organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-(2-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)benzohydrazide methanol monosolvate

aThird Affiliated Hospital of Suzhou University, Changzhou 213000, People's Republic of China
*Correspondence e-mail: yangyilin_szu@126.com

(Received 24 September 2011; accepted 28 September 2011; online 5 October 2011)

The title compound, C15H13ClN2O3·CH3OH, was synthesized by the condensation reaction of 2-hy­droxy-4-meth­oxy­benzaldehyde with 4-chloro­benzohydrazide in methanol. The Schiff base mol­ecule displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the two benzene rings is 5.3 (2)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen-bond inter­actions into chains running parallel to the a axis. An intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For background to Schiff base compounds, see: Fan et al. (2007[Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535-538.]); Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); Nimitsiriwat et al. (2004[Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598-13599.]). For their biological activity, see: Chen et al. (1997[Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217-231.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1850.]); Zhi (2008[Zhi, F. (2008). Acta Cryst. E64, o150.], 2009[Zhi, F. (2009). Acta Cryst. E65, o623.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O3·CH4O

  • Mr = 336.77

  • Triclinic, [P \overline 1]

  • a = 6.570 (2) Å

  • b = 10.343 (3) Å

  • c = 12.707 (3) Å

  • α = 100.371 (2)°

  • β = 91.864 (2)°

  • γ = 101.663 (2)°

  • V = 829.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.971

  • 5945 measured reflections

  • 3022 independent reflections

  • 1724 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.144

  • S = 1.01

  • 3022 reflections

  • 216 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2i 0.82 1.83 2.646 (3) 177
N2—H2⋯O4 0.90 (1) 2.00 (1) 2.876 (3) 163 (2)
O1—H1⋯N1 0.82 1.96 2.676 (3) 146
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been focused on the synthesis, structures, and properties of Schiff base compounds (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have excellent pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). We report herein the crystal structure of the title new Schiff base compound (Fig. 1) derived from the condensation reaction of 2-hydroxy-4-methoxybenzaldehyde with 4-chlorobenzohydrazide.

The asymmetric unit of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. The Schiff base molecule displays a trans configuration with respect to the CN and C–N bonds. There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the two benzene rings is 5.3 (2)°. All the bond lengths are within normal ranges and comparable to those in other similar compounds (Mohd Lair et al., 2009; Fun et al., 2008; Yang, 2008; Zhi, 2008; Zhi & Yang, 2007; Zhi, 2009). In the crystal (Fig. 2), molecules are linked by N—H···O and O—H···O hydrogen interactions into one-dimensional chains along the a axis (Table 1).

Related literature top

For background to Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For their biological activity, see: Chen et al. (1997); Ren et al. (2002). For related structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Yang (2008); Zhi (2008, 2009); Zhi & Yang (2007).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (0.01 mol, 1.52 g) and 4-chlorobenzohydrazide (0.01 mol, 1.71 g) were dissolved in methanol (50 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by slow evaporation of the solvent for several days at room temperature.

Refinement top

Atom H2 was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically [C—H = 0.93–0.96 Å, O—H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C) for hydroxy and methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
4-Chloro-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide methanol monosolvate top
Crystal data top
C15H13ClN2O3·CH4OZ = 2
Mr = 336.77F(000) = 352
Triclinic, P1Dx = 1.348 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.570 (2) ÅCell parameters from 1241 reflections
b = 10.343 (3) Åθ = 2.3–24.5°
c = 12.707 (3) ŵ = 0.25 mm1
α = 100.371 (2)°T = 298 K
β = 91.864 (2)°Block, colorless
γ = 101.663 (2)°0.17 × 0.13 × 0.12 mm
V = 829.7 (4) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3022 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.959, Tmax = 0.971k = 1212
5945 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
3022 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C15H13ClN2O3·CH4Oγ = 101.663 (2)°
Mr = 336.77V = 829.7 (4) Å3
Triclinic, P1Z = 2
a = 6.570 (2) ÅMo Kα radiation
b = 10.343 (3) ŵ = 0.25 mm1
c = 12.707 (3) ÅT = 298 K
α = 100.371 (2)°0.17 × 0.13 × 0.12 mm
β = 91.864 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1724 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.971Rint = 0.038
5945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
3022 reflectionsΔρmin = 0.17 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45941 (17)1.34163 (8)0.04723 (7)0.1057 (4)
N10.6218 (3)0.69152 (19)0.29276 (16)0.0550 (6)
N20.5628 (3)0.7970 (2)0.25424 (18)0.0544 (6)
O10.8829 (3)0.55918 (18)0.37185 (18)0.0764 (6)
H10.85130.61860.34380.115*
O20.8950 (3)0.91058 (17)0.25849 (18)0.0853 (7)
O30.5767 (3)0.14043 (16)0.46539 (16)0.0715 (6)
O40.1182 (3)0.72464 (19)0.20964 (17)0.0731 (6)
H40.04620.78100.22270.110*
C10.5106 (4)0.4800 (2)0.34710 (19)0.0485 (6)
C20.7089 (4)0.4662 (2)0.3793 (2)0.0506 (6)
C30.7361 (4)0.3544 (2)0.42035 (19)0.0528 (7)
H30.86870.34720.44310.063*
C40.5660 (4)0.2544 (2)0.4272 (2)0.0533 (7)
C50.3685 (4)0.2649 (3)0.3942 (2)0.0652 (8)
H50.25420.19640.39760.078*
C60.3423 (4)0.3768 (3)0.3565 (2)0.0634 (8)
H60.20840.38450.33660.076*
C70.4739 (4)0.5964 (2)0.30752 (19)0.0538 (7)
H70.33710.60240.29210.065*
C80.7072 (4)0.9011 (2)0.2375 (2)0.0565 (7)
C90.6350 (4)1.0083 (2)0.1913 (2)0.0526 (7)
C100.7810 (5)1.1221 (3)0.1836 (2)0.0669 (8)
H100.91851.12980.20840.080*
C110.7275 (5)1.2247 (3)0.1399 (2)0.0759 (9)
H110.82771.30080.13550.091*
C120.5255 (5)1.2130 (3)0.1031 (2)0.0680 (8)
C130.3780 (5)1.1019 (3)0.1095 (2)0.0761 (9)
H130.24081.09510.08460.091*
C140.4322 (4)0.9993 (3)0.1531 (2)0.0699 (8)
H140.33110.92330.15670.084*
C150.7748 (4)0.1250 (3)0.5037 (3)0.0789 (9)
H15A0.86230.11540.44490.118*
H15B0.75740.04650.53560.118*
H15C0.83820.20280.55630.118*
C160.0297 (6)0.6290 (4)0.1191 (3)0.1093 (12)
H16A0.00400.67370.06160.164*
H16B0.09940.57700.13580.164*
H16C0.12360.57060.09780.164*
H20.4259 (18)0.792 (3)0.240 (2)0.085 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1478 (9)0.0832 (6)0.1065 (7)0.0441 (6)0.0043 (6)0.0498 (5)
N10.0538 (13)0.0482 (12)0.0692 (14)0.0191 (11)0.0014 (11)0.0188 (10)
N20.0448 (13)0.0522 (12)0.0731 (15)0.0169 (11)0.0001 (11)0.0227 (11)
O10.0478 (11)0.0667 (12)0.1210 (17)0.0033 (9)0.0109 (11)0.0546 (11)
O20.0489 (12)0.0643 (12)0.148 (2)0.0151 (10)0.0058 (12)0.0321 (12)
O30.0582 (12)0.0592 (11)0.1055 (15)0.0078 (9)0.0026 (11)0.0437 (10)
O40.0475 (11)0.0716 (12)0.1049 (16)0.0173 (9)0.0006 (11)0.0252 (11)
C10.0453 (15)0.0491 (13)0.0541 (16)0.0143 (12)0.0040 (12)0.0129 (12)
C20.0464 (16)0.0455 (13)0.0609 (16)0.0059 (12)0.0044 (12)0.0169 (12)
C30.0424 (15)0.0513 (14)0.0698 (18)0.0128 (12)0.0006 (13)0.0226 (12)
C40.0535 (17)0.0463 (14)0.0641 (17)0.0096 (13)0.0067 (13)0.0217 (12)
C50.0448 (16)0.0615 (16)0.093 (2)0.0056 (13)0.0075 (15)0.0307 (15)
C60.0418 (15)0.0650 (17)0.089 (2)0.0121 (13)0.0052 (14)0.0290 (15)
C70.0476 (16)0.0541 (15)0.0650 (18)0.0177 (13)0.0027 (13)0.0175 (13)
C80.0472 (17)0.0488 (15)0.0755 (19)0.0152 (13)0.0041 (14)0.0113 (13)
C90.0525 (16)0.0473 (14)0.0616 (17)0.0157 (12)0.0072 (13)0.0133 (12)
C100.0622 (18)0.0604 (17)0.077 (2)0.0061 (15)0.0002 (15)0.0198 (15)
C110.091 (2)0.0552 (17)0.081 (2)0.0040 (16)0.0001 (18)0.0276 (15)
C120.096 (3)0.0573 (17)0.0602 (18)0.0267 (17)0.0105 (17)0.0236 (14)
C130.0632 (19)0.080 (2)0.102 (2)0.0287 (16)0.0104 (17)0.0439 (18)
C140.0574 (19)0.0624 (17)0.100 (2)0.0135 (14)0.0084 (16)0.0408 (16)
C150.071 (2)0.0640 (17)0.110 (2)0.0128 (16)0.0042 (18)0.0434 (17)
C160.090 (3)0.138 (3)0.095 (3)0.024 (2)0.001 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C121.736 (3)C5—H50.9300
N1—C71.280 (3)C6—H60.9300
N1—N21.390 (3)C7—H70.9300
N2—C81.337 (3)C8—C91.492 (3)
N2—H20.901 (10)C9—C101.380 (3)
O1—C21.355 (3)C9—C141.383 (4)
O1—H10.8200C10—C111.382 (4)
O2—C81.235 (3)C10—H100.9300
O3—C41.366 (3)C11—C121.367 (4)
O3—C151.423 (3)C11—H110.9300
O4—C161.398 (3)C12—C131.362 (4)
O4—H40.8200C13—C141.383 (4)
C1—C21.395 (3)C13—H130.9300
C1—C61.397 (3)C14—H140.9300
C1—C71.445 (3)C15—H15A0.9600
C2—C31.392 (3)C15—H15B0.9600
C3—C41.378 (3)C15—H15C0.9600
C3—H30.9300C16—H16A0.9600
C4—C51.382 (4)C16—H16B0.9600
C5—C61.369 (3)C16—H16C0.9600
C7—N1—N2116.3 (2)C10—C9—C14117.9 (2)
C8—N2—N1120.2 (2)C10—C9—C8118.0 (2)
C8—N2—H2121.7 (18)C14—C9—C8124.1 (2)
N1—N2—H2118.1 (18)C9—C10—C11121.5 (3)
C2—O1—H1109.5C9—C10—H10119.2
C4—O3—C15118.4 (2)C11—C10—H10119.2
C16—O4—H4109.5C12—C11—C10119.2 (3)
C2—C1—C6117.5 (2)C12—C11—H11120.4
C2—C1—C7122.8 (2)C10—C11—H11120.4
C6—C1—C7119.7 (2)C13—C12—C11120.6 (3)
O1—C2—C3116.9 (2)C13—C12—Cl1120.3 (3)
O1—C2—C1122.3 (2)C11—C12—Cl1119.1 (2)
C3—C2—C1120.8 (2)C12—C13—C14120.0 (3)
C4—C3—C2119.7 (2)C12—C13—H13120.0
C4—C3—H3120.1C14—C13—H13120.0
C2—C3—H3120.1C9—C14—C13120.8 (3)
O3—C4—C3124.1 (2)C9—C14—H14119.6
O3—C4—C5115.4 (2)C13—C14—H14119.6
C3—C4—C5120.4 (2)O3—C15—H15A109.5
C6—C5—C4119.5 (2)O3—C15—H15B109.5
C6—C5—H5120.3H15A—C15—H15B109.5
C4—C5—H5120.3O3—C15—H15C109.5
C5—C6—C1122.0 (2)H15A—C15—H15C109.5
C5—C6—H6119.0H15B—C15—H15C109.5
C1—C6—H6119.0O4—C16—H16A109.5
N1—C7—C1122.7 (2)O4—C16—H16B109.5
N1—C7—H7118.6H16A—C16—H16B109.5
C1—C7—H7118.6O4—C16—H16C109.5
O2—C8—N2122.4 (2)H16A—C16—H16C109.5
O2—C8—C9119.8 (2)H16B—C16—H16C109.5
N2—C8—C9117.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.832.646 (3)177
N2—H2···O40.90 (1)2.00 (1)2.876 (3)163 (2)
O1—H1···N10.821.962.676 (3)146
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O3·CH4O
Mr336.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.570 (2), 10.343 (3), 12.707 (3)
α, β, γ (°)100.371 (2), 91.864 (2), 101.663 (2)
V3)829.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5945, 3022, 1724
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.144, 1.01
No. of reflections3022
No. of parameters216
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.821.832.646 (3)176.8
N2—H2···O40.901 (10)2.000 (13)2.876 (3)163 (2)
O1—H1···N10.821.962.676 (3)145.5
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598–13599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. (2008). Acta Cryst. E64, o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. (2009). Acta Cryst. E65, o623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds