organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,6-Dimeth­­oxy­naphthalen-2-yl)(2,4,6-tri­methyl­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 1 October 2011; accepted 13 October 2011; online 29 October 2011)

In the title compound, C22H22O3, the dihedral angle between the naphthalene ring system and the benzene ring is 79.95 (5)°. The bridging carbonyl C—C(=O)—C group makes dihedral angles of 24.21 (7) and 82.43 (8)°, respectively, with the naphthalene ring system and the benzene ring. In the crystal, weak inter­molecular C—H⋯O inter­actions link mol­ecules into chains parallel to the c axis.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.], 2011[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813.]); Kato et al. (2010[Kato, Y., Nagasawa, A., Kataoka, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2795.], 2011[Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O3

  • Mr = 334.40

  • Monoclinic, P 21 /c

  • a = 15.4205 (2) Å

  • b = 8.23702 (10) Å

  • c = 15.3832 (2) Å

  • β = 111.30 (1)°

  • V = 1820.49 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.701, Tmax = 0.939

  • 32532 measured reflections

  • 3310 independent reflections

  • 3047 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.130

  • S = 1.04

  • 3310 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.30 3.1123 (19) 143
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated naphthalene derivatives have been also clarified such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011), (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato et al., 2011) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone (Kato et al., 2010). As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 3-monoaroylnaphthalene bearing three methyl groups, is discussed in this report.

The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group is situated out of the plane of the naphthalene ring. The dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 79.95 (5)°. The carbonyl moiety attaches almost coplanarly to the naphthalene ring rather than the benzene ring. The bridging carbonyl C—C(O)—C plane makes dihedral angles of 24.21 (7) and 82.43 (8)°, respectively, with the naphthalene ring system and the benzene ring. The dihedral angle of the title compound between the bridging carbonyl plane and the naphthalene ring is smaller than those in 3-monoaroylated naphthalene analogues, (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato et al., 2011) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone [54.32 (5) and 47.07 (9)°, respectively]. The carbonyl group makes torsion angles of 21.8 (2) and -98.12 (16)°, respectively, with the naphthalene ring and the benzene ring [C2—C3—C11—O1 torsion angle = 21.8 (2)°; O1—C11—C12—C13 torsion angle = -98.12 (16)°].

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule along the c axis (Fig. 2; Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011); Kato et al. (2010, 2011).

Experimental top

To a 100 ml flask, 2,4,6-trimethylbenzoyl chloride (30.0 mmol, 5.48 g), titanium chloride (90.0 mmol, 17.1 g) and methylene chloride (25 ml) were placed and stirred at rt. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (10.0 mmol, 1.88 g) was added. After the reaction mixture was stirred at rt for 24 h, it was poured into ice-cold water (50 ml). The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 56%). Colourless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from hexane/CHCl3 mixtures (3:1 v/v).

1H NMR δ (300 MHz, CDCl3); 2.14 (6H, s), 2.33 (3H, s), 3.92 (6H, s), 6.87 (2H, s), 6.98 (1H, dd, J = 2.4, 8.7 Hz), 7.04 (1H, d, J = 2.4 Hz), 7.12 (1H, s), 7.61 (1H, d, J = 9.0 Hz), 7.90 (1H, s) ppm.

13C NMR δ (75 MHz, CDCl3); 19.50, 21.12, 55.31, 55.82, 104.68, 106.17, 117.21, 122.93, 126.94, 128.31, 130.81, 134.06, 134.23, 138.10, 138.51, 139.18, 157.13, 160.25, 199.32 ppm.

IR (KBr); 1673 (C=O), 1626, 1499, 1470 (Ar, naphthalene), 1212 (=C—O—C) cm-1

HRMS (m/z); [M + H]+ Calcd for C22H23O3, 335.1647; found, 335.1640.

m.p. = 423.0–424.5 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C6—H6···O1i interactions, viewed along the b axis [symmetry code: (i) x, -y + 1/2, z + 1/2].
(3,6-Dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone top
Crystal data top
C22H22O3F(000) = 712
Mr = 334.40Dx = 1.220 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 29183 reflections
a = 15.4205 (2) Åθ = 3.1–68.3°
b = 8.23702 (10) ŵ = 0.64 mm1
c = 15.3832 (2) ÅT = 193 K
β = 111.30 (1)°Platelet, colourless
V = 1820.49 (13) Å30.60 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3310 independent reflections
Radiation source: rotating anode3047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.1°
ω scansh = 1818
Absorption correction: numerical
(NUMABS; Higashi 1999)
k = 99
Tmin = 0.701, Tmax = 0.939l = 1818
32532 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.4568P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3310 reflectionsΔρmax = 0.24 e Å3
232 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (5)
Crystal data top
C22H22O3V = 1820.49 (13) Å3
Mr = 334.40Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.4205 (2) ŵ = 0.64 mm1
b = 8.23702 (10) ÅT = 193 K
c = 15.3832 (2) Å0.60 × 0.20 × 0.10 mm
β = 111.30 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3310 independent reflections
Absorption correction: numerical
(NUMABS; Higashi 1999)
3047 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.939Rint = 0.035
32532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3310 reflectionsΔρmin = 0.21 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17897 (7)0.11520 (14)0.30253 (7)0.0547 (3)
O20.31350 (9)0.09944 (15)0.39268 (8)0.0644 (4)
O30.51070 (7)0.05027 (14)0.89570 (7)0.0524 (3)
C10.38282 (10)0.06216 (18)0.55932 (10)0.0469 (4)
H10.43280.13280.56330.056*
C20.31489 (10)0.03276 (18)0.47401 (10)0.0463 (3)
C30.23765 (9)0.07077 (17)0.46641 (9)0.0407 (3)
C40.23345 (9)0.13606 (16)0.54713 (9)0.0399 (3)
H40.18120.20090.54310.048*
C50.30303 (9)0.11102 (16)0.63517 (10)0.0397 (3)
C60.29974 (9)0.18543 (18)0.71684 (10)0.0443 (3)
H60.24810.25190.71300.053*
C70.36953 (9)0.16311 (18)0.80084 (10)0.0456 (3)
H70.36670.21450.85500.055*
C80.44640 (9)0.06316 (17)0.80730 (10)0.0424 (3)
C90.45182 (9)0.01199 (17)0.73013 (10)0.0433 (3)
H90.50360.07930.73570.052*
C100.38003 (9)0.01067 (16)0.64181 (10)0.0406 (3)
C110.16556 (9)0.11889 (16)0.37545 (9)0.0407 (3)
C120.07397 (9)0.18112 (16)0.37644 (8)0.0380 (3)
C130.00479 (9)0.07062 (17)0.37435 (9)0.0420 (3)
C140.08108 (10)0.1316 (2)0.37005 (10)0.0475 (4)
H140.12930.05760.36720.057*
C150.09821 (10)0.2967 (2)0.36976 (10)0.0500 (4)
C160.02745 (11)0.40317 (18)0.37347 (10)0.0503 (4)
H160.03810.51660.37430.060*
C170.05866 (10)0.34880 (17)0.37602 (9)0.0435 (3)
C180.38758 (15)0.2040 (3)0.39608 (14)0.0781 (6)
H18A0.38780.29890.43460.094*
H18B0.44680.14600.42320.094*
H18C0.37930.23960.33280.094*
C190.58995 (11)0.0495 (2)0.90841 (12)0.0635 (5)
H19A0.62440.00670.87100.076*
H19B0.56960.16060.88850.076*
H19C0.63040.04960.97440.076*
C200.02088 (11)0.10973 (18)0.37508 (11)0.0529 (4)
H20A0.06090.14380.43790.063*
H20B0.05110.13620.33080.063*
H20C0.03890.16650.35710.063*
C210.19204 (12)0.3592 (3)0.36448 (14)0.0696 (5)
H21A0.22730.27090.37880.084*
H21B0.22630.40030.30150.084*
H21C0.18340.44720.40980.084*
C220.13333 (12)0.46853 (19)0.37718 (12)0.0572 (4)
H22A0.19140.44220.42870.069*
H22B0.11360.57860.38570.069*
H22C0.14350.46240.31800.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0597 (6)0.0639 (7)0.0500 (6)0.0070 (5)0.0312 (5)0.0096 (5)
O20.0725 (7)0.0710 (8)0.0509 (6)0.0287 (6)0.0238 (5)0.0071 (5)
O30.0453 (6)0.0567 (7)0.0503 (6)0.0041 (4)0.0116 (4)0.0015 (5)
C10.0439 (7)0.0456 (8)0.0553 (8)0.0112 (6)0.0228 (6)0.0012 (6)
C20.0508 (8)0.0445 (8)0.0490 (8)0.0064 (6)0.0247 (6)0.0028 (6)
C30.0409 (7)0.0388 (7)0.0467 (7)0.0020 (5)0.0209 (6)0.0024 (5)
C40.0377 (6)0.0392 (7)0.0484 (7)0.0044 (5)0.0222 (6)0.0031 (5)
C50.0378 (7)0.0380 (7)0.0485 (7)0.0014 (5)0.0221 (6)0.0019 (5)
C60.0426 (7)0.0456 (8)0.0503 (8)0.0071 (6)0.0236 (6)0.0013 (6)
C70.0475 (7)0.0465 (8)0.0475 (7)0.0013 (6)0.0228 (6)0.0019 (6)
C80.0385 (7)0.0409 (7)0.0475 (7)0.0038 (5)0.0154 (6)0.0022 (6)
C90.0366 (7)0.0402 (7)0.0554 (8)0.0038 (5)0.0195 (6)0.0019 (6)
C100.0386 (7)0.0374 (7)0.0503 (7)0.0012 (5)0.0215 (6)0.0019 (6)
C110.0457 (7)0.0356 (7)0.0455 (7)0.0027 (5)0.0220 (6)0.0023 (5)
C120.0405 (6)0.0388 (7)0.0353 (6)0.0013 (5)0.0145 (5)0.0024 (5)
C130.0472 (7)0.0414 (7)0.0396 (7)0.0021 (6)0.0185 (6)0.0016 (5)
C140.0426 (7)0.0572 (9)0.0459 (7)0.0040 (6)0.0199 (6)0.0028 (6)
C150.0478 (8)0.0611 (9)0.0431 (7)0.0109 (7)0.0188 (6)0.0053 (6)
C160.0560 (9)0.0426 (8)0.0511 (8)0.0118 (6)0.0181 (7)0.0028 (6)
C170.0483 (8)0.0382 (7)0.0417 (7)0.0012 (6)0.0138 (6)0.0021 (5)
C180.0894 (13)0.0862 (14)0.0635 (11)0.0390 (11)0.0334 (10)0.0077 (10)
C190.0438 (8)0.0745 (12)0.0640 (10)0.0091 (8)0.0098 (7)0.0015 (8)
C200.0618 (9)0.0403 (8)0.0610 (9)0.0061 (7)0.0276 (8)0.0017 (7)
C210.0572 (10)0.0882 (13)0.0698 (11)0.0210 (9)0.0307 (8)0.0101 (10)
C220.0605 (9)0.0403 (8)0.0660 (10)0.0050 (7)0.0172 (8)0.0037 (7)
Geometric parameters (Å, º) top
O1—C111.2126 (16)C13—C141.395 (2)
O2—C21.3595 (17)C13—C201.505 (2)
O2—C181.4166 (19)C14—C151.385 (2)
O3—C81.3653 (17)C14—H140.9500
O3—C191.4258 (19)C15—C161.385 (2)
C1—C21.371 (2)C15—C211.510 (2)
C1—C101.418 (2)C16—C171.388 (2)
C1—H10.9500C16—H160.9500
C2—C31.4347 (19)C17—C221.511 (2)
C3—C41.3761 (19)C18—H18A0.9800
C3—C111.4903 (19)C18—H18B0.9800
C4—C51.404 (2)C18—H18C0.9800
C4—H40.9500C19—H19A0.9800
C5—C61.4153 (19)C19—H19B0.9800
C5—C101.4196 (18)C19—H19C0.9800
C6—C71.361 (2)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C81.4167 (19)C20—H20C0.9800
C7—H70.9500C21—H21A0.9800
C8—C91.368 (2)C21—H21B0.9800
C9—C101.419 (2)C21—H21C0.9800
C9—H90.9500C22—H22A0.9800
C11—C121.5077 (18)C22—H22B0.9800
C12—C131.3938 (19)C22—H22C0.9800
C12—C171.401 (2)
C2—O2—C18117.96 (13)C15—C14—H14119.0
C8—O3—C19117.24 (12)C13—C14—H14119.0
C2—C1—C10121.38 (12)C16—C15—C14118.37 (13)
C2—C1—H1119.3C16—C15—C21120.77 (15)
C10—C1—H1119.3C14—C15—C21120.86 (15)
O2—C2—C1124.10 (13)C15—C16—C17121.88 (14)
O2—C2—C3115.47 (12)C15—C16—H16119.1
C1—C2—C3120.41 (12)C17—C16—H16119.1
C4—C3—C2117.94 (12)C16—C17—C12118.43 (13)
C4—C3—C11118.67 (12)C16—C17—C22120.44 (14)
C2—C3—C11123.27 (12)C12—C17—C22121.13 (13)
C3—C4—C5122.88 (12)O2—C18—H18A109.5
C3—C4—H4118.6O2—C18—H18B109.5
C5—C4—H4118.6H18A—C18—H18B109.5
C4—C5—C6122.09 (12)O2—C18—H18C109.5
C4—C5—C10118.74 (12)H18A—C18—H18C109.5
C6—C5—C10119.15 (12)H18B—C18—H18C109.5
C7—C6—C5120.89 (12)O3—C19—H19A109.5
C7—C6—H6119.6O3—C19—H19B109.5
C5—C6—H6119.6H19A—C19—H19B109.5
C6—C7—C8119.88 (13)O3—C19—H19C109.5
C6—C7—H7120.1H19A—C19—H19C109.5
C8—C7—H7120.1H19B—C19—H19C109.5
O3—C8—C9125.30 (12)C13—C20—H20A109.5
O3—C8—C7113.68 (12)C13—C20—H20B109.5
C9—C8—C7121.02 (13)H20A—C20—H20B109.5
C8—C9—C10119.93 (12)C13—C20—H20C109.5
C8—C9—H9120.0H20A—C20—H20C109.5
C10—C9—H9120.0H20B—C20—H20C109.5
C1—C10—C9122.29 (12)C15—C21—H21A109.5
C1—C10—C5118.58 (13)C15—C21—H21B109.5
C9—C10—C5119.12 (12)H21A—C21—H21B109.5
O1—C11—C3122.83 (12)C15—C21—H21C109.5
O1—C11—C12119.54 (12)H21A—C21—H21C109.5
C3—C11—C12117.58 (11)H21B—C21—H21C109.5
C13—C12—C17121.16 (13)C17—C22—H22A109.5
C13—C12—C11119.32 (12)C17—C22—H22B109.5
C17—C12—C11119.48 (12)H22A—C22—H22B109.5
C12—C13—C14118.13 (13)C17—C22—H22C109.5
C12—C13—C20121.43 (13)H22A—C22—H22C109.5
C14—C13—C20120.43 (13)H22B—C22—H22C109.5
C15—C14—C13122.01 (14)
C18—O2—C2—C10.9 (3)C4—C5—C10—C9178.42 (12)
C18—O2—C2—C3179.40 (16)C6—C5—C10—C90.18 (19)
C10—C1—C2—O2179.68 (14)C4—C3—C11—O1154.26 (14)
C10—C1—C2—C31.3 (2)C2—C3—C11—O121.7 (2)
O2—C2—C3—C4177.30 (13)C4—C3—C11—C1223.10 (18)
C1—C2—C3—C41.2 (2)C2—C3—C11—C12160.89 (13)
O2—C2—C3—C116.7 (2)O1—C11—C12—C1398.12 (16)
C1—C2—C3—C11174.82 (13)C3—C11—C12—C1384.42 (15)
C2—C3—C4—C52.7 (2)O1—C11—C12—C1779.58 (17)
C11—C3—C4—C5173.52 (12)C3—C11—C12—C1797.88 (15)
C3—C4—C5—C6176.92 (13)C17—C12—C13—C141.18 (19)
C3—C4—C5—C101.6 (2)C11—C12—C13—C14176.48 (12)
C4—C5—C6—C7177.94 (13)C17—C12—C13—C20179.81 (13)
C10—C5—C6—C70.6 (2)C11—C12—C13—C202.53 (19)
C5—C6—C7—C80.5 (2)C12—C13—C14—C151.3 (2)
C19—O3—C8—C90.1 (2)C20—C13—C14—C15179.64 (14)
C19—O3—C8—C7179.45 (13)C13—C14—C15—C160.3 (2)
C6—C7—C8—O3179.41 (13)C13—C14—C15—C21179.64 (13)
C6—C7—C8—C90.0 (2)C14—C15—C16—C171.0 (2)
O3—C8—C9—C10179.76 (12)C21—C15—C16—C17178.38 (14)
C7—C8—C9—C100.5 (2)C15—C16—C17—C121.1 (2)
C2—C1—C10—C9176.96 (14)C15—C16—C17—C22178.19 (13)
C2—C1—C10—C52.4 (2)C13—C12—C17—C160.0 (2)
C8—C9—C10—C1178.97 (13)C11—C12—C17—C16177.66 (12)
C8—C9—C10—C50.3 (2)C13—C12—C17—C22179.30 (12)
C4—C5—C10—C10.91 (19)C11—C12—C17—C221.64 (19)
C6—C5—C10—C1179.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.303.1123 (19)143
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H22O3
Mr334.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)15.4205 (2), 8.23702 (10), 15.3832 (2)
β (°) 111.30 (1)
V3)1820.49 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi 1999)
Tmin, Tmax0.701, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
32532, 3310, 3047
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.04
No. of reflections3310
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.303.1123 (19)143
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Kataoka, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds