organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 8-chloro-1-cyclo­propyl-6,7-di­fluoro-4-oxo-1,4-di­hydro­quinoline-3-carboxyl­ate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, bR&D Center, Jiangsu Yabang Pharmaceutical Group, Liangchang Road East No. 6 Jingtan, Changzhou 213200, People's Republic of China, and cDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 26 September 2011; accepted 12 October 2011; online 22 October 2011)

In the mol­ecule of the title compound, C15H12ClF2NO3, the quinoline ring system is not planar, the dihedral angle between the pyridine and benzene rings being 3.55 (8)°. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to (101).

Related literature

For the anti­bacterial activity of quinolone derivatives, see: Fujita & Chiba (1998[Fujita, M. & Chiba, K. (1998). Chem. Pharm. Bull. 46, 631-638.]). For a related structure, see: Wang et al. (2008[Wang, D.-C., Huang, X.-M., Liu, Y.-P. & Tang, C.-L. (2008). Acta Cryst. E64, o2214.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClF2NO3

  • Mr = 327.71

  • Monoclinic, P 21 /n

  • a = 11.336 (2) Å

  • b = 7.7440 (15) Å

  • c = 16.157 (3) Å

  • β = 95.40 (3)°

  • V = 1412.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.914, Tmax = 0.970

  • 2741 measured reflections

  • 2604 independent reflections

  • 1728 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.158

  • S = 1.00

  • 2604 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.97 2.55 3.240 (4) 128
C11—H11B⋯O1ii 0.97 2.54 3.491 (4) 167
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinolone antibacterials were found several decades ago, and some excellent antibacterials have been developed and used widely (Fujita & Chiba, 1998). An interest in the search of more potent antibacterial agents led us to design and synthesize a new type of quinoline derivative. The title compound is one of the key intermediates and we report here its crystal structure.

The quinoline ring system is not planar, the dihedral angle between the pyridine and benzene rings being 3.55 (8)°. The dihedral angle between the three-membered ring and the quinoline ring system is 80.5 (5)°. Bond lengths and angles agree well with those observed in the strictly related compound ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylate reported recently (Wang et al., 2008). In the crystal structure, intermolecular C—H···O hydrogen bonds link molecules into layers parallel to the (101) plane.

Related literature top

For the antibacterial activity of quinolone derivatives, see: Fujita & Chiba (1998). For a related structure, see: Wang et al. (2008).

Experimental top

A solution of 3-cyclopropylamino-2-(2,4,5-trifluoro-3-chlorobenzoyl)acrylic acid ethyl ester (26.1 g, 0.075 mol) in DMF (110 ml) was treated with K2CO3 (22 g, 0.16 mol) and then heated to 50°C with stirring for 1 h. The resulting precipitate was filtered, washed with a mixture of ice and water, and dried to give 22 g of the title compound (yield 90%). Crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Ethyl 8-chloro-1-cyclopropyl-6,7-difluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate top
Crystal data top
C15H12ClF2NO3F(000) = 672
Mr = 327.71Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 11.336 (2) Åθ = 9–13°
b = 7.7440 (15) ŵ = 0.31 mm1
c = 16.157 (3) ÅT = 293 K
β = 95.40 (3)°Block, colourless
V = 1412.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.914, Tmax = 0.970l = 1919
2741 measured reflections3 standard reflections every 200 reflections
2604 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2604 reflectionsΔρmax = 0.21 e Å3
200 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C15H12ClF2NO3V = 1412.1 (5) Å3
Mr = 327.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.336 (2) ŵ = 0.31 mm1
b = 7.7440 (15) ÅT = 293 K
c = 16.157 (3) Å0.30 × 0.20 × 0.10 mm
β = 95.40 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1728 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.914, Tmax = 0.9703 standard reflections every 200 reflections
2741 measured reflections intensity decay: 1%
2604 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
2604 reflectionsΔρmin = 0.25 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.19669 (7)0.51225 (11)0.40024 (6)0.0668 (4)
N0.44922 (19)0.3170 (3)0.40949 (14)0.0419 (6)
O10.59434 (19)0.1055 (3)0.62827 (13)0.0642 (7)
C10.3696 (3)0.2253 (4)0.62119 (19)0.0544 (8)
H1A0.40370.17280.66940.065*
F10.19320 (19)0.2766 (4)0.68412 (14)0.0983 (8)
O20.79506 (19)0.0443 (3)0.54403 (15)0.0651 (7)
F20.09874 (16)0.4358 (3)0.54885 (14)0.0800 (7)
C20.2582 (3)0.2886 (5)0.6180 (2)0.0631 (9)
O30.79232 (18)0.1827 (3)0.42263 (14)0.0627 (6)
C30.2086 (3)0.3706 (4)0.5476 (2)0.0570 (9)
C40.2681 (3)0.3882 (4)0.47802 (19)0.0485 (8)
C50.3828 (2)0.3153 (3)0.47746 (17)0.0399 (7)
C60.4329 (2)0.2392 (4)0.55187 (17)0.0420 (7)
C70.5626 (2)0.2603 (4)0.41917 (17)0.0436 (7)
H7A0.60600.26900.37330.052*
C80.6190 (2)0.1915 (4)0.48987 (17)0.0421 (7)
C90.5555 (2)0.1703 (4)0.56176 (17)0.0440 (7)
C100.4003 (3)0.3598 (4)0.32426 (17)0.0499 (8)
H10A0.39410.48310.31090.060*
C110.3070 (3)0.2476 (4)0.28256 (18)0.0569 (9)
H11A0.28160.14860.31310.068*
H11B0.24500.30230.24620.068*
C120.4275 (3)0.2441 (5)0.25528 (18)0.0630 (9)
H12A0.43930.29670.20220.076*
H12B0.47590.14310.26920.076*
C130.7432 (3)0.1294 (4)0.49057 (19)0.0475 (7)
C140.9161 (3)0.1308 (6)0.4192 (2)0.0697 (10)
H14A0.92410.00670.42610.084*
H14B0.96630.18690.46320.084*
C150.9506 (4)0.1833 (6)0.3377 (2)0.0891 (13)
H15A1.03160.15160.33320.134*
H15B0.94210.30620.33170.134*
H15C0.90050.12660.29470.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0592 (5)0.0603 (6)0.0764 (6)0.0187 (4)0.0166 (4)0.0001 (4)
N0.0404 (13)0.0399 (13)0.0437 (13)0.0013 (10)0.0054 (10)0.0007 (10)
O10.0579 (13)0.0809 (17)0.0511 (13)0.0097 (12)0.0089 (10)0.0147 (12)
C10.056 (2)0.058 (2)0.0477 (17)0.0018 (16)0.0012 (15)0.0002 (15)
F10.0732 (15)0.146 (2)0.0798 (14)0.0125 (15)0.0296 (12)0.0032 (15)
O20.0507 (13)0.0699 (16)0.0727 (15)0.0149 (11)0.0035 (12)0.0137 (13)
F20.0461 (11)0.0932 (16)0.1010 (16)0.0177 (11)0.0077 (11)0.0139 (13)
C20.055 (2)0.078 (2)0.058 (2)0.0008 (18)0.0145 (17)0.0068 (18)
O30.0421 (12)0.0806 (17)0.0646 (14)0.0079 (11)0.0012 (10)0.0107 (13)
C30.0412 (17)0.060 (2)0.069 (2)0.0050 (15)0.0009 (16)0.0149 (18)
C40.0454 (17)0.0388 (16)0.0585 (19)0.0015 (13)0.0102 (15)0.0070 (14)
C50.0364 (14)0.0321 (14)0.0493 (16)0.0045 (12)0.0057 (12)0.0023 (12)
C60.0423 (16)0.0381 (15)0.0440 (15)0.0032 (12)0.0039 (13)0.0028 (13)
C70.0408 (16)0.0427 (16)0.0470 (16)0.0042 (13)0.0024 (13)0.0002 (14)
C80.0396 (15)0.0378 (15)0.0471 (16)0.0035 (12)0.0043 (13)0.0024 (13)
C90.0445 (16)0.0395 (16)0.0452 (17)0.0026 (13)0.0110 (13)0.0020 (14)
C100.0549 (18)0.0459 (17)0.0460 (17)0.0000 (14)0.0102 (14)0.0065 (14)
C110.055 (2)0.061 (2)0.0516 (17)0.0007 (16)0.0129 (15)0.0014 (16)
C120.069 (2)0.076 (2)0.0430 (17)0.0012 (19)0.0009 (16)0.0032 (17)
C130.0442 (16)0.0441 (17)0.0526 (18)0.0020 (14)0.0044 (14)0.0023 (15)
C140.0433 (18)0.087 (3)0.079 (2)0.0094 (18)0.0044 (17)0.005 (2)
C150.072 (3)0.106 (3)0.092 (3)0.008 (2)0.022 (2)0.004 (3)
Geometric parameters (Å, º) top
Cl—C41.723 (3)C7—C81.364 (4)
N—C71.353 (3)C7—H7A0.9300
N—C51.389 (4)C8—C91.432 (4)
N—C101.473 (3)C8—C131.486 (4)
O1—C91.229 (3)C10—C111.481 (4)
C1—C21.351 (5)C10—C121.485 (4)
C1—C61.390 (4)C10—H10A0.9800
C1—H1A0.9300C11—C121.475 (5)
F1—C21.357 (4)C11—H11A0.9700
O2—C131.196 (3)C11—H11B0.9700
F2—C31.346 (4)C12—H12A0.9700
C2—C31.375 (5)C12—H12B0.9700
O3—C131.342 (4)C14—C151.467 (5)
O3—C141.466 (4)C14—H14A0.9700
C3—C41.371 (4)C14—H14B0.9700
C4—C51.418 (4)C15—H15A0.9600
C5—C61.410 (4)C15—H15B0.9600
C6—C91.483 (4)C15—H15C0.9600
C7—N—C5119.0 (2)N—C10—C12118.7 (3)
C7—N—C10116.8 (2)C11—C10—C1259.6 (2)
C5—N—C10123.8 (2)N—C10—H10A116.0
C2—C1—C6119.5 (3)C11—C10—H10A116.0
C2—C1—H1A120.3C12—C10—H10A116.0
C6—C1—H1A120.3C12—C11—C1060.3 (2)
C1—C2—F1121.3 (3)C12—C11—H11A117.7
C1—C2—C3120.5 (3)C10—C11—H11A117.7
F1—C2—C3118.2 (3)C12—C11—H11B117.7
C13—O3—C14114.8 (2)C10—C11—H11B117.7
F2—C3—C4120.2 (3)H11A—C11—H11B114.9
F2—C3—C2117.9 (3)C11—C12—C1060.1 (2)
C4—C3—C2121.9 (3)C11—C12—H12A117.8
C3—C4—C5119.2 (3)C10—C12—H12A117.8
C3—C4—Cl114.8 (2)C11—C12—H12B117.8
C5—C4—Cl125.9 (3)C10—C12—H12B117.8
N—C5—C6118.3 (2)H12A—C12—H12B114.9
N—C5—C4124.5 (3)O2—C13—O3123.1 (3)
C6—C5—C4117.2 (3)O2—C13—C8125.8 (3)
C1—C6—C5121.5 (3)O3—C13—C8111.1 (3)
C1—C6—C9115.8 (3)O3—C14—C15107.1 (3)
C5—C6—C9122.7 (3)O3—C14—H14A110.3
N—C7—C8126.1 (3)C15—C14—H14A110.3
N—C7—H7A116.9O3—C14—H14B110.3
C8—C7—H7A116.9C15—C14—H14B110.3
C7—C8—C9119.4 (3)H14A—C14—H14B108.5
C7—C8—C13120.1 (3)C14—C15—H15A109.5
C9—C8—C13120.3 (3)C14—C15—H15B109.5
O1—C9—C8126.1 (3)H15A—C15—H15B109.5
O1—C9—C6119.7 (3)C14—C15—H15C109.5
C8—C9—C6114.2 (2)H15A—C15—H15C109.5
N—C10—C11118.9 (3)H15B—C15—H15C109.5
C6—C1—C2—F1179.6 (3)C10—N—C7—C8170.2 (3)
C6—C1—C2—C31.8 (5)N—C7—C8—C91.7 (4)
C1—C2—C3—F2178.0 (3)N—C7—C8—C13178.1 (3)
F1—C2—C3—F20.7 (5)C7—C8—C9—O1177.6 (3)
C1—C2—C3—C41.4 (5)C13—C8—C9—O11.3 (5)
F1—C2—C3—C4179.9 (3)C7—C8—C9—C63.9 (4)
F2—C3—C4—C5178.7 (3)C13—C8—C9—C6179.8 (2)
C2—C3—C4—C52.0 (5)C1—C6—C9—O10.3 (4)
F2—C3—C4—Cl5.2 (4)C5—C6—C9—O1179.9 (3)
C2—C3—C4—Cl174.1 (3)C1—C6—C9—C8178.3 (2)
C7—N—C5—C65.9 (4)C5—C6—C9—C81.3 (4)
C10—N—C5—C6167.3 (2)C7—N—C10—C11110.6 (3)
C7—N—C5—C4172.8 (3)C5—N—C10—C1162.8 (4)
C10—N—C5—C413.9 (4)C7—N—C10—C1241.4 (4)
C3—C4—C5—N176.6 (3)C5—N—C10—C12132.0 (3)
Cl—C4—C5—N7.8 (4)N—C10—C11—C12108.2 (3)
C3—C4—C5—C64.7 (4)N—C10—C12—C11108.5 (3)
Cl—C4—C5—C6170.9 (2)C14—O3—C13—O20.9 (5)
C2—C1—C6—C51.1 (5)C14—O3—C13—C8178.5 (3)
C2—C1—C6—C9178.4 (3)C7—C8—C13—O2168.0 (3)
N—C5—C6—C1176.8 (3)C9—C8—C13—O28.3 (5)
C4—C5—C6—C14.3 (4)C7—C8—C13—O312.5 (4)
N—C5—C6—C93.6 (4)C9—C8—C13—O3171.2 (2)
C4—C5—C6—C9175.2 (3)C13—O3—C14—C15174.0 (3)
C5—N—C7—C83.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.972.553.240 (4)128
C11—H11B···O1ii0.972.543.491 (4)167
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H12ClF2NO3
Mr327.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.336 (2), 7.7440 (15), 16.157 (3)
β (°) 95.40 (3)
V3)1412.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.914, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
2741, 2604, 1728
Rint0.025
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.00
No. of reflections2604
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.97002.55003.240 (4)128.00
C11—H11B···O1ii0.97002.54003.491 (4)167.00
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFujita, M. & Chiba, K. (1998). Chem. Pharm. Bull. 46, 631–638.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-C., Huang, X.-M., Liu, Y.-P. & Tang, C.-L. (2008). Acta Cryst. E64, o2214.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds