organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-methyl-3-(2-methyl­prop-1-en­yl)-2-oxo-4-phenyl-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aGansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: wangxicun@nwnu.edu.cn

(Received 3 October 2011; accepted 13 October 2011; online 22 October 2011)

In the mol­ecule of the title compound, C18H22N2O3, the dihydro­pyrimidinone ring adopts an envelope conformation. The dihedral angle between the phenyl ring and the mean plane through the enamine fragment is 86.04 (7)°. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O hydrogen bonds link pairs of mol­ecules into centrosymmetric dimers.

Related literature

For general background to and pharmaceutical applications of pyrimidino­nes, see: Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.]); Matsuda & Hirao (1965[Matsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195-1197.]); Müller et al. (2008[Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. (2008). Chem. Rev. 108, 3795-3892.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188-o1189.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O3

  • Mr = 314.38

  • Monoclinic, P 21 /c

  • a = 14.114 (4) Å

  • b = 8.298 (2) Å

  • c = 14.629 (4) Å

  • β = 93.959 (2)°

  • V = 1709.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.25 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.982

  • 11929 measured reflections

  • 3180 independent reflections

  • 2474 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 0.96

  • 3180 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2 0.93 2.58 3.176 (3) 123
N1—H1⋯O1i 0.85 (2) 2.06 (2) 2.915 (2) 177 (2)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Dihydropyrimidinones are compounds that have been drawn widespread attention due to their pharmaceutical applications. A variety of dihydropyrimidinone derivatives have been screened for antihypertension (Atwal, 1990) and antibacterial (Matsuda & Hirao, 1965) activities. At the same time, nitrogen-containing compounds, such as amines, enamines, and imines, are valuable and commercially important bulk chemicals, specialty chemicals, and pharmaceuticals (Müller et al., 2008). As a result, dihydropyrimidin-2-ones-containing enamines can be synthesized by a new approach. As a continuation of our study on series of dihydropyrimidinone derivatives, we report herein the crystal structure of the title compound.

In the title compound (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges, and are comparable with those observed in a closely related structure (Fun et al., 2009). The six-membered dihydropyrimidinone ring assumes an envelope conformation, with atom C4 displaced by 0.478 (2) Å from the mean plane of the other atoms. The dihedral angles formed by the mean plane through the enamine fragment (N2/C9–C12) and the phenyl ring is 86.04 (7)°. An intramolecular C—H···O hydrogen bond stabilizes the molecular conformation (Table 1). In the crystal, pairs of centrosymmetrically related molecules are linked by N—H···O hydrogen bonds into dimers (Fig. 2) generating rings of R22(8) graph-set motif.

Related literature top

For general background to and pharmaceutical applications of pyrimidinones, see: Atwal (1990); Matsuda & Hirao (1965); Müller et al. (2008). For a related structure, see: Fun et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by refluxing a mixture of 3,4-dihydropyrimidinone (1.0 mmol), isobutyraldehyde (2.0 mmol), and trimethylsilyl chloride (2.5 mmol) in anhydrous CH2Cl2 (10 ml) for 12 h. After completion of the reaction monitored by thin layer chromatography (TLC), the crude product was purified by column chromatography over silica gel with ethyl acetate/petroleum ether (1:1 v/v to afford the pure the title compound as the unique product. Crystals suitable for X-ray diffraction analysis were obtained on slow evaporation of an ethanol solution (yield 75%).

Refinement top

The H atom bound to the N atom of the dihydropyrimidinone ring was located in a difference Fourier map and refined freely. All other hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted.
[Figure 2] Fig. 2. A view of a centrosymmetric dimeric unit formed via intermolecular hydrogen bonds (dashed lines) in the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Ethyl 6-methyl-3-(2-methylprop-1-enyl)-2-oxo-4-phenyl- 1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C18H22N2O3F(000) = 672
Mr = 314.38Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4330 reflections
a = 14.114 (4) Åθ = 2.8–26.4°
b = 8.298 (2) ŵ = 0.08 mm1
c = 14.629 (4) ÅT = 296 K
β = 93.959 (2)°Block, colourless
V = 1709.3 (8) Å30.25 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3180 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1617
Tmin = 0.979, Tmax = 0.982k = 108
11929 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.3266P]
where P = (Fo2 + 2Fc2)/3
3180 reflections(Δ/σ)max = 0.001
216 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H22N2O3V = 1709.3 (8) Å3
Mr = 314.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.114 (4) ŵ = 0.08 mm1
b = 8.298 (2) ÅT = 296 K
c = 14.629 (4) Å0.25 × 0.24 × 0.22 mm
β = 93.959 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3180 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2474 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.982Rint = 0.020
11929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.42 e Å3
3180 reflectionsΔρmin = 0.33 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72325 (13)0.1486 (2)0.41220 (12)0.0366 (4)
C20.77888 (13)0.0257 (2)0.44302 (13)0.0388 (4)
C30.92081 (13)0.1942 (2)0.44340 (12)0.0371 (4)
C40.76336 (12)0.3183 (2)0.41569 (13)0.0365 (4)
H40.73320.37780.36360.044*
C50.62397 (14)0.1386 (3)0.37604 (14)0.0437 (5)
C60.48677 (19)0.0234 (4)0.3462 (2)0.0869 (10)
H6A0.45030.06760.36620.104*
H6B0.48270.02460.27980.104*
C70.4492 (2)0.1689 (5)0.3797 (2)0.1148 (14)
H7A0.48010.25900.35340.172*
H7B0.38220.17380.36310.172*
H7C0.45980.17230.44520.172*
C80.75390 (16)0.1477 (3)0.45539 (18)0.0582 (6)
H8A0.69650.15510.48670.087*
H8B0.80450.20060.49090.087*
H8C0.74470.19860.39650.087*
C90.91126 (13)0.4621 (2)0.38297 (14)0.0423 (5)
H90.95330.50700.42770.051*
C100.89706 (15)0.5394 (3)0.30492 (15)0.0497 (5)
C110.9448 (2)0.7003 (3)0.2919 (2)0.0760 (8)
H11A0.97800.73270.34850.114*
H11B0.89770.77960.27380.114*
H11C0.98910.69070.24530.114*
C120.8374 (2)0.4801 (4)0.22492 (17)0.0868 (9)
H12A0.82160.36900.23420.130*
H12B0.87170.49000.17070.130*
H12C0.78020.54270.21790.130*
C130.73992 (13)0.4064 (2)0.50270 (14)0.0406 (5)
C140.79880 (18)0.4024 (3)0.58146 (16)0.0579 (6)
H140.85640.34810.58160.070*
C150.7738 (2)0.4779 (3)0.66064 (19)0.0778 (8)
H150.81460.47390.71330.093*
C160.6894 (2)0.5584 (3)0.6617 (2)0.0795 (9)
H160.67260.60860.71500.095*
C170.6301 (2)0.5647 (3)0.5843 (2)0.0730 (8)
H170.57260.61930.58490.088*
C180.65490 (15)0.4902 (3)0.50460 (18)0.0551 (6)
H180.61430.49640.45190.066*
N10.87357 (11)0.0582 (2)0.46786 (12)0.0415 (4)
N20.86624 (10)0.31325 (18)0.40381 (11)0.0374 (4)
O11.00791 (9)0.20302 (17)0.45540 (10)0.0488 (4)
O20.57967 (10)0.2533 (2)0.34516 (12)0.0628 (5)
O30.58555 (10)0.0075 (2)0.38094 (12)0.0618 (5)
H10.9093 (16)0.018 (3)0.4888 (15)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (10)0.0370 (10)0.0396 (10)0.0014 (8)0.0047 (8)0.0009 (8)
C20.0366 (10)0.0362 (10)0.0439 (10)0.0029 (8)0.0062 (8)0.0002 (8)
C30.0342 (10)0.0368 (10)0.0408 (10)0.0020 (8)0.0050 (8)0.0024 (8)
C40.0295 (9)0.0357 (10)0.0444 (10)0.0011 (8)0.0028 (7)0.0067 (8)
C50.0379 (11)0.0466 (12)0.0467 (11)0.0047 (9)0.0040 (8)0.0024 (9)
C60.0550 (16)0.082 (2)0.120 (2)0.0265 (15)0.0249 (16)0.0113 (18)
C70.086 (2)0.162 (4)0.094 (2)0.071 (2)0.0088 (18)0.022 (2)
C80.0497 (13)0.0388 (12)0.0861 (17)0.0040 (10)0.0037 (12)0.0065 (11)
C90.0349 (10)0.0401 (11)0.0520 (12)0.0039 (8)0.0029 (8)0.0080 (9)
C100.0520 (12)0.0454 (12)0.0524 (12)0.0005 (10)0.0096 (10)0.0089 (10)
C110.0805 (18)0.0615 (16)0.0869 (19)0.0118 (14)0.0118 (15)0.0278 (14)
C120.125 (3)0.087 (2)0.0479 (14)0.0181 (19)0.0008 (15)0.0073 (14)
C130.0396 (10)0.0284 (10)0.0548 (12)0.0030 (8)0.0101 (9)0.0036 (8)
C140.0628 (14)0.0543 (14)0.0564 (13)0.0086 (12)0.0015 (11)0.0065 (11)
C150.106 (2)0.0690 (18)0.0584 (15)0.0009 (17)0.0081 (15)0.0119 (13)
C160.106 (2)0.0566 (17)0.081 (2)0.0116 (16)0.0432 (18)0.0182 (14)
C170.0653 (16)0.0461 (14)0.112 (2)0.0006 (12)0.0415 (16)0.0130 (15)
C180.0432 (12)0.0420 (12)0.0813 (16)0.0004 (10)0.0141 (11)0.0041 (11)
N10.0340 (9)0.0335 (9)0.0569 (10)0.0033 (7)0.0017 (7)0.0096 (8)
N20.0305 (8)0.0344 (9)0.0476 (9)0.0014 (7)0.0051 (6)0.0078 (7)
O10.0296 (7)0.0477 (9)0.0691 (9)0.0014 (6)0.0025 (6)0.0112 (7)
O20.0429 (8)0.0586 (10)0.0841 (11)0.0027 (8)0.0149 (8)0.0068 (9)
O30.0425 (8)0.0567 (10)0.0846 (12)0.0162 (7)0.0085 (8)0.0058 (8)
Geometric parameters (Å, º) top
C1—C21.346 (3)C9—C101.313 (3)
C1—C51.465 (3)C9—N21.432 (2)
C1—C41.517 (3)C9—H90.9300
C2—N11.387 (2)C10—C121.478 (3)
C2—C81.495 (3)C10—C111.514 (3)
C3—O11.232 (2)C11—H11A0.9600
C3—N21.357 (2)C11—H11B0.9600
C3—N11.371 (2)C11—H11C0.9600
C4—N21.475 (2)C12—H12A0.9600
C4—C131.524 (3)C12—H12B0.9600
C4—H40.9800C12—H12C0.9600
C5—O21.209 (2)C13—C141.374 (3)
C5—O31.332 (3)C13—C181.389 (3)
C6—C71.419 (4)C14—C151.384 (3)
C6—O31.457 (3)C14—H140.9300
C6—H6A0.9700C15—C161.366 (4)
C6—H6B0.9700C15—H150.9300
C7—H7A0.9600C16—C171.362 (4)
C7—H7B0.9600C16—H160.9300
C7—H7C0.9600C17—C181.386 (4)
C8—H8A0.9600C17—H170.9300
C8—H8B0.9600C18—H180.9300
C8—H8C0.9600N1—H10.85 (2)
C2—C1—C5126.84 (18)C9—C10—C11119.8 (2)
C2—C1—C4118.95 (16)C12—C10—C11115.4 (2)
C5—C1—C4114.19 (16)C10—C11—H11A109.5
C1—C2—N1118.06 (17)C10—C11—H11B109.5
C1—C2—C8129.24 (18)H11A—C11—H11B109.5
N1—C2—C8112.70 (17)C10—C11—H11C109.5
O1—C3—N2123.30 (17)H11A—C11—H11C109.5
O1—C3—N1120.66 (17)H11B—C11—H11C109.5
N2—C3—N1116.02 (16)C10—C12—H12A109.5
N2—C4—C1109.75 (15)C10—C12—H12B109.5
N2—C4—C13112.60 (15)H12A—C12—H12B109.5
C1—C4—C13111.80 (15)C10—C12—H12C109.5
N2—C4—H4107.5H12A—C12—H12C109.5
C1—C4—H4107.5H12B—C12—H12C109.5
C13—C4—H4107.5C14—C13—C18118.0 (2)
O2—C5—O3122.32 (18)C14—C13—C4122.37 (18)
O2—C5—C1123.19 (19)C18—C13—C4119.65 (19)
O3—C5—C1114.49 (18)C13—C14—C15121.1 (2)
C7—C6—O3109.2 (3)C13—C14—H14119.4
C7—C6—H6A109.8C15—C14—H14119.4
O3—C6—H6A109.8C16—C15—C14120.2 (3)
C7—C6—H6B109.8C16—C15—H15119.9
O3—C6—H6B109.8C14—C15—H15119.9
H6A—C6—H6B108.3C17—C16—C15119.7 (3)
C6—C7—H7A109.5C17—C16—H16120.1
C6—C7—H7B109.5C15—C16—H16120.1
H7A—C7—H7B109.5C16—C17—C18120.4 (3)
C6—C7—H7C109.5C16—C17—H17119.8
H7A—C7—H7C109.5C18—C17—H17119.8
H7B—C7—H7C109.5C17—C18—C13120.6 (2)
C2—C8—H8A109.5C17—C18—H18119.7
C2—C8—H8B109.5C13—C18—H18119.7
H8A—C8—H8B109.5C3—N1—C2124.64 (17)
C2—C8—H8C109.5C3—N1—H1114.6 (15)
H8A—C8—H8C109.5C2—N1—H1119.2 (15)
H8B—C8—H8C109.5C3—N2—C9118.14 (15)
C10—C9—N2124.28 (19)C3—N2—C4120.31 (15)
C10—C9—H9117.9C9—N2—C4117.11 (15)
N2—C9—H9117.9C5—O3—C6116.56 (19)
C9—C10—C12124.8 (2)
C5—C1—C2—N1174.98 (18)C15—C16—C17—C180.1 (4)
C4—C1—C2—N16.5 (3)C16—C17—C18—C130.8 (4)
C5—C1—C2—C85.1 (4)C14—C13—C18—C171.1 (3)
C4—C1—C2—C8173.4 (2)C4—C13—C18—C17176.9 (2)
C2—C1—C4—N231.5 (2)O1—C3—N1—C2168.31 (18)
C5—C1—C4—N2149.80 (16)N2—C3—N1—C210.0 (3)
C2—C1—C4—C1394.2 (2)C1—C2—N1—C316.6 (3)
C5—C1—C4—C1384.5 (2)C8—C2—N1—C3163.42 (19)
C2—C1—C5—O2176.1 (2)O1—C3—N2—C96.1 (3)
C4—C1—C5—O25.3 (3)N1—C3—N2—C9175.65 (16)
C2—C1—C5—O34.7 (3)O1—C3—N2—C4161.77 (18)
C4—C1—C5—O3173.87 (17)N1—C3—N2—C420.0 (3)
N2—C9—C10—C124.0 (4)C10—C9—N2—C3134.3 (2)
N2—C9—C10—C11177.0 (2)C10—C9—N2—C469.3 (3)
N2—C4—C13—C1433.4 (3)C1—C4—N2—C338.9 (2)
C1—C4—C13—C1490.7 (2)C13—C4—N2—C386.3 (2)
N2—C4—C13—C18148.68 (18)C1—C4—N2—C9165.15 (16)
C1—C4—C13—C1887.2 (2)C13—C4—N2—C969.6 (2)
C18—C13—C14—C150.7 (3)O2—C5—O3—C60.5 (3)
C4—C13—C14—C15177.2 (2)C1—C5—O3—C6179.7 (2)
C13—C14—C15—C160.0 (4)C7—C6—O3—C5163.3 (3)
C14—C15—C16—C170.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O20.932.583.176 (3)123
N1—H1···O1i0.85 (2)2.06 (2)2.915 (2)177 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H22N2O3
Mr314.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.114 (4), 8.298 (2), 14.629 (4)
β (°) 93.959 (2)
V3)1709.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11929, 3180, 2474
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 0.96
No. of reflections3180
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O20.932.583.176 (3)122.6
N1—H1···O1i0.85 (2)2.06 (2)2.915 (2)177 (2)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

We are thankful for financial support from the National Nature Science Foundation of China (Nos. 20902073 and 21062017), the Natural Science Foundation of Gansu Province (No. 096RJZA116), and the Scientific and Technological Innovation Engineering Program of Northwest Normal University (nwnu-kjcxgc-03–64, nwnu-lkqn-10–15).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1515.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Yeap, C. S., Babu, M. & Kalluraya, B. (2009). Acta Cryst. E65, o1188–o1189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsuda, T. & Hirao, I. (1965). Nippon Kagaku Zasshi, 86, 1195–1197.  CAS Google Scholar
First citationMüller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. (2008). Chem. Rev. 108, 3795–3892.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds