—H···O hydrogen bonds (Table 1) into a three-dimensional network (Fig. 2) enforced by π···π stacking interactions (Cg1···Cg2 i = 3.6447 (8) Å; Cg1 and Cg2 are the centroids of C1–C6 and C8–C13 benzenre rings, respectively; symmetry code: (i) 2 - x, 2 - y, 1 - z). Short C···O (2.9999 (15) Å] contacts are also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2011); Shan et al. (2003). For background to and the physiological and biological activity of hydrozones, see: Bendre et al. (1998); Nakamura & Goto (1996); Rollas & Küçükgüzel (2007); Singh et al. (2005); Yacorb (1999). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml), and H2SO4 (98%, 0.50 ml) was slowly added with stirring. 2-Nitroacetophenone (0.27 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was refluxed for 1 h yielding a yellow solid, which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days. M.p. 443–444 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.88 Å, d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis, showing molecular stacking along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(2-nitrophenyl)ethylidene]hydrazine top
Crystal data top
C14H11N5O6F(000) = 712
Mr = 345.28Dx = 1.574 Mg m3
Monoclinic, P21/cMelting point = 443–444 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.9313 (9) ÅCell parameters from 4244 reflections
b = 8.6700 (7) Åθ = 1.9–30.0°
c = 15.2363 (9) ŵ = 0.13 mm1
β = 112.455 (5)°T = 100 K
V = 1456.61 (19) Å3Block, yellow
Z = 40.40 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4244 independent reflections
Radiation source: sealed tube3361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.951, Tmax = 0.984k = 912
16360 measured reflectionsl = 2114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.498P]
where P = (Fo2 + 2Fc2)/3
4244 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H11N5O6V = 1456.61 (19) Å3
Mr = 345.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9313 (9) ŵ = 0.13 mm1
b = 8.6700 (7) ÅT = 100 K
c = 15.2363 (9) Å0.40 × 0.16 × 0.13 mm
β = 112.455 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4244 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3361 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.984Rint = 0.033
16360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4244 reflectionsΔρmin = 0.28 e Å3
227 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.32132 (8)0.59779 (12)0.77977 (6)0.0221 (2)
O21.14527 (9)0.70362 (12)0.74461 (6)0.0233 (2)
O31.44309 (8)0.36901 (13)0.55130 (7)0.0265 (2)
O41.33701 (8)0.39821 (12)0.40099 (6)0.0229 (2)
O50.76820 (8)0.73691 (11)0.30121 (6)0.0191 (2)
O60.87386 (8)0.93847 (12)0.29701 (6)0.0200 (2)
N11.01173 (9)0.76742 (13)0.56858 (7)0.0166 (2)
H11.02520.78600.62830.020*
N20.91649 (9)0.83451 (13)0.49714 (7)0.0160 (2)
N31.22384 (9)0.64213 (13)0.72129 (7)0.0168 (2)
N41.35479 (9)0.42076 (13)0.48519 (7)0.0168 (2)
N50.79296 (9)0.87393 (13)0.31434 (7)0.0147 (2)
C11.09536 (10)0.68522 (15)0.54842 (8)0.0145 (2)
C21.19951 (11)0.62140 (14)0.62097 (8)0.0143 (2)
C31.28425 (10)0.53651 (14)0.59994 (8)0.0151 (2)
H3A1.35230.49660.64830.018*
C41.26628 (10)0.51219 (15)0.50638 (8)0.0151 (2)
C51.16558 (11)0.57308 (15)0.43212 (8)0.0170 (2)
H5A1.15550.55600.36930.020*
C61.08201 (11)0.65806 (16)0.45296 (8)0.0171 (2)
H6A1.01530.69870.40370.021*
C70.83449 (11)0.89627 (15)0.52181 (8)0.0152 (2)
C80.73396 (10)0.97562 (15)0.44578 (8)0.0156 (2)
C90.71612 (10)0.97024 (14)0.34927 (8)0.0143 (2)
C100.62471 (11)1.04965 (15)0.27935 (9)0.0182 (3)
H10A0.61651.04300.21630.022*
C110.54516 (11)1.13956 (16)0.30456 (10)0.0207 (3)
H11A0.48351.19420.25850.025*
C120.55861 (11)1.14699 (17)0.39886 (10)0.0214 (3)
H12A0.50481.20560.41590.026*
C130.65176 (11)1.06765 (16)0.46806 (9)0.0192 (3)
H13A0.66001.07570.53110.023*
C140.83892 (12)0.89321 (17)0.62186 (9)0.0212 (3)
H14A0.87080.79590.65070.032*
H14B0.75860.90670.62090.032*
H14C0.89020.97500.65780.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (4)0.0283 (6)0.0134 (4)0.0021 (4)0.0035 (3)0.0030 (4)
O20.0306 (5)0.0261 (6)0.0165 (4)0.0090 (4)0.0126 (4)0.0021 (4)
O30.0211 (4)0.0347 (6)0.0202 (5)0.0117 (4)0.0041 (4)0.0004 (4)
O40.0234 (4)0.0294 (6)0.0170 (4)0.0045 (4)0.0091 (4)0.0032 (4)
O50.0240 (4)0.0140 (5)0.0189 (4)0.0013 (4)0.0079 (4)0.0031 (3)
O60.0177 (4)0.0241 (5)0.0204 (4)0.0010 (4)0.0098 (3)0.0028 (4)
N10.0187 (5)0.0190 (6)0.0121 (4)0.0042 (4)0.0059 (4)0.0001 (4)
N20.0165 (4)0.0168 (6)0.0141 (4)0.0026 (4)0.0053 (4)0.0002 (4)
N30.0218 (5)0.0157 (6)0.0134 (4)0.0002 (4)0.0074 (4)0.0019 (4)
N40.0160 (4)0.0171 (6)0.0177 (5)0.0008 (4)0.0070 (4)0.0014 (4)
N50.0150 (4)0.0171 (6)0.0113 (4)0.0008 (4)0.0042 (4)0.0006 (4)
C10.0166 (5)0.0130 (6)0.0147 (5)0.0006 (4)0.0067 (4)0.0006 (4)
C20.0178 (5)0.0138 (6)0.0116 (5)0.0004 (4)0.0060 (4)0.0009 (4)
C30.0156 (5)0.0140 (6)0.0151 (5)0.0008 (4)0.0053 (4)0.0013 (4)
C40.0159 (5)0.0146 (6)0.0160 (5)0.0006 (4)0.0073 (4)0.0005 (4)
C50.0193 (5)0.0185 (7)0.0133 (5)0.0008 (5)0.0065 (4)0.0008 (5)
C60.0183 (5)0.0192 (7)0.0128 (5)0.0024 (5)0.0047 (4)0.0003 (5)
C70.0186 (5)0.0128 (6)0.0164 (5)0.0011 (4)0.0091 (4)0.0011 (4)
C80.0155 (5)0.0143 (6)0.0182 (5)0.0016 (4)0.0078 (4)0.0018 (4)
C90.0135 (5)0.0119 (6)0.0183 (5)0.0013 (4)0.0070 (4)0.0026 (4)
C100.0166 (5)0.0175 (7)0.0182 (5)0.0004 (5)0.0040 (4)0.0016 (5)
C110.0149 (5)0.0167 (7)0.0263 (6)0.0011 (5)0.0030 (5)0.0016 (5)
C120.0159 (5)0.0193 (7)0.0303 (7)0.0011 (5)0.0102 (5)0.0051 (5)
C130.0190 (5)0.0180 (7)0.0237 (6)0.0003 (5)0.0118 (5)0.0035 (5)
C140.0239 (6)0.0262 (8)0.0172 (6)0.0030 (5)0.0121 (5)0.0011 (5)
Geometric parameters (Å, º) top
O1—N31.2259 (13)C5—C61.3710 (17)
O2—N31.2424 (14)C5—H5A0.9300
O3—N41.2309 (14)C6—H6A0.9300
O4—N41.2332 (13)C7—C81.4807 (17)
O5—N51.2220 (14)C7—C141.5051 (16)
O6—N51.2284 (13)C8—C131.4029 (16)
N1—C11.3535 (15)C8—C91.4037 (16)
N1—N21.3672 (14)C9—C101.3824 (17)
N1—H10.8766C10—C111.3909 (18)
N2—C71.2909 (15)C10—H10A0.9300
N3—C21.4539 (14)C11—C121.3849 (19)
N4—C41.4521 (15)C11—H11A0.9300
N5—C91.4812 (15)C12—C131.3874 (18)
C1—C61.4210 (16)C12—H12A0.9300
C1—C21.4224 (16)C13—H13A0.9300
C2—C31.3835 (16)C14—H14A0.9600
C3—C41.3744 (16)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C4—C51.4014 (16)
C1—N1—N2120.26 (10)C5—C6—H6A119.4
C1—N1—H1118.2C1—C6—H6A119.4
N2—N1—H1121.0N2—C7—C8116.26 (10)
C7—N2—N1115.88 (10)N2—C7—C14123.38 (11)
O1—N3—O2122.46 (10)C8—C7—C14120.34 (10)
O1—N3—C2118.58 (10)C13—C8—C9115.60 (11)
O2—N3—C2118.96 (10)C13—C8—C7120.47 (11)
O3—N4—O4123.16 (10)C9—C8—C7123.89 (11)
O3—N4—C4119.00 (10)C10—C9—C8123.37 (11)
O4—N4—C4117.84 (10)C10—C9—N5114.72 (10)
O5—N5—O6124.63 (10)C8—C9—N5121.88 (10)
O5—N5—C9117.57 (10)C9—C10—C11119.14 (12)
O6—N5—C9117.73 (10)C9—C10—H10A120.4
N1—C1—C6121.03 (11)C11—C10—H10A120.4
N1—C1—C2121.97 (10)C12—C11—C10119.46 (12)
C6—C1—C2117.01 (11)C12—C11—H11A120.3
C3—C2—C1121.72 (10)C10—C11—H11A120.3
C3—C2—N3116.05 (10)C11—C12—C13120.47 (12)
C1—C2—N3122.23 (10)C11—C12—H12A119.8
C4—C3—C2118.92 (11)C13—C12—H12A119.8
C4—C3—H3A120.5C12—C13—C8121.95 (12)
C2—C3—H3A120.5C12—C13—H13A119.0
C3—C4—C5121.71 (11)C8—C13—H13A119.0
C3—C4—N4118.41 (10)C7—C14—H14A109.5
C5—C4—N4119.88 (10)C7—C14—H14B109.5
C6—C5—C4119.37 (11)H14A—C14—H14B109.5
C6—C5—H5A120.3C7—C14—H14C109.5
C4—C5—H5A120.3H14A—C14—H14C109.5
C5—C6—C1121.27 (11)H14B—C14—H14C109.5
C1—N1—N2—C7172.81 (11)C2—C1—C6—C50.48 (19)
N2—N1—C1—C64.25 (18)N1—N2—C7—C8177.22 (10)
N2—N1—C1—C2176.20 (11)N1—N2—C7—C141.52 (18)
N1—C1—C2—C3179.52 (11)N2—C7—C8—C13169.40 (12)
C6—C1—C2—C30.04 (18)C14—C7—C8—C139.39 (18)
N1—C1—C2—N30.93 (19)N2—C7—C8—C98.14 (18)
C6—C1—C2—N3179.51 (11)C14—C7—C8—C9173.07 (12)
O1—N3—C2—C37.08 (17)C13—C8—C9—C100.25 (18)
O2—N3—C2—C3172.76 (11)C7—C8—C9—C10177.40 (12)
O1—N3—C2—C1172.51 (12)C13—C8—C9—N5177.90 (11)
O2—N3—C2—C17.65 (18)C7—C8—C9—N54.45 (18)
C1—C2—C3—C40.68 (19)O5—N5—C9—C1096.72 (13)
N3—C2—C3—C4179.74 (11)O6—N5—C9—C1080.43 (13)
C2—C3—C4—C51.00 (19)O5—N5—C9—C881.58 (14)
C2—C3—C4—N4178.99 (11)O6—N5—C9—C8101.27 (13)
O3—N4—C4—C30.47 (18)C8—C9—C10—C110.28 (19)
O4—N4—C4—C3179.19 (11)N5—C9—C10—C11177.99 (11)
O3—N4—C4—C5179.54 (12)C9—C10—C11—C120.39 (19)
O4—N4—C4—C50.81 (17)C10—C11—C12—C131.1 (2)
C3—C4—C5—C60.6 (2)C11—C12—C13—C81.1 (2)
N4—C4—C5—C6179.41 (12)C9—C8—C13—C120.45 (18)
C4—C5—C6—C10.2 (2)C7—C8—C13—C12178.18 (12)
N1—C1—C6—C5179.09 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.942.6026 (13)131
C10—H10A···O4i0.932.423.2313 (16)146
C12—H12A···O4ii0.932.553.4353 (18)159
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11N5O6
Mr345.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.9313 (9), 8.6700 (7), 15.2363 (9)
β (°) 112.455 (5)
V3)1456.61 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
16360, 4244, 3361
Rint0.033
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.04
No. of reflections4244
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.942.6026 (13)131
C10—H10A···O4i0.932.423.2313 (16)146
C12—H12A···O4ii0.932.553.4353 (18)159
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

BN and PJ thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59–66.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2011). Acta Cryst. E67, o1034–o1035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakamura, A. & Goto, S. (1996). J. Biochem. 119, 768–774.  CrossRef CAS PubMed Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K. S., Mozharivskyj, Y. A., Thöne, C. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 3720–3729.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYacorb, Y. (1999). Proc. IMechE Part D J. Automobile Eng. 213, 503–517.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3084-o3085
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds