metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ-1,3-bis­­(di­phenyl­phosphan­yl)propane-κ2P:P′]-di-μ-thio­cyanato-κ2S:N;κ2N:S-disilver(I)]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, bResearch Center for Import–Export Chemicals Safety of the General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (AQSIQ), Beijing 100123, People's Republic of China, and cKey Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 25 September 2011; accepted 6 October 2011; online 12 October 2011)

In the title coordination polymer, [Ag2(NCS)2(C27H26P2)2]n, two centrosymmetrically related Ag+ cations are linked by two thio­cyanate anions into binuclear eight-membered macrocycles. The Ag⋯Ag separation within the macrocycle is 5.4400 (6) Å. The distorted tetra­hedral coordination about each metal atom is completed by the P atoms of two bridging 1,3-bis­(diphenyl­phosphan­yl)propane ligands, forming polymeric ribbons parallel to the a axis.

Related literature

For silver(I) complexes containing phosphane ligands and coordinated anions, see: Jin, Hu et al. (2010[Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441-445.]); Jin, Song et al. (2010[Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62-65.]); Effendy et al. (2007[Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1451-1465.]). For related structures, see: Cui, Hu et al. (2010[Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871.]); Cui, Jin et al. (2010[Cui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010). Acta Cryst. E66, m969.]); Mu et al. (2010[Mu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645-648.]); Affandi et al. (1997[Affandi, D., Berners-Price, S. J., Effendy, Harvey, P. J., Healy, P. C., Ruch, B. E. & White, A. H. (1997). J. Chem. Soc. Dalton Trans. pp. 1411-1420.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(NCS)2(C27H26P2)2]

  • Mr = 1156.74

  • Monoclinic, P 21 /n

  • a = 7.5478 (9) Å

  • b = 15.8275 (17) Å

  • c = 22.229 (3) Å

  • β = 99.727 (1)°

  • V = 2617.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 298 K

  • 0.42 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.866

  • 12975 measured reflections

  • 4605 independent reflections

  • 3068 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.079

  • S = 1.03

  • 4605 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Reports on the structural and kinetic features of silver(I) phosphane-oligodentate N-bases complexes are growing in number as the participation of these compounds in biological process and lunminescence materials are discovered (Jin, Hu et al., 2010; Jin, Song et al., 2010; Effendy et al., 2007). We have studied the catalytic function of some nitrogen heterocyclic ligands, and found that some of them play an important role in the formation of products of mixed P and N-ligands with special structures. For examples, [Ag4(SCN)4dppm2] and [AgSCN(dppm)]2 (dppm = bis(diphenylphosphanyl)methane) were obtained under the catalysis of quinoline and phenanthroline, respectively. [AgClO4(PPh3)3] (Cui, Hu et al., 2010), [AgClO4(PPh3)3(MeOH)] (Cui, Jin et al., 2010) and [Ag(PPh3)(CH3COO)]2.H2O.CH3OH (Mu et al., 2010) were prepared under the catalysis of 2-aminopyrimidine. Here we report the crystal structure of a new complex {[Ag(dppp)SCN]2}n (dppp = bis(diphenylphosphanyl)propane) prepared under the catalysis of phenanthroline (phen).

The molecular structure of the title complex is depicted in Fig. 1. The polymeric complex can be described as originating from the repetition of a building block consisting of two Ag+ cations, two thiocyanate ions and two bis(diphenylphosphanyl)propane ligands. The coordination modes of dppp and SCN- anion in 1 are different from those observed in complex [Ag(dppp)2]SCN.1.5py (py = pyridine) (2; Affandi et al., 1997). In 1, both dppp ligands and SCN- anions adopt a bridging mode, while in complex 2 the dppp ligands act as chelate ligands and the SCN- anions act as free anions. In 1, each Ag atom is coordinated by two P atoms from two bridging dppp ligands, one S atom and one N atom from two SCN- anions. Each thiocyanate ion bridges two centrosymmetrically related Ag+ ions in µ2-mode through the S and N atoms to form binuclear eight-membered macrocycles, the dppp ligand bridges two silver ions along the a axis through two P atoms to generate one-dimensional polymeric ribbons (Fig. 2). In 1, the AgP2SN coordination geometries could be described as distorted tetrahedral. The P1—Ag—P2, P1—Ag—S1, N1—Ag—S1 and P2—Ag—N1 angles are 102.18 (4)°, 122.60 (4)°, 103.26 (10)° and 109.61 (12)°, respectively. The P1—Ag—P2 angle is smaller than those in complex 2 (108.8 (7) and 120.3 (7)°) The Ag—P distances (2.5316 (11) and 2.4499 (10) Å) are similar to the average Ag—P distance in complex 2 (mean value 2.52 (2)Å).

Related literature top

For silver(I) complexes containing phosphane ligands and coordinated anions, see: Jin, Hu et al. (2010); Jin, Song et al. (2010); Effendy et al. (2007). For related structures, see: Cui, Hu et al. (2010); Cui, Jin et al. (2010); Mu et al. (2010); Affandi et al. (1997).

Experimental top

The title complex has been prepared by adding phenanthroline (0.2 mmol, 0.0396 g) into a stirred mixture of of DMF (2 ml), CH3CN (5 ml) and MeOH (5 ml) containing AgSCN (0.2 mmol, 0.0332 g) and bis(diphenylphosphanyl)propane (0.2 mmol, 0.0825 g). Stirring continued for 3 h. After slow evaporation of the filtrate at ambient temperature for several days, white strip shaped crystals suitable for X-ray diffraction were obtained. Analysis found: C 49.60%, H 4.28%, N 11.51%; calculated: C 49.56%, H 4.33%, N 11.57%.

Refinement top

All hydrogen atoms were located in the calculated sites and included in the final refinement using the riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the basic unit of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation 1-x, 1-y, 1-z.
[Figure 2] Fig. 2. A view of the polymeric ribbon of the title compound running parallel to the a axis. Hydrogen atoms are omitted for clarity.
Poly[bis[µ-1,3-bis(diphenylphosphanyl)propane-κ2P:P']- di-µ-thiocyanato-κ2S:N;κ2N:S-disilver(I)] top
Crystal data top
[Ag2(NCS)2(C27H26P2)2]F(000) = 1176
Mr = 1156.74Dx = 1.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3146 reflections
a = 7.5478 (9) Åθ = 2.3–23.9°
b = 15.8275 (17) ŵ = 0.99 mm1
c = 22.229 (3) ÅT = 298 K
β = 99.727 (1)°Prism, white
V = 2617.4 (5) Å30.42 × 0.21 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4605 independent reflections
Radiation source: fine-focus sealed tube3068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.682, Tmax = 0.866k = 1818
12975 measured reflectionsl = 2623
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0218P)2 + 2.1307P]
where P = (Fo2 + 2Fc2)/3
4605 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ag2(NCS)2(C27H26P2)2]V = 2617.4 (5) Å3
Mr = 1156.74Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.5478 (9) ŵ = 0.99 mm1
b = 15.8275 (17) ÅT = 298 K
c = 22.229 (3) Å0.42 × 0.21 × 0.15 mm
β = 99.727 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4605 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3068 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.866Rint = 0.042
12975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
4605 reflectionsΔρmin = 0.50 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.67725 (4)0.369866 (19)0.563731 (15)0.04506 (12)
P10.84677 (14)0.23813 (6)0.56205 (5)0.0330 (3)
P20.53770 (14)0.35222 (6)0.65884 (5)0.0356 (3)
S10.82981 (18)0.51569 (8)0.57515 (8)0.0920 (6)
N10.5431 (6)0.6134 (3)0.51878 (19)0.0707 (13)
C10.6602 (7)0.5719 (3)0.5414 (2)0.0519 (12)
C21.0481 (5)0.2237 (2)0.61989 (17)0.0356 (9)
H2A1.01490.22700.66010.043*
H2B1.09700.16780.61540.043*
C30.1935 (5)0.2899 (2)0.61504 (18)0.0400 (10)
H3A0.22560.28770.57460.048*
H3B0.14680.34580.62090.048*
C40.3605 (5)0.2739 (2)0.66287 (17)0.0368 (10)
H4A0.40670.21790.65680.044*
H4B0.32760.27560.70320.044*
C50.9279 (5)0.2047 (2)0.49304 (17)0.0350 (9)
C60.9994 (6)0.2658 (3)0.46022 (18)0.0483 (12)
H60.99320.32230.47120.058*
C71.0802 (7)0.2442 (3)0.4110 (2)0.0641 (14)
H71.13060.28590.38980.077*
C81.0861 (7)0.1617 (3)0.3936 (2)0.0651 (14)
H81.14240.14710.36090.078*
C91.0091 (6)0.1002 (3)0.4243 (2)0.0588 (13)
H91.00960.04420.41160.071*
C100.9309 (5)0.1216 (3)0.47387 (18)0.0449 (11)
H100.87950.07980.49470.054*
C110.6995 (5)0.1523 (2)0.57727 (17)0.0343 (10)
C120.5367 (6)0.1429 (3)0.5382 (2)0.0523 (12)
H120.50770.17900.50500.063*
C130.4176 (6)0.0806 (4)0.5481 (2)0.0721 (15)
H130.30980.07430.52130.087*
C140.4571 (7)0.0281 (3)0.5973 (3)0.0702 (15)
H140.37680.01420.60370.084*
C150.6145 (7)0.0377 (3)0.6370 (2)0.0641 (14)
H150.64070.00260.67090.077*
C160.7344 (6)0.0994 (3)0.6269 (2)0.0480 (11)
H160.84140.10550.65420.058*
C170.4373 (5)0.4470 (2)0.68533 (19)0.0369 (10)
C180.3580 (6)0.5036 (3)0.6417 (2)0.0508 (12)
H180.36700.49490.60090.061*
C190.2658 (7)0.5725 (3)0.6579 (3)0.0698 (15)
H190.21190.60990.62800.084*
C200.2531 (7)0.5864 (3)0.7180 (3)0.0699 (16)
H200.18970.63270.72900.084*
C210.3336 (7)0.5319 (3)0.7613 (2)0.0666 (14)
H210.32650.54160.80210.080*
C220.4260 (6)0.4621 (3)0.7455 (2)0.0532 (12)
H220.48060.42530.77560.064*
C230.7159 (5)0.3225 (2)0.72144 (18)0.0376 (10)
C240.8650 (6)0.3745 (3)0.7347 (2)0.0527 (12)
H240.86770.42520.71360.063*
C251.0084 (6)0.3527 (3)0.7782 (2)0.0658 (15)
H251.10650.38890.78660.079*
C261.0090 (7)0.2786 (4)0.8094 (2)0.0685 (15)
H261.10630.26450.83920.082*
C270.8650 (7)0.2248 (3)0.7963 (2)0.0623 (14)
H270.86600.17350.81680.075*
C280.7187 (6)0.2465 (3)0.75300 (19)0.0490 (11)
H280.62120.20990.74480.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0491 (2)0.03714 (18)0.0486 (2)0.00698 (17)0.00730 (15)0.00473 (16)
P10.0307 (6)0.0291 (6)0.0388 (6)0.0003 (4)0.0047 (5)0.0014 (4)
P20.0317 (6)0.0380 (6)0.0375 (6)0.0022 (5)0.0072 (5)0.0028 (5)
S10.0498 (9)0.0493 (8)0.1629 (16)0.0138 (7)0.0224 (10)0.0306 (9)
N10.067 (3)0.062 (3)0.072 (3)0.004 (2)0.021 (2)0.019 (2)
C10.060 (3)0.039 (3)0.051 (3)0.018 (2)0.004 (3)0.006 (2)
C20.033 (2)0.036 (2)0.038 (2)0.0019 (18)0.0040 (19)0.0019 (18)
C30.035 (2)0.037 (2)0.046 (3)0.0038 (19)0.000 (2)0.0005 (19)
C40.032 (2)0.033 (2)0.045 (3)0.0007 (18)0.005 (2)0.0008 (19)
C50.032 (2)0.035 (2)0.037 (2)0.0003 (18)0.0022 (19)0.0000 (18)
C60.067 (3)0.038 (3)0.040 (3)0.009 (2)0.009 (2)0.001 (2)
C70.091 (4)0.059 (3)0.046 (3)0.025 (3)0.025 (3)0.006 (2)
C80.078 (4)0.077 (4)0.046 (3)0.013 (3)0.028 (3)0.016 (3)
C90.078 (4)0.048 (3)0.053 (3)0.001 (3)0.019 (3)0.017 (2)
C100.051 (3)0.038 (3)0.047 (3)0.007 (2)0.012 (2)0.001 (2)
C110.031 (2)0.033 (2)0.041 (3)0.0021 (17)0.011 (2)0.0036 (18)
C120.043 (3)0.059 (3)0.052 (3)0.009 (2)0.001 (2)0.004 (2)
C130.039 (3)0.096 (4)0.078 (4)0.026 (3)0.001 (3)0.014 (3)
C140.059 (4)0.067 (4)0.091 (4)0.031 (3)0.029 (3)0.007 (3)
C150.064 (4)0.048 (3)0.082 (4)0.013 (3)0.016 (3)0.021 (3)
C160.039 (3)0.048 (3)0.056 (3)0.006 (2)0.006 (2)0.012 (2)
C170.027 (2)0.036 (2)0.047 (3)0.0043 (18)0.003 (2)0.003 (2)
C180.051 (3)0.043 (3)0.056 (3)0.000 (2)0.001 (2)0.010 (2)
C190.065 (4)0.041 (3)0.098 (4)0.008 (3)0.002 (3)0.000 (3)
C200.051 (3)0.042 (3)0.117 (5)0.004 (2)0.017 (3)0.028 (3)
C210.068 (4)0.066 (3)0.069 (4)0.002 (3)0.023 (3)0.026 (3)
C220.057 (3)0.054 (3)0.049 (3)0.003 (2)0.009 (2)0.006 (2)
C230.033 (2)0.040 (2)0.040 (2)0.0045 (19)0.008 (2)0.0065 (19)
C240.044 (3)0.053 (3)0.058 (3)0.001 (2)0.001 (2)0.012 (2)
C250.038 (3)0.080 (4)0.075 (4)0.001 (3)0.005 (3)0.029 (3)
C260.047 (3)0.089 (4)0.063 (4)0.025 (3)0.009 (3)0.008 (3)
C270.057 (3)0.069 (3)0.060 (3)0.021 (3)0.007 (3)0.011 (3)
C280.038 (3)0.056 (3)0.054 (3)0.003 (2)0.010 (2)0.002 (2)
Geometric parameters (Å, º) top
Ag1—N1i2.274 (4)C11—C161.374 (5)
Ag1—P12.4499 (10)C11—C121.388 (5)
Ag1—P22.5316 (11)C12—C131.377 (6)
Ag1—S12.5726 (13)C12—H120.9300
P1—C111.823 (4)C13—C141.365 (7)
P1—C51.823 (4)C13—H130.9300
P1—C21.832 (4)C14—C151.363 (6)
P2—C171.823 (4)C14—H140.9300
P2—C231.826 (4)C15—C161.376 (5)
P2—C41.837 (4)C15—H150.9300
S1—C11.633 (5)C16—H160.9300
N1—C11.147 (5)C17—C221.375 (5)
N1—Ag1i2.274 (4)C17—C181.380 (5)
C2—C3ii1.535 (5)C18—C191.374 (6)
C2—H2A0.9700C18—H180.9300
C2—H2B0.9700C19—C201.375 (7)
C3—C41.527 (5)C19—H190.9300
C3—C2iii1.535 (5)C20—C211.356 (7)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.384 (6)
C4—H4A0.9700C21—H210.9300
C4—H4B0.9700C22—H220.9300
C5—C61.376 (5)C23—C241.386 (5)
C5—C101.384 (5)C23—C281.391 (5)
C6—C71.382 (6)C24—C251.369 (6)
C6—H60.9300C24—H240.9300
C7—C81.365 (6)C25—C261.362 (7)
C7—H70.9300C25—H250.9300
C8—C91.373 (6)C26—C271.372 (7)
C8—H80.9300C26—H260.9300
C9—C101.378 (5)C27—C281.381 (6)
C9—H90.9300C27—H270.9300
C10—H100.9300C28—H280.9300
N1i—Ag1—P1113.55 (11)C5—C10—H10119.6
N1i—Ag1—P2109.61 (12)C16—C11—C12117.8 (4)
P1—Ag1—P2102.18 (4)C16—C11—P1124.3 (3)
N1i—Ag1—S1103.26 (10)C12—C11—P1117.9 (3)
P1—Ag1—S1122.60 (4)C13—C12—C11120.7 (4)
P2—Ag1—S1105.01 (5)C13—C12—H12119.7
C11—P1—C5103.99 (17)C11—C12—H12119.7
C11—P1—C2103.66 (17)C14—C13—C12120.2 (5)
C5—P1—C2101.39 (17)C14—C13—H13119.9
C11—P1—Ag1107.16 (12)C12—C13—H13119.9
C5—P1—Ag1120.68 (12)C15—C14—C13119.9 (5)
C2—P1—Ag1117.99 (12)C15—C14—H14120.0
C17—P2—C23105.00 (18)C13—C14—H14120.0
C17—P2—C4101.19 (17)C14—C15—C16119.9 (5)
C23—P2—C4103.73 (18)C14—C15—H15120.1
C17—P2—Ag1115.67 (13)C16—C15—H15120.1
C23—P2—Ag1107.94 (13)C11—C16—C15121.5 (4)
C4—P2—Ag1121.62 (13)C11—C16—H16119.3
C1—S1—Ag198.04 (15)C15—C16—H16119.3
C1—N1—Ag1i145.6 (4)C22—C17—C18118.7 (4)
N1—C1—S1177.9 (4)C22—C17—P2123.7 (3)
C3ii—C2—P1112.6 (3)C18—C17—P2117.5 (3)
C3ii—C2—H2A109.1C19—C18—C17120.7 (4)
P1—C2—H2A109.1C19—C18—H18119.7
C3ii—C2—H2B109.1C17—C18—H18119.7
P1—C2—H2B109.1C18—C19—C20120.2 (5)
H2A—C2—H2B107.8C18—C19—H19119.9
C4—C3—C2iii110.7 (3)C20—C19—H19119.9
C4—C3—H3A109.5C21—C20—C19119.5 (5)
C2iii—C3—H3A109.5C21—C20—H20120.3
C4—C3—H3B109.5C19—C20—H20120.3
C2iii—C3—H3B109.5C20—C21—C22120.8 (5)
H3A—C3—H3B108.1C20—C21—H21119.6
C3—C4—P2112.1 (3)C22—C21—H21119.6
C3—C4—H4A109.2C17—C22—C21120.2 (4)
P2—C4—H4A109.2C17—C22—H22119.9
C3—C4—H4B109.2C21—C22—H22119.9
P2—C4—H4B109.2C24—C23—C28117.7 (4)
H4A—C4—H4B107.9C24—C23—P2118.4 (3)
C6—C5—C10118.5 (4)C28—C23—P2123.6 (3)
C6—C5—P1117.4 (3)C25—C24—C23121.1 (5)
C10—C5—P1124.1 (3)C25—C24—H24119.4
C5—C6—C7120.7 (4)C23—C24—H24119.4
C5—C6—H6119.6C26—C25—C24120.7 (5)
C7—C6—H6119.7C26—C25—H25119.6
C8—C7—C6120.1 (4)C24—C25—H25119.6
C8—C7—H7119.9C25—C26—C27119.5 (5)
C6—C7—H7119.9C25—C26—H26120.2
C7—C8—C9120.0 (4)C27—C26—H26120.2
C7—C8—H8120.0C26—C27—C28120.3 (5)
C9—C8—H8120.0C26—C27—H27119.8
C8—C9—C10119.8 (4)C28—C27—H27119.8
C8—C9—H9120.1C27—C28—C23120.6 (4)
C10—C9—H9120.1C27—C28—H28119.7
C9—C10—C5120.8 (4)C23—C28—H28119.7
C9—C10—H10119.6
N1i—Ag1—P1—C1172.24 (18)C5—P1—C11—C16113.2 (3)
P2—Ag1—P1—C1145.70 (13)C2—P1—C11—C167.6 (4)
S1—Ag1—P1—C11162.61 (14)Ag1—P1—C11—C16117.9 (3)
N1i—Ag1—P1—C546.28 (19)C5—P1—C11—C1270.8 (3)
P2—Ag1—P1—C5164.22 (15)C2—P1—C11—C12176.4 (3)
S1—Ag1—P1—C578.87 (15)Ag1—P1—C11—C1258.1 (3)
N1i—Ag1—P1—C2171.41 (18)C16—C11—C12—C132.1 (6)
P2—Ag1—P1—C270.65 (14)P1—C11—C12—C13178.4 (4)
S1—Ag1—P1—C246.26 (15)C11—C12—C13—C141.1 (7)
N1i—Ag1—P2—C1771.60 (18)C12—C13—C14—C150.5 (8)
P1—Ag1—P2—C17167.68 (14)C13—C14—C15—C161.1 (8)
S1—Ag1—P2—C1738.74 (15)C12—C11—C16—C151.6 (6)
N1i—Ag1—P2—C23171.17 (17)P1—C11—C16—C15177.6 (3)
P1—Ag1—P2—C2350.46 (14)C14—C15—C16—C110.0 (7)
S1—Ag1—P2—C2378.48 (14)C23—P2—C17—C2232.1 (4)
N1i—Ag1—P2—C451.68 (18)C4—P2—C17—C2275.6 (4)
P1—Ag1—P2—C469.03 (15)Ag1—P2—C17—C22150.9 (3)
S1—Ag1—P2—C4162.02 (15)C23—P2—C17—C18152.4 (3)
N1i—Ag1—S1—C124.7 (2)C4—P2—C17—C1899.9 (3)
P1—Ag1—S1—C1154.31 (17)Ag1—P2—C17—C1833.6 (4)
P2—Ag1—S1—C190.17 (18)C22—C17—C18—C191.5 (6)
C11—P1—C2—C3ii179.5 (3)P2—C17—C18—C19174.2 (3)
C5—P1—C2—C3ii71.8 (3)C17—C18—C19—C200.6 (7)
Ag1—P1—C2—C3ii62.3 (3)C18—C19—C20—C210.6 (8)
C2iii—C3—C4—P2179.7 (3)C19—C20—C21—C220.9 (8)
C17—P2—C4—C369.1 (3)C18—C17—C22—C211.2 (6)
C23—P2—C4—C3177.8 (3)P2—C17—C22—C21174.2 (3)
Ag1—P2—C4—C360.7 (3)C20—C21—C22—C170.0 (7)
C11—P1—C5—C6161.6 (3)C17—P2—C23—C2468.3 (3)
C2—P1—C5—C691.1 (3)C4—P2—C23—C24174.1 (3)
Ag1—P1—C5—C641.5 (4)Ag1—P2—C23—C2455.6 (3)
C11—P1—C5—C1022.2 (4)C17—P2—C23—C28118.0 (3)
C2—P1—C5—C1085.2 (4)C4—P2—C23—C2812.2 (4)
Ag1—P1—C5—C10142.3 (3)Ag1—P2—C23—C28118.1 (3)
C10—C5—C6—C73.1 (6)C28—C23—C24—C251.3 (6)
P1—C5—C6—C7173.3 (4)P2—C23—C24—C25175.4 (3)
C5—C6—C7—C81.5 (7)C23—C24—C25—C260.6 (7)
C6—C7—C8—C91.1 (8)C24—C25—C26—C270.8 (7)
C7—C8—C9—C102.1 (8)C25—C26—C27—C281.5 (7)
C8—C9—C10—C50.4 (7)C26—C27—C28—C230.8 (7)
C6—C5—C10—C92.2 (6)C24—C23—C28—C270.6 (6)
P1—C5—C10—C9174.1 (3)P2—C23—C28—C27174.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(NCS)2(C27H26P2)2]
Mr1156.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.5478 (9), 15.8275 (17), 22.229 (3)
β (°) 99.727 (1)
V3)2617.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.42 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.682, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
12975, 4605, 3068
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.079, 1.03
No. of reflections4605
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.50

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21171119), the CAIQ Basic Research Program (No. 2010 J K022), the National Keystone Basic Research Program (973 Program under grant Nos. 2007CB310408 and 2006CB302901), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of the Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

References

First citationAffandi, D., Berners-Price, S. J., Effendy, Harvey, P. J., Healy, P. C., Ruch, B. E. & White, A. H. (1997). J. Chem. Soc. Dalton Trans. pp. 1411–1420.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationCui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010). Acta Cryst. E66, m969.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEffendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1451–1465.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010). Polyhedron, 29, 441–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010). Inorg. Chem. Commun. 13, 62–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationMu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645–648.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds