organic compounds
(3,6-Dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C22H22O3, the dihedral angle between the naphthalene ring system and the benzene ring is 79.95 (5)°. The bridging carbonyl C—C(=O)—C group makes dihedral angles of 24.21 (7) and 82.43 (8)°, respectively, with the naphthalene ring system and the benzene ring. In the crystal, weak intermolecular C—H⋯O interactions link molecules into chains parallel to the c axis.
Related literature
For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011); Kato et al. (2010, 2011).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811042401/rz2647sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042401/rz2647Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811042401/rz2647Isup3.cml
To a 100 ml flask, 2,4,6-trimethylbenzoyl chloride (30.0 mmol, 5.48 g), titanium chloride (90.0 mmol, 17.1 g) and methylene chloride (25 ml) were placed and stirred at rt. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (10.0 mmol, 1.88 g) was added. After the reaction mixture was stirred at rt for 24 h, it was poured into ice-cold water (50 ml). The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 56%). Colourless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from hexane/CHCl3 mixtures (3:1 v/v).
1H NMR δ (300 MHz, CDCl3); 2.14 (6H, s), 2.33 (3H, s), 3.92 (6H, s), 6.87 (2H, s), 6.98 (1H, dd, J = 2.4, 8.7 Hz), 7.04 (1H, d, J = 2.4 Hz), 7.12 (1H, s), 7.61 (1H, d, J = 9.0 Hz), 7.90 (1H, s) ppm.
13C NMR δ (75 MHz, CDCl3); 19.50, 21.12, 55.31, 55.82, 104.68, 106.17, 117.21, 122.93, 126.94, 128.31, 130.81, 134.06, 134.23, 138.10, 138.51, 139.18, 157.13, 160.25, 199.32 ppm.
IR (KBr); 1673 (C=O), 1626, 1499, 1470 (Ar, naphthalene), 1212 (=C—O—C) cm-1
HRMS (m/z); [M + H]+ Calcd for C22H23O3, 335.1647; found, 335.1640.
m.p. = 423.0–424.5 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C22H22O3 | F(000) = 712 |
Mr = 334.40 | Dx = 1.220 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 29183 reflections |
a = 15.4205 (2) Å | θ = 3.1–68.3° |
b = 8.23702 (10) Å | µ = 0.64 mm−1 |
c = 15.3832 (2) Å | T = 193 K |
β = 111.30 (1)° | Platelet, colourless |
V = 1820.49 (13) Å3 | 0.60 × 0.20 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3310 independent reflections |
Radiation source: rotating anode | 3047 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 3.1° |
ω scans | h = −18→18 |
Absorption correction: numerical (NUMABS; Higashi 1999) | k = −9→9 |
Tmin = 0.701, Tmax = 0.939 | l = −18→18 |
32532 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.130 | w = 1/[σ2(Fo2) + (0.0753P)2 + 0.4568P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3310 reflections | Δρmax = 0.24 e Å−3 |
232 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0049 (5) |
C22H22O3 | V = 1820.49 (13) Å3 |
Mr = 334.40 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 15.4205 (2) Å | µ = 0.64 mm−1 |
b = 8.23702 (10) Å | T = 193 K |
c = 15.3832 (2) Å | 0.60 × 0.20 × 0.10 mm |
β = 111.30 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3310 independent reflections |
Absorption correction: numerical (NUMABS; Higashi 1999) | 3047 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 0.939 | Rint = 0.035 |
32532 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.24 e Å−3 |
3310 reflections | Δρmin = −0.21 e Å−3 |
232 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.17897 (7) | 0.11520 (14) | 0.30253 (7) | 0.0547 (3) | |
O2 | 0.31350 (9) | −0.09944 (15) | 0.39268 (8) | 0.0644 (4) | |
O3 | 0.51070 (7) | 0.05027 (14) | 0.89570 (7) | 0.0524 (3) | |
C1 | 0.38282 (10) | −0.06216 (18) | 0.55932 (10) | 0.0469 (4) | |
H1 | 0.4328 | −0.1328 | 0.5633 | 0.056* | |
C2 | 0.31489 (10) | −0.03276 (18) | 0.47401 (10) | 0.0463 (3) | |
C3 | 0.23765 (9) | 0.07077 (17) | 0.46641 (9) | 0.0407 (3) | |
C4 | 0.23345 (9) | 0.13606 (16) | 0.54713 (9) | 0.0399 (3) | |
H4 | 0.1812 | 0.2009 | 0.5431 | 0.048* | |
C5 | 0.30303 (9) | 0.11102 (16) | 0.63517 (10) | 0.0397 (3) | |
C6 | 0.29974 (9) | 0.18543 (18) | 0.71684 (10) | 0.0443 (3) | |
H6 | 0.2481 | 0.2519 | 0.7130 | 0.053* | |
C7 | 0.36953 (9) | 0.16311 (18) | 0.80084 (10) | 0.0456 (3) | |
H7 | 0.3667 | 0.2145 | 0.8550 | 0.055* | |
C8 | 0.44640 (9) | 0.06316 (17) | 0.80730 (10) | 0.0424 (3) | |
C9 | 0.45182 (9) | −0.01199 (17) | 0.73013 (10) | 0.0433 (3) | |
H9 | 0.5036 | −0.0793 | 0.7357 | 0.052* | |
C10 | 0.38003 (9) | 0.01067 (16) | 0.64181 (10) | 0.0406 (3) | |
C11 | 0.16556 (9) | 0.11889 (16) | 0.37545 (9) | 0.0407 (3) | |
C12 | 0.07397 (9) | 0.18112 (16) | 0.37644 (8) | 0.0380 (3) | |
C13 | 0.00479 (9) | 0.07062 (17) | 0.37435 (9) | 0.0420 (3) | |
C14 | −0.08108 (10) | 0.1316 (2) | 0.37005 (10) | 0.0475 (4) | |
H14 | −0.1293 | 0.0576 | 0.3672 | 0.057* | |
C15 | −0.09821 (10) | 0.2967 (2) | 0.36976 (10) | 0.0500 (4) | |
C16 | −0.02745 (11) | 0.40317 (18) | 0.37347 (10) | 0.0503 (4) | |
H16 | −0.0381 | 0.5166 | 0.3743 | 0.060* | |
C17 | 0.05866 (10) | 0.34880 (17) | 0.37602 (9) | 0.0435 (3) | |
C18 | 0.38758 (15) | −0.2040 (3) | 0.39608 (14) | 0.0781 (6) | |
H18A | 0.3878 | −0.2989 | 0.4346 | 0.094* | |
H18B | 0.4468 | −0.1460 | 0.4232 | 0.094* | |
H18C | 0.3793 | −0.2396 | 0.3328 | 0.094* | |
C19 | 0.58995 (11) | −0.0495 (2) | 0.90841 (12) | 0.0635 (5) | |
H19A | 0.6244 | −0.0067 | 0.8710 | 0.076* | |
H19B | 0.5696 | −0.1606 | 0.8885 | 0.076* | |
H19C | 0.6304 | −0.0496 | 0.9744 | 0.076* | |
C20 | 0.02088 (11) | −0.10973 (18) | 0.37508 (11) | 0.0529 (4) | |
H20A | 0.0609 | −0.1438 | 0.4379 | 0.063* | |
H20B | 0.0511 | −0.1362 | 0.3308 | 0.063* | |
H20C | −0.0389 | −0.1665 | 0.3571 | 0.063* | |
C21 | −0.19204 (12) | 0.3592 (3) | 0.36448 (14) | 0.0696 (5) | |
H21A | −0.2273 | 0.2709 | 0.3788 | 0.084* | |
H21B | −0.2263 | 0.4003 | 0.3015 | 0.084* | |
H21C | −0.1834 | 0.4472 | 0.4098 | 0.084* | |
C22 | 0.13333 (12) | 0.46853 (19) | 0.37718 (12) | 0.0572 (4) | |
H22A | 0.1914 | 0.4422 | 0.4287 | 0.069* | |
H22B | 0.1136 | 0.5786 | 0.3857 | 0.069* | |
H22C | 0.1435 | 0.4624 | 0.3180 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0597 (6) | 0.0639 (7) | 0.0500 (6) | 0.0070 (5) | 0.0312 (5) | 0.0096 (5) |
O2 | 0.0725 (7) | 0.0710 (8) | 0.0509 (6) | 0.0287 (6) | 0.0238 (5) | −0.0071 (5) |
O3 | 0.0453 (6) | 0.0567 (7) | 0.0503 (6) | 0.0041 (4) | 0.0116 (4) | −0.0015 (5) |
C1 | 0.0439 (7) | 0.0456 (8) | 0.0553 (8) | 0.0112 (6) | 0.0228 (6) | −0.0012 (6) |
C2 | 0.0508 (8) | 0.0445 (8) | 0.0490 (8) | 0.0064 (6) | 0.0247 (6) | −0.0028 (6) |
C3 | 0.0409 (7) | 0.0388 (7) | 0.0467 (7) | 0.0020 (5) | 0.0209 (6) | 0.0024 (5) |
C4 | 0.0377 (6) | 0.0392 (7) | 0.0484 (7) | 0.0044 (5) | 0.0222 (6) | 0.0031 (5) |
C5 | 0.0378 (7) | 0.0380 (7) | 0.0485 (7) | 0.0014 (5) | 0.0221 (6) | 0.0019 (5) |
C6 | 0.0426 (7) | 0.0456 (8) | 0.0503 (8) | 0.0071 (6) | 0.0236 (6) | 0.0013 (6) |
C7 | 0.0475 (7) | 0.0465 (8) | 0.0475 (7) | 0.0013 (6) | 0.0228 (6) | −0.0019 (6) |
C8 | 0.0385 (7) | 0.0409 (7) | 0.0475 (7) | −0.0038 (5) | 0.0154 (6) | 0.0022 (6) |
C9 | 0.0366 (7) | 0.0402 (7) | 0.0554 (8) | 0.0038 (5) | 0.0195 (6) | 0.0019 (6) |
C10 | 0.0386 (7) | 0.0374 (7) | 0.0503 (7) | 0.0012 (5) | 0.0215 (6) | 0.0019 (6) |
C11 | 0.0457 (7) | 0.0356 (7) | 0.0455 (7) | −0.0027 (5) | 0.0220 (6) | 0.0023 (5) |
C12 | 0.0405 (6) | 0.0388 (7) | 0.0353 (6) | 0.0013 (5) | 0.0145 (5) | 0.0024 (5) |
C13 | 0.0472 (7) | 0.0414 (7) | 0.0396 (7) | −0.0021 (6) | 0.0185 (6) | 0.0016 (5) |
C14 | 0.0426 (7) | 0.0572 (9) | 0.0459 (7) | −0.0040 (6) | 0.0199 (6) | 0.0028 (6) |
C15 | 0.0478 (8) | 0.0611 (9) | 0.0431 (7) | 0.0109 (7) | 0.0188 (6) | 0.0053 (6) |
C16 | 0.0560 (9) | 0.0426 (8) | 0.0511 (8) | 0.0118 (6) | 0.0181 (7) | 0.0028 (6) |
C17 | 0.0483 (8) | 0.0382 (7) | 0.0417 (7) | 0.0012 (6) | 0.0138 (6) | 0.0021 (5) |
C18 | 0.0894 (13) | 0.0862 (14) | 0.0635 (11) | 0.0390 (11) | 0.0334 (10) | −0.0077 (10) |
C19 | 0.0438 (8) | 0.0745 (12) | 0.0640 (10) | 0.0091 (8) | 0.0098 (7) | 0.0015 (8) |
C20 | 0.0618 (9) | 0.0403 (8) | 0.0610 (9) | −0.0061 (7) | 0.0276 (8) | 0.0017 (7) |
C21 | 0.0572 (10) | 0.0882 (13) | 0.0698 (11) | 0.0210 (9) | 0.0307 (8) | 0.0101 (10) |
C22 | 0.0605 (9) | 0.0403 (8) | 0.0660 (10) | −0.0050 (7) | 0.0172 (8) | 0.0037 (7) |
O1—C11 | 1.2126 (16) | C13—C14 | 1.395 (2) |
O2—C2 | 1.3595 (17) | C13—C20 | 1.505 (2) |
O2—C18 | 1.4166 (19) | C14—C15 | 1.385 (2) |
O3—C8 | 1.3653 (17) | C14—H14 | 0.9500 |
O3—C19 | 1.4258 (19) | C15—C16 | 1.385 (2) |
C1—C2 | 1.371 (2) | C15—C21 | 1.510 (2) |
C1—C10 | 1.418 (2) | C16—C17 | 1.388 (2) |
C1—H1 | 0.9500 | C16—H16 | 0.9500 |
C2—C3 | 1.4347 (19) | C17—C22 | 1.511 (2) |
C3—C4 | 1.3761 (19) | C18—H18A | 0.9800 |
C3—C11 | 1.4903 (19) | C18—H18B | 0.9800 |
C4—C5 | 1.404 (2) | C18—H18C | 0.9800 |
C4—H4 | 0.9500 | C19—H19A | 0.9800 |
C5—C6 | 1.4153 (19) | C19—H19B | 0.9800 |
C5—C10 | 1.4196 (18) | C19—H19C | 0.9800 |
C6—C7 | 1.361 (2) | C20—H20A | 0.9800 |
C6—H6 | 0.9500 | C20—H20B | 0.9800 |
C7—C8 | 1.4167 (19) | C20—H20C | 0.9800 |
C7—H7 | 0.9500 | C21—H21A | 0.9800 |
C8—C9 | 1.368 (2) | C21—H21B | 0.9800 |
C9—C10 | 1.419 (2) | C21—H21C | 0.9800 |
C9—H9 | 0.9500 | C22—H22A | 0.9800 |
C11—C12 | 1.5077 (18) | C22—H22B | 0.9800 |
C12—C13 | 1.3938 (19) | C22—H22C | 0.9800 |
C12—C17 | 1.401 (2) | ||
C2—O2—C18 | 117.96 (13) | C15—C14—H14 | 119.0 |
C8—O3—C19 | 117.24 (12) | C13—C14—H14 | 119.0 |
C2—C1—C10 | 121.38 (12) | C16—C15—C14 | 118.37 (13) |
C2—C1—H1 | 119.3 | C16—C15—C21 | 120.77 (15) |
C10—C1—H1 | 119.3 | C14—C15—C21 | 120.86 (15) |
O2—C2—C1 | 124.10 (13) | C15—C16—C17 | 121.88 (14) |
O2—C2—C3 | 115.47 (12) | C15—C16—H16 | 119.1 |
C1—C2—C3 | 120.41 (12) | C17—C16—H16 | 119.1 |
C4—C3—C2 | 117.94 (12) | C16—C17—C12 | 118.43 (13) |
C4—C3—C11 | 118.67 (12) | C16—C17—C22 | 120.44 (14) |
C2—C3—C11 | 123.27 (12) | C12—C17—C22 | 121.13 (13) |
C3—C4—C5 | 122.88 (12) | O2—C18—H18A | 109.5 |
C3—C4—H4 | 118.6 | O2—C18—H18B | 109.5 |
C5—C4—H4 | 118.6 | H18A—C18—H18B | 109.5 |
C4—C5—C6 | 122.09 (12) | O2—C18—H18C | 109.5 |
C4—C5—C10 | 118.74 (12) | H18A—C18—H18C | 109.5 |
C6—C5—C10 | 119.15 (12) | H18B—C18—H18C | 109.5 |
C7—C6—C5 | 120.89 (12) | O3—C19—H19A | 109.5 |
C7—C6—H6 | 119.6 | O3—C19—H19B | 109.5 |
C5—C6—H6 | 119.6 | H19A—C19—H19B | 109.5 |
C6—C7—C8 | 119.88 (13) | O3—C19—H19C | 109.5 |
C6—C7—H7 | 120.1 | H19A—C19—H19C | 109.5 |
C8—C7—H7 | 120.1 | H19B—C19—H19C | 109.5 |
O3—C8—C9 | 125.30 (12) | C13—C20—H20A | 109.5 |
O3—C8—C7 | 113.68 (12) | C13—C20—H20B | 109.5 |
C9—C8—C7 | 121.02 (13) | H20A—C20—H20B | 109.5 |
C8—C9—C10 | 119.93 (12) | C13—C20—H20C | 109.5 |
C8—C9—H9 | 120.0 | H20A—C20—H20C | 109.5 |
C10—C9—H9 | 120.0 | H20B—C20—H20C | 109.5 |
C1—C10—C9 | 122.29 (12) | C15—C21—H21A | 109.5 |
C1—C10—C5 | 118.58 (13) | C15—C21—H21B | 109.5 |
C9—C10—C5 | 119.12 (12) | H21A—C21—H21B | 109.5 |
O1—C11—C3 | 122.83 (12) | C15—C21—H21C | 109.5 |
O1—C11—C12 | 119.54 (12) | H21A—C21—H21C | 109.5 |
C3—C11—C12 | 117.58 (11) | H21B—C21—H21C | 109.5 |
C13—C12—C17 | 121.16 (13) | C17—C22—H22A | 109.5 |
C13—C12—C11 | 119.32 (12) | C17—C22—H22B | 109.5 |
C17—C12—C11 | 119.48 (12) | H22A—C22—H22B | 109.5 |
C12—C13—C14 | 118.13 (13) | C17—C22—H22C | 109.5 |
C12—C13—C20 | 121.43 (13) | H22A—C22—H22C | 109.5 |
C14—C13—C20 | 120.43 (13) | H22B—C22—H22C | 109.5 |
C15—C14—C13 | 122.01 (14) | ||
C18—O2—C2—C1 | −0.9 (3) | C4—C5—C10—C9 | 178.42 (12) |
C18—O2—C2—C3 | −179.40 (16) | C6—C5—C10—C9 | −0.18 (19) |
C10—C1—C2—O2 | −179.68 (14) | C4—C3—C11—O1 | 154.26 (14) |
C10—C1—C2—C3 | −1.3 (2) | C2—C3—C11—O1 | −21.7 (2) |
O2—C2—C3—C4 | 177.30 (13) | C4—C3—C11—C12 | −23.10 (18) |
C1—C2—C3—C4 | −1.2 (2) | C2—C3—C11—C12 | 160.89 (13) |
O2—C2—C3—C11 | −6.7 (2) | O1—C11—C12—C13 | 98.12 (16) |
C1—C2—C3—C11 | 174.82 (13) | C3—C11—C12—C13 | −84.42 (15) |
C2—C3—C4—C5 | 2.7 (2) | O1—C11—C12—C17 | −79.58 (17) |
C11—C3—C4—C5 | −173.52 (12) | C3—C11—C12—C17 | 97.88 (15) |
C3—C4—C5—C6 | 176.92 (13) | C17—C12—C13—C14 | 1.18 (19) |
C3—C4—C5—C10 | −1.6 (2) | C11—C12—C13—C14 | −176.48 (12) |
C4—C5—C6—C7 | −177.94 (13) | C17—C12—C13—C20 | −179.81 (13) |
C10—C5—C6—C7 | 0.6 (2) | C11—C12—C13—C20 | 2.53 (19) |
C5—C6—C7—C8 | −0.5 (2) | C12—C13—C14—C15 | −1.3 (2) |
C19—O3—C8—C9 | 0.1 (2) | C20—C13—C14—C15 | 179.64 (14) |
C19—O3—C8—C7 | 179.45 (13) | C13—C14—C15—C16 | 0.3 (2) |
C6—C7—C8—O3 | −179.41 (13) | C13—C14—C15—C21 | 179.64 (13) |
C6—C7—C8—C9 | 0.0 (2) | C14—C15—C16—C17 | 1.0 (2) |
O3—C8—C9—C10 | 179.76 (12) | C21—C15—C16—C17 | −178.38 (14) |
C7—C8—C9—C10 | 0.5 (2) | C15—C16—C17—C12 | −1.1 (2) |
C2—C1—C10—C9 | −176.96 (14) | C15—C16—C17—C22 | 178.19 (13) |
C2—C1—C10—C5 | 2.4 (2) | C13—C12—C17—C16 | 0.0 (2) |
C8—C9—C10—C1 | 178.97 (13) | C11—C12—C17—C16 | 177.66 (12) |
C8—C9—C10—C5 | −0.3 (2) | C13—C12—C17—C22 | −179.30 (12) |
C4—C5—C10—C1 | −0.91 (19) | C11—C12—C17—C22 | −1.64 (19) |
C6—C5—C10—C1 | −179.52 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.30 | 3.1123 (19) | 143 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C22H22O3 |
Mr | 334.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 15.4205 (2), 8.23702 (10), 15.3832 (2) |
β (°) | 111.30 (1) |
V (Å3) | 1820.49 (13) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.60 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi 1999) |
Tmin, Tmax | 0.701, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32532, 3310, 3047 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.130, 1.04 |
No. of reflections | 3310 |
No. of parameters | 232 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.21 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.30 | 3.1123 (19) | 143 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kato, Y., Nagasawa, A., Kataoka, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2795. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kato, Y., Takeuchi, R., Muto, T., Okamoto, A. & Yonezawa, N. (2011). Acta Cryst. E67, o668. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated naphthalene derivatives have been also clarified such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011), (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato et al., 2011) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone (Kato et al., 2010). As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, 3-monoaroylnaphthalene bearing three methyl groups, is discussed in this report.
The molecular structure of the title compound is displayed in Fig. 1. The 2,4,6-trimethylphenyl group is situated out of the plane of the naphthalene ring. The dihedral angle between the best planes of the 2,4,6-trimethylphenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 79.95 (5)°. The carbonyl moiety attaches almost coplanarly to the naphthalene ring rather than the benzene ring. The bridging carbonyl C—C(═O)—C plane makes dihedral angles of 24.21 (7) and 82.43 (8)°, respectively, with the naphthalene ring system and the benzene ring. The dihedral angle of the title compound between the bridging carbonyl plane and the naphthalene ring is smaller than those in 3-monoaroylated naphthalene analogues, (3,6-dimethoxynaphthalen-2-yl)(phenyl)methanone (Kato et al., 2011) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone [54.32 (5) and 47.07 (9)°, respectively]. The carbonyl group makes torsion angles of 21.8 (2) and -98.12 (16)°, respectively, with the naphthalene ring and the benzene ring [C2—C3—C11—O1 torsion angle = 21.8 (2)°; O1—C11—C12—C13 torsion angle = -98.12 (16)°].
In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule along the c axis (Fig. 2; Table 1).