organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(3,5-di­chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 October 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, C12H7Cl4NO2S, the N—H bond in the C—SO2—NH—C segment is syn with respect to the ortho-Cl atom of the sulfonyl­benzene ring and one of the meta-Cl atoms of the aniline ring. The C—SO2—NH—C torsion angle is −93.9 (2)°. The benzene rings are tilted relative to each other by 61.9 (1)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600-606.]). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-substituted amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A 55, 779-790.]), on methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]), on aryl­sulfonamides, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]); Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940.]); Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-(chloro)-aryl­sulfonamides, see: Gowda et al. (2003[Gowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51-56.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7Cl4NO2S

  • Mr = 371.05

  • Triclinic, [P \overline 1]

  • a = 8.075 (1) Å

  • b = 9.479 (1) Å

  • c = 10.103 (2) Å

  • α = 84.90 (2)°

  • β = 78.49 (1)°

  • γ = 79.28 (1)°

  • V = 743.46 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.48 × 0.44 × 0.32 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.663, Tmax = 0.754

  • 4974 measured reflections

  • 3027 independent reflections

  • 2423 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.03

  • 3027 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.82 (2) 2.07 (2) 2.889 (3) 177 (3)
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The sulfonamide moiety is the constituent of many biologically significant compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000), N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Gowda et al., 2009; Shetty & Gowda, 2005) and N-(chloro)-arylsulfonamides (Gowda et al., 2003), in the present work, the crystal structure of 2,4-dichloro-N-(3,5-dichlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1).

In (I), the N—H bond in the C—SO2—NH—C segment is syn with respect to the ortho-Cl atom of the sulfonylbenzene ring and one of the meta-Cl atoms of the anilino ring. The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -93.9 (2)°, compared to the value of -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)-benzenesulfonamide (II) (Gowda et al., 2009). The sulfonyl and the aniline benzene rings are tilted relative to each other by 61.9 (1)°, compared to the value of 68.9 (1)° in (II). The other bond parameters in (I) are similar to those observed in (II) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). In the crystal, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into dimeric units. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For hydrogen-bonding modes of sulfonamides, see; Adsmond & Grant (2001). For studies on the effects of substituents on the structures and other aspects of N-(aryl)-substituted amides, see: Gowda et al. (2000), on methanesulfonamides, see: Gowda et al. (2007), on arylsulfonamides, see: Gelbrich et al. (2007); Perlovich et al. (2006); Gowda et al. (2009); Shetty & Gowda (2005) and on N-(chloro)-arylsulfonamides, see: Gowda et al. (2003).

Experimental top

A solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N-(3,5-dichlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like light pink single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the NH group was located in a difference Fourier map and refined with the N—H distance restrained to 0.86 (2) Å and with Uiso(H) = 1.2Ueq(N). All other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å,and refined with Uiso(H) values set at 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(3,5-dichlorophenyl)benzenesulfonamide top
Crystal data top
C12H7Cl4NO2SZ = 2
Mr = 371.05F(000) = 372
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.075 (1) ÅCell parameters from 2149 reflections
b = 9.479 (1) Åθ = 2.6–27.7°
c = 10.103 (2) ŵ = 0.93 mm1
α = 84.90 (2)°T = 293 K
β = 78.49 (1)°Prism, light pink
γ = 79.28 (1)°0.48 × 0.44 × 0.32 mm
V = 743.46 (19) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3027 independent reflections
Radiation source: fine-focus sealed tube2423 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.663, Tmax = 0.754k = 1111
4974 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2632P]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C12H7Cl4NO2Sγ = 79.28 (1)°
Mr = 371.05V = 743.46 (19) Å3
Triclinic, P1Z = 2
a = 8.075 (1) ÅMo Kα radiation
b = 9.479 (1) ŵ = 0.93 mm1
c = 10.103 (2) ÅT = 293 K
α = 84.90 (2)°0.48 × 0.44 × 0.32 mm
β = 78.49 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3027 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2423 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.754Rint = 0.014
4974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
3027 reflectionsΔρmin = 0.29 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2231 (3)0.3850 (2)0.6848 (2)0.0383 (5)
C20.3719 (3)0.3794 (3)0.7381 (2)0.0401 (5)
C30.5311 (3)0.3381 (3)0.6599 (3)0.0454 (6)
H30.62980.33510.69510.055*
C40.5432 (3)0.3010 (3)0.5291 (3)0.0481 (6)
C50.3988 (3)0.3048 (3)0.4738 (3)0.0520 (6)
H50.40860.27920.38550.062*
C60.2400 (3)0.3475 (3)0.5529 (2)0.0466 (6)
H60.14190.35120.51670.056*
C70.0988 (3)0.2062 (2)0.9076 (2)0.0397 (5)
C80.1821 (3)0.1626 (3)1.0339 (3)0.0431 (5)
H80.18630.21321.10960.052*
C90.2587 (3)0.0423 (3)1.0452 (3)0.0442 (6)
C100.2563 (3)0.0345 (3)0.9350 (3)0.0482 (6)
H100.30920.11490.94400.058*
C110.1723 (3)0.0125 (3)0.8107 (3)0.0455 (6)
C120.0919 (3)0.1312 (3)0.7950 (3)0.0436 (5)
H120.03450.15990.71050.052*
N10.0178 (3)0.3284 (2)0.9021 (2)0.0470 (5)
H1N0.017 (4)0.358 (3)0.975 (2)0.056*
O10.1015 (2)0.4407 (2)0.68767 (18)0.0528 (5)
O20.0147 (2)0.57618 (18)0.83484 (17)0.0488 (4)
Cl10.36340 (9)0.42083 (9)0.90298 (7)0.0630 (2)
Cl20.74509 (9)0.25049 (9)0.43243 (8)0.0707 (2)
Cl30.36154 (9)0.01334 (8)1.20398 (7)0.0631 (2)
Cl40.16598 (10)0.08094 (8)0.66939 (8)0.0692 (2)
S10.01475 (7)0.44418 (6)0.77605 (6)0.04076 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (12)0.0411 (12)0.0409 (12)0.0147 (10)0.0093 (9)0.0030 (10)
C20.0375 (12)0.0447 (13)0.0423 (13)0.0134 (10)0.0122 (10)0.0015 (10)
C30.0359 (12)0.0481 (14)0.0548 (15)0.0136 (11)0.0101 (11)0.0010 (11)
C40.0428 (14)0.0466 (14)0.0531 (15)0.0151 (11)0.0007 (11)0.0003 (11)
C50.0567 (16)0.0606 (16)0.0418 (14)0.0193 (13)0.0069 (12)0.0047 (12)
C60.0455 (14)0.0566 (15)0.0436 (14)0.0189 (12)0.0148 (11)0.0007 (11)
C70.0274 (11)0.0447 (13)0.0487 (13)0.0103 (10)0.0098 (9)0.0027 (10)
C80.0339 (12)0.0466 (13)0.0491 (14)0.0096 (10)0.0080 (10)0.0016 (11)
C90.0288 (11)0.0477 (14)0.0547 (14)0.0092 (10)0.0071 (10)0.0089 (11)
C100.0354 (13)0.0437 (13)0.0681 (17)0.0129 (11)0.0125 (12)0.0020 (12)
C110.0335 (12)0.0459 (13)0.0584 (15)0.0044 (10)0.0117 (11)0.0081 (12)
C120.0311 (12)0.0501 (14)0.0495 (14)0.0098 (10)0.0057 (10)0.0004 (11)
N10.0489 (12)0.0557 (12)0.0430 (11)0.0264 (10)0.0104 (10)0.0028 (10)
O10.0390 (9)0.0673 (12)0.0570 (11)0.0153 (8)0.0199 (8)0.0081 (9)
O20.0475 (10)0.0473 (10)0.0518 (10)0.0135 (8)0.0059 (8)0.0004 (8)
Cl10.0509 (4)0.0957 (6)0.0500 (4)0.0160 (4)0.0187 (3)0.0163 (4)
Cl20.0511 (4)0.0808 (5)0.0728 (5)0.0128 (4)0.0116 (3)0.0131 (4)
Cl30.0566 (4)0.0687 (5)0.0631 (4)0.0273 (4)0.0004 (3)0.0123 (3)
Cl40.0673 (5)0.0699 (5)0.0748 (5)0.0190 (4)0.0071 (4)0.0263 (4)
S10.0344 (3)0.0473 (3)0.0433 (3)0.0139 (3)0.0101 (2)0.0040 (3)
Geometric parameters (Å, º) top
C1—C61.383 (3)C7—N11.424 (3)
C1—C21.402 (3)C8—C91.381 (3)
C1—S11.765 (2)C8—H80.9300
C2—C31.376 (3)C9—C101.378 (4)
C2—Cl11.731 (2)C9—Cl31.738 (2)
C3—C41.378 (4)C10—C111.381 (4)
C3—H30.9300C10—H100.9300
C4—C51.383 (4)C11—C121.383 (3)
C4—Cl21.731 (3)C11—Cl41.733 (3)
C5—C61.379 (4)C12—H120.9300
C5—H50.9300N1—S11.618 (2)
C6—H60.9300N1—H1N0.815 (16)
C7—C121.381 (3)O1—S11.4254 (17)
C7—C81.386 (3)O2—S11.4319 (18)
C6—C1—C2118.7 (2)C7—C8—H8120.7
C6—C1—S1118.24 (17)C10—C9—C8122.1 (2)
C2—C1—S1123.06 (18)C10—C9—Cl3119.25 (18)
C3—C2—C1120.3 (2)C8—C9—Cl3118.6 (2)
C3—C2—Cl1117.68 (17)C9—C10—C11117.6 (2)
C1—C2—Cl1121.97 (18)C9—C10—H10121.2
C2—C3—C4119.5 (2)C11—C10—H10121.2
C2—C3—H3120.3C10—C11—C12122.3 (2)
C4—C3—H3120.3C10—C11—Cl4119.07 (19)
C3—C4—C5121.6 (2)C12—C11—Cl4118.7 (2)
C3—C4—Cl2118.57 (19)C7—C12—C11118.5 (2)
C5—C4—Cl2119.9 (2)C7—C12—H12120.8
C6—C5—C4118.4 (2)C11—C12—H12120.8
C6—C5—H5120.8C7—N1—S1127.32 (17)
C4—C5—H5120.8C7—N1—H1N115 (2)
C5—C6—C1121.6 (2)S1—N1—H1N114 (2)
C5—C6—H6119.2O1—S1—O2119.41 (11)
C1—C6—H6119.2O1—S1—N1109.48 (10)
C12—C7—C8120.9 (2)O2—S1—N1105.64 (11)
C12—C7—N1122.7 (2)O1—S1—C1106.86 (11)
C8—C7—N1116.4 (2)O2—S1—C1108.24 (10)
C9—C8—C7118.7 (2)N1—S1—C1106.57 (11)
C9—C8—H8120.7
C6—C1—C2—C30.3 (3)Cl3—C9—C10—C11179.56 (18)
S1—C1—C2—C3177.25 (18)C9—C10—C11—C120.4 (4)
C6—C1—C2—Cl1178.67 (18)C9—C10—C11—Cl4179.96 (17)
S1—C1—C2—Cl13.7 (3)C8—C7—C12—C110.9 (3)
C1—C2—C3—C40.5 (4)N1—C7—C12—C11179.0 (2)
Cl1—C2—C3—C4178.53 (19)C10—C11—C12—C71.1 (4)
C2—C3—C4—C50.2 (4)Cl4—C11—C12—C7179.34 (17)
C2—C3—C4—Cl2179.58 (18)C12—C7—N1—S130.7 (3)
C3—C4—C5—C60.3 (4)C8—C7—N1—S1151.21 (19)
Cl2—C4—C5—C6179.1 (2)C7—N1—S1—O121.3 (3)
C4—C5—C6—C10.5 (4)C7—N1—S1—O2151.1 (2)
C2—C1—C6—C50.2 (4)C7—N1—S1—C193.9 (2)
S1—C1—C6—C5177.9 (2)C6—C1—S1—O10.0 (2)
C12—C7—C8—C90.1 (3)C2—C1—S1—O1177.56 (19)
N1—C7—C8—C9178.3 (2)C6—C1—S1—O2129.83 (19)
C7—C8—C9—C100.6 (4)C2—C1—S1—O247.8 (2)
C7—C8—C9—Cl3179.45 (17)C6—C1—S1—N1116.95 (19)
C8—C9—C10—C110.5 (4)C2—C1—S1—N165.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (2)2.07 (2)2.889 (3)177 (3)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H7Cl4NO2S
Mr371.05
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.075 (1), 9.479 (1), 10.103 (2)
α, β, γ (°)84.90 (2), 78.49 (1), 79.28 (1)
V3)743.46 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.48 × 0.44 × 0.32
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.663, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
4974, 3027, 2423
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.03
No. of reflections3027
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.815 (16)2.074 (17)2.889 (3)177 (3)
Symmetry code: (i) x, y+1, z+2.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS fellowship.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., D'Souza, J. D. & Kumar, B. H. A. (2003). Z. Naturforsch. Teil A, 58, 51–56.  CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A 55, 779–790.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 61, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds