organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3074-o3075

(E)-1-(Thio­phen-2-yl)-3-(2,4,6-tri­meth­­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 6 October 2011; accepted 17 October 2011; online 29 October 2011)

There are two crystallograpically independent mol­ecules in the asymmetric unit of the title heteroaryl chalcone derivative, C16H16O4S, with slightly different conformations. The thienyl ring of one mol­ecule is disordered over two positions, with a refined site-occupancy ratio of 0.713 (5):0.287 (5). The mol­ecules are twisted: the dihedral angle between the thienyl and benzene rings is 9.72 (19)° in the ordered mol­ecule, and 3.8 (4) and 2.1 (8)° for the major and minor components, respectively, in the disordered mol­ecule. In both mol­ecules, all three substituted meth­oxy groups are coplanar with the benzene ring to which they are attached. In each mol­ecule, a weak intra­molecular C—H⋯O inter­action generates an S(6) ring motif. In the crystal structure, adjacent mol­ecules are linked into a three-dimensional network by weak C—H⋯O inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893-o894.]); Fun et al. (2010[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559-o2560.], 2011[Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789-o2790.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575-o1576.]). For background to and applications of chalcones, see: Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Liu et al. (2008[Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681-1687.]); Ng et al. (2009[Ng, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem. 17, 4360-4366.]); Ni et al. (2004[Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669-1691.]); Suwunwong et al. (2011[Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap. 65, 890-897.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O4S

  • Mr = 304.36

  • Orthorhombic, P n a 21

  • a = 22.8482 (10) Å

  • b = 31.2117 (13) Å

  • c = 3.9876 (2) Å

  • V = 2843.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.60 × 0.06 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.869, Tmax = 0.988

  • 20029 measured reflections

  • 8085 independent reflections

  • 5348 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.178

  • S = 1.01

  • 8085 reflections

  • 402 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 3389 Friedel pairs

  • Flack parameter: 0.09 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2B⋯O3A 0.93 2.56 3.482 (10) 171
C6A—H6A⋯O4A 0.93 2.22 2.815 (4) 121
C6B—H6B⋯O4B 0.93 2.24 2.824 (4) 120
C15A—H15C⋯O1Bi 0.96 2.51 3.451 (5) 166
C15B—H15F⋯O1Aii 0.96 2.55 3.355 (5) 141
C16B—H16E⋯O3Biii 0.96 2.59 3.401 (4) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-1]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have been reported to be responsible for a variety of biological activities such as analgesic, anti-inflammatory, antibacterial and antimycotic (Go et al., 2005; Liu et al., 2008; Ni et al., 2004) as well as HIV-1 protease inhibitory (Tewtrakul et al., 2003) and tyrosinase inhibitory (Ng et al., 2009) properties. Our research on the fluorescent and biological studies of chalcones and heteroaryl chalcone derivatives (Chantrapromma et al., 2009; Suwunwong et al., 2009, 2011) led us to synthesize the title heteroaryl chalcone (I). (I) exhibits fluorescent property (Suwunwong et al., 2011) and possess moderate analgesic property. It was also tested for antibacterial activities but found to be inactive. Herein we report the crystal structure of (I).

There are two crystallographic independent molecules A and B in the asymmetric unit of (I) with different conformations of the methoxy group at para position or at atom C11 and also in bond angles (Fig. 1). The thienyl ring of molecule B is disordered over two orientations with the refined site-occupancy ratio of 0.713 (5):0.287 (5). The thienyl rings in the major and minor components are related by 180° rotation. The molecule of (I) is slightly twisted. The dihedral angle between the thienyl and benzene rings is 9.72 (19)° in molecule A whereas these values are 3.8 (4) and 2.1 (8)° for the major and minor components in the disordered molecule B. The central prop-2-en-1-one bridge (C5–C7/O1) in both molecules is slightly twisted as indicated by the torsion angle O1—C5—C6—C7 = 5.8 (6) and 6.6 (6)° in molecules A and B, respectively. The mean plane through this bridge makes dihedral angles of 8.9 (3) and 2.3 (2)° with the thienyl and benzene rings, respectively, in molecule A whereas the corresponding values are 4.2 (4) and 8.0 (3)° in molecule B for the major component, and 8.2 (8) and 8.0 (3)° for the minor component. In both molecules, all the three substituted methoxy groups are co-planar with the attached benzene with torsion angles C14—O2—C9—C10 = -5.3 (5)°; C15—O3—C11—C12 = 3.7 (5)° and C16—O4—C13—C12 = 0.3 (5)° in molecule A. The corresponding values are 0.6 (5), 178.0 (3) and 0.6 (5)° in molecule B. This also indicates that the methoxy group at the para position (or at atom C11) has different conformations as it points toward the methoxy group at the ortho position at atom C13 (in molecule A) whereas it points toward the ortho methoxy at atom C9 (in molecule B). In each molecule, intramolecular C—H···O weak interaction (Table 1) generates S(6) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987) and are comparable with those observed in related structures (Chantrapromma et al., 2009; Fun et al., 2010, 2011; Suwunwong et al., 2009).

In the crystal packing (Fig. 2), adjacent molecules are linked into a three-dimensional network by weak C—H···O interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Chantrapromma et al. (2009); Fun et al. (2010, 2011); Suwunwong et al. (2009). For background to and applications of chalcones, see: Go et al. (2005); Liu et al. (2008); Ng et al. (2009); Ni et al. (2004); Suwunwong et al. (2011); Tewtrakul et al. (2003). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the condensation of 2,4,6-trimethoxybenzaldehyde (0.40 g, 2 mmol) with 2-acethylthiophene (0.35 ml, 2 mmol) in ethanol (30 ml) in the presence of 30% NaOH (aq) (5 ml). After stirring for 3 h in ice bath at 278 K, the resulting pale-yellow solid was collected by filtration, washed with distilled water, dried in air and purified by recrystallization from acetone. Pale-yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone–ethanol (1:1 v/v) by slow evaporation of the solvent at room temperature after several days; m.p. 381–382 K.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and methyne C atoms and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl groups. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.65 Å from C3 and the deepest hole is located at 0.29 Å from S1A. The thienyl ring of molecule B is disordered over two sites with refined site occupancies of 0.713 (5) and 0.287 (5). Initially SAME, DELU and SIMU restraints were used. In the final refinement, these restraints were removed. A total of 3389 Friedel pairs were used to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Open bonds show the minor component of the disordered thienyl ring.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Only the major component of disorder is shown. Weak C—H···O interactions are shown as dashed lines.
(E)-1-(Thiophen-2-yl)-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O4SDx = 1.422 Mg m3
Mr = 304.36Melting point = 381–382 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8085 reflections
a = 22.8482 (10) Åθ = 1.3–30.0°
b = 31.2117 (13) ŵ = 0.24 mm1
c = 3.9876 (2) ÅT = 100 K
V = 2843.7 (2) Å3Needle, pale yellow
Z = 80.60 × 0.06 × 0.05 mm
F(000) = 1280
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8085 independent reflections
Radiation source: sealed tube5348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 30.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2732
Tmin = 0.869, Tmax = 0.988k = 4340
20029 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0951P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8085 reflectionsΔρmax = 1.08 e Å3
402 parametersΔρmin = 0.56 e Å3
1 restraintAbsolute structure: Flack (1983), with 3389 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (11)
Crystal data top
C16H16O4SV = 2843.7 (2) Å3
Mr = 304.36Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 22.8482 (10) ŵ = 0.24 mm1
b = 31.2117 (13) ÅT = 100 K
c = 3.9876 (2) Å0.60 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5348 reflections with I > 2σ(I)
Tmin = 0.869, Tmax = 0.988Rint = 0.065
20029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.178Δρmax = 1.08 e Å3
S = 1.01Δρmin = 0.56 e Å3
8085 reflectionsAbsolute structure: Flack (1983), with 3389 Friedel pairs
402 parametersAbsolute structure parameter: 0.09 (11)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.13970 (4)0.41398 (3)1.0329 (3)0.0270 (2)
O1A0.21057 (10)0.48128 (7)0.7262 (8)0.0228 (6)
O2A0.27887 (11)0.61480 (7)0.4202 (7)0.0213 (6)
O3A0.19621 (10)0.75129 (7)0.6341 (7)0.0206 (6)
O4A0.09780 (10)0.62191 (7)0.9862 (7)0.0211 (6)
C1A0.07345 (15)0.40255 (11)1.2033 (10)0.0217 (8)
H1A0.06220.37521.26840.026*
C2A0.03841 (16)0.43786 (10)1.2349 (11)0.0241 (8)
H2A0.00050.43671.31980.029*
C3A0.06544 (15)0.47698 (12)1.1249 (10)0.0236 (8)
H3A0.04830.50401.13120.028*
C4A0.12232 (15)0.46779 (10)1.0057 (10)0.0192 (7)
C5A0.16654 (15)0.49669 (10)0.8497 (10)0.0198 (7)
C6A0.15415 (15)0.54312 (10)0.8687 (10)0.0209 (8)
H6A0.12140.55290.98410.025*
C7A0.19013 (15)0.57103 (10)0.7198 (10)0.0187 (7)
H7A0.22130.55870.60510.022*
C8A0.18848 (15)0.61784 (10)0.7077 (10)0.0166 (7)
C9A0.23464 (15)0.64009 (10)0.5441 (10)0.0175 (7)
C10A0.23602 (15)0.68428 (10)0.5233 (10)0.0177 (7)
H10A0.26690.69800.41620.021*
C11A0.19052 (15)0.70813 (10)0.6647 (10)0.0170 (7)
C12A0.14394 (15)0.68798 (10)0.8199 (10)0.0190 (7)
H12A0.11350.70400.91080.023*
C13A0.14324 (14)0.64351 (10)0.8385 (10)0.0185 (7)
C14A0.32476 (14)0.63633 (10)0.2398 (10)0.0190 (7)
H14A0.35110.61550.14700.029*
H14B0.34580.65480.39000.029*
H14C0.30800.65310.06190.029*
C15A0.15164 (15)0.77720 (10)0.7938 (11)0.0208 (8)
H15A0.16020.80700.75840.031*
H15B0.15110.77131.03000.031*
H15C0.11410.77050.69890.031*
C16A0.05059 (16)0.64661 (11)1.1205 (11)0.0232 (8)
H16A0.02210.62781.21820.035*
H16B0.03270.66290.94410.035*
H16C0.06530.66571.28920.035*
S1B0.42377 (10)0.79935 (8)1.2577 (7)0.0198 (5)0.713 (5)
O1B0.52996 (11)0.74766 (7)1.3193 (8)0.0283 (7)
O2B0.65708 (9)0.63419 (7)1.2581 (7)0.0199 (6)
O3B0.62447 (10)0.49871 (7)0.7051 (7)0.0192 (5)
O4B0.47249 (10)0.60034 (7)0.8092 (7)0.0194 (5)
C1B0.3535 (4)0.8012 (3)1.105 (2)0.0191 (18)0.713 (5)
H1B0.32900.82481.12520.023*0.713 (5)
C2B0.3376 (4)0.7629 (3)0.947 (3)0.027 (2)0.713 (5)
H2B0.30180.75780.84330.032*0.713 (5)
C3B0.3838 (5)0.7331 (4)0.968 (3)0.032 (3)0.713 (5)
H3B0.38040.70500.89230.038*0.713 (5)
S1X0.3779 (3)0.7288 (2)0.9029 (17)0.0168 (13)*0.287 (5)
C1X0.3356 (11)0.7722 (7)0.978 (7)0.013 (5)*0.287 (5)
H1BX0.29770.77530.89640.015*0.287 (5)
C2X0.3631 (11)0.8023 (9)1.170 (6)0.018 (6)*0.287 (5)
H2BX0.34510.82681.25520.022*0.287 (5)
C3X0.4244 (12)0.7909 (7)1.225 (7)0.014 (6)*0.287 (5)
H3BX0.45240.80861.32250.017*0.287 (5)
C4B0.43447 (15)0.74896 (10)1.1089 (10)0.0189 (7)
C5B0.49125 (15)0.72746 (10)1.1768 (10)0.0195 (8)
C6B0.49764 (15)0.68308 (10)1.0567 (11)0.0213 (8)
H6B0.46820.67040.93010.026*
C7B0.54678 (15)0.66094 (10)1.1323 (10)0.0200 (8)
H7B0.57310.67541.26980.024*
C8B0.56499 (15)0.61804 (9)1.0324 (10)0.0175 (7)
C9B0.62300 (16)0.60488 (10)1.0981 (10)0.0188 (7)
C10B0.64515 (15)0.56527 (10)0.9991 (11)0.0192 (7)
H10B0.68360.55751.04650.023*
C11B0.60766 (15)0.53768 (10)0.8260 (10)0.0182 (7)
C12B0.54957 (14)0.54812 (10)0.7577 (10)0.0176 (7)
H12B0.52530.52910.64460.021*
C13B0.52869 (15)0.58828 (11)0.8645 (10)0.0184 (7)
C14B0.71693 (15)0.62351 (11)1.3201 (11)0.0239 (8)
H14D0.73620.64741.42460.036*
H14E0.73600.61691.11170.036*
H14F0.71880.59911.46570.036*
C15B0.68437 (15)0.48626 (11)0.7563 (12)0.0270 (9)
H15D0.69160.45960.64430.040*
H15E0.69170.48300.99200.040*
H15F0.70980.50790.66690.040*
C16B0.43513 (15)0.57035 (11)0.6405 (10)0.0209 (8)
H16D0.39610.58170.62970.031*
H16E0.43480.54380.76150.031*
H16F0.44950.56550.41740.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0279 (5)0.0170 (4)0.0359 (6)0.0005 (4)0.0025 (5)0.0010 (4)
O1A0.0172 (11)0.0159 (11)0.0354 (17)0.0015 (9)0.0028 (12)0.0011 (11)
O2A0.0188 (12)0.0160 (11)0.0290 (15)0.0019 (9)0.0044 (11)0.0041 (10)
O3A0.0194 (12)0.0099 (10)0.0326 (16)0.0006 (9)0.0018 (11)0.0029 (10)
O4A0.0174 (12)0.0135 (11)0.0324 (16)0.0022 (9)0.0064 (12)0.0005 (11)
C1A0.0233 (17)0.0186 (16)0.023 (2)0.0046 (14)0.0012 (16)0.0030 (14)
C2A0.0229 (17)0.0171 (16)0.032 (2)0.0014 (13)0.0067 (18)0.0011 (16)
C3A0.0213 (18)0.0237 (17)0.026 (2)0.0096 (14)0.0046 (16)0.0041 (15)
C4A0.0231 (17)0.0125 (14)0.0219 (19)0.0005 (12)0.0008 (16)0.0015 (14)
C5A0.0195 (17)0.0135 (15)0.026 (2)0.0001 (12)0.0029 (16)0.0021 (14)
C6A0.0208 (17)0.0131 (15)0.029 (2)0.0009 (12)0.0005 (16)0.0023 (14)
C7A0.0206 (16)0.0141 (14)0.0214 (19)0.0022 (12)0.0010 (15)0.0019 (15)
C8A0.0159 (15)0.0132 (14)0.0207 (19)0.0015 (12)0.0011 (14)0.0012 (13)
C9A0.0201 (16)0.0141 (14)0.0181 (18)0.0018 (12)0.0025 (15)0.0027 (14)
C10A0.0186 (16)0.0145 (14)0.0199 (18)0.0024 (12)0.0009 (15)0.0019 (14)
C11A0.0148 (15)0.0098 (14)0.026 (2)0.0010 (12)0.0032 (14)0.0013 (13)
C12A0.0163 (15)0.0144 (15)0.026 (2)0.0043 (12)0.0027 (15)0.0001 (14)
C13A0.0123 (15)0.0177 (15)0.026 (2)0.0050 (12)0.0013 (14)0.0003 (14)
C14A0.0170 (16)0.0170 (15)0.023 (2)0.0005 (12)0.0005 (16)0.0023 (15)
C15A0.0229 (17)0.0099 (14)0.030 (2)0.0017 (12)0.0045 (16)0.0019 (15)
C16A0.0217 (18)0.0180 (16)0.030 (2)0.0017 (13)0.0027 (16)0.0041 (15)
S1B0.0189 (8)0.0084 (8)0.0322 (10)0.0019 (7)0.0018 (7)0.0026 (8)
O1B0.0207 (12)0.0134 (11)0.051 (2)0.0005 (9)0.0075 (14)0.0025 (12)
O2B0.0140 (11)0.0120 (10)0.0339 (16)0.0022 (8)0.0061 (12)0.0020 (11)
O3B0.0193 (12)0.0106 (10)0.0276 (15)0.0017 (8)0.0013 (11)0.0009 (10)
O4B0.0166 (11)0.0112 (10)0.0304 (16)0.0005 (8)0.0018 (11)0.0001 (10)
C1B0.016 (4)0.020 (3)0.022 (5)0.005 (2)0.004 (3)0.005 (3)
C2B0.027 (4)0.020 (4)0.033 (5)0.004 (3)0.003 (3)0.008 (4)
C3B0.044 (5)0.021 (4)0.031 (6)0.004 (3)0.007 (4)0.001 (4)
C4B0.0195 (17)0.0149 (15)0.022 (2)0.0038 (13)0.0001 (15)0.0014 (14)
C5B0.0176 (16)0.0120 (15)0.029 (2)0.0003 (13)0.0051 (15)0.0019 (13)
C6B0.0210 (17)0.0118 (14)0.031 (2)0.0005 (12)0.0013 (17)0.0014 (16)
C7B0.0179 (16)0.0152 (15)0.027 (2)0.0043 (13)0.0013 (15)0.0005 (14)
C8B0.0196 (16)0.0113 (13)0.0215 (18)0.0004 (12)0.0031 (15)0.0009 (14)
C9B0.0216 (17)0.0143 (15)0.020 (2)0.0038 (13)0.0010 (15)0.0039 (13)
C10B0.0184 (16)0.0136 (15)0.026 (2)0.0001 (12)0.0005 (16)0.0022 (15)
C11B0.0218 (17)0.0103 (14)0.022 (2)0.0003 (12)0.0023 (15)0.0003 (13)
C12B0.0196 (15)0.0103 (13)0.0229 (19)0.0015 (12)0.0013 (16)0.0023 (14)
C13B0.0198 (17)0.0169 (15)0.0184 (18)0.0013 (13)0.0021 (15)0.0001 (14)
C14B0.0178 (16)0.0197 (16)0.034 (2)0.0041 (13)0.0060 (17)0.0000 (16)
C15B0.0227 (18)0.0125 (15)0.046 (3)0.0051 (13)0.0004 (19)0.0013 (18)
C16B0.0190 (17)0.0185 (16)0.025 (2)0.0040 (13)0.0026 (15)0.0000 (14)
Geometric parameters (Å, º) top
S1A—C1A1.697 (4)O2B—C14B1.429 (4)
S1A—C4A1.729 (3)O3B—C11B1.364 (4)
O1A—C5A1.219 (4)O3B—C15B1.437 (4)
O2A—C9A1.374 (4)O4B—C13B1.356 (4)
O2A—C14A1.438 (4)O4B—C16B1.434 (4)
O3A—C11A1.359 (4)C1B—C2B1.399 (13)
O3A—C15A1.448 (4)C1B—H1B0.9300
O4A—C13A1.371 (4)C2B—C3B1.408 (15)
O4A—C16A1.430 (4)C2B—H2B0.9300
C1A—C2A1.368 (5)C3B—C4B1.380 (12)
C1A—H1A0.9300C3B—H3B0.9300
C2A—C3A1.437 (5)S1X—C4B1.657 (7)
C2A—H2A0.9300S1X—C1X1.69 (2)
C3A—C4A1.413 (5)C1X—C2X1.37 (3)
C3A—H3A0.9300C1X—H1BX0.9300
C4A—C5A1.491 (5)C2X—C3X1.46 (3)
C5A—C6A1.478 (4)C2X—H2BX0.9300
C6A—C7A1.337 (5)C3X—C4B1.41 (2)
C6A—H6A0.9300C3X—H3BX0.9300
C7A—C8A1.462 (4)C4B—C5B1.485 (5)
C7A—H7A0.9300C5B—C6B1.473 (5)
C8A—C13A1.408 (5)C6B—C7B1.353 (5)
C8A—C9A1.421 (5)C6B—H6B0.9300
C9A—C10A1.382 (4)C7B—C8B1.458 (4)
C10A—C11A1.397 (5)C7B—H7B0.9300
C10A—H10A0.9300C8B—C9B1.412 (5)
C11A—C12A1.383 (5)C8B—C13B1.414 (5)
C12A—C13A1.390 (4)C9B—C10B1.393 (5)
C12A—H12A0.9300C10B—C11B1.397 (5)
C14A—H14A0.9600C10B—H10B0.9300
C14A—H14B0.9600C11B—C12B1.394 (5)
C14A—H14C0.9600C12B—C13B1.407 (5)
C15A—H15A0.9600C12B—H12B0.9300
C15A—H15B0.9600C14B—H14D0.9600
C15A—H15C0.9600C14B—H14E0.9600
C16A—H16A0.9600C14B—H14F0.9600
C16A—H16B0.9600C15B—H15D0.9600
C16A—H16C0.9600C15B—H15E0.9600
S1B—C4B1.699 (4)C15B—H15F0.9600
S1B—C1B1.717 (10)C16B—H16D0.9600
O1B—C5B1.226 (4)C16B—H16E0.9600
O2B—C9B1.360 (4)C16B—H16F0.9600
C1A—S1A—C4A91.40 (17)C1B—C2B—H2B125.0
C9A—O2A—C14A116.6 (3)C3B—C2B—H2B125.0
C11A—O3A—C15A116.5 (3)C4B—C3B—C2B114.6 (9)
C13A—O4A—C16A117.8 (3)C4B—C3B—H3B122.7
C2A—C1A—S1A112.9 (3)C2B—C3B—H3B122.7
C2A—C1A—H1A123.5C4B—S1X—C1X93.0 (9)
S1A—C1A—H1A123.5C2X—C1X—S1X113 (2)
C1A—C2A—C3A113.9 (3)C2X—C1X—H1BX123.6
C1A—C2A—H2A123.1S1X—C1X—H1BX123.6
C3A—C2A—H2A123.1C1X—C2X—C3X111 (2)
C4A—C3A—C2A109.0 (3)C1X—C2X—H2BX124.6
C4A—C3A—H3A125.5C3X—C2X—H2BX124.6
C2A—C3A—H3A125.5C4B—C3X—C2X110 (2)
C3A—C4A—C5A129.9 (3)C4B—C3X—H3BX125.2
C3A—C4A—S1A112.8 (3)C2X—C3X—H3BX125.2
C5A—C4A—S1A117.3 (3)C3B—C4B—C3X109.3 (12)
O1A—C5A—C6A124.4 (3)C3B—C4B—C5B130.2 (6)
O1A—C5A—C4A119.3 (3)C3X—C4B—C5B120.2 (12)
C6A—C5A—C4A116.2 (3)C3X—C4B—S1X112.9 (12)
C7A—C6A—C5A119.9 (3)C5B—C4B—S1X126.9 (4)
C7A—C6A—H6A120.1C3B—C4B—S1B110.7 (5)
C5A—C6A—H6A120.1C5B—C4B—S1B118.7 (3)
C6A—C7A—C8A130.5 (3)S1X—C4B—S1B114.4 (3)
C6A—C7A—H7A114.7O1B—C5B—C6B124.3 (3)
C8A—C7A—H7A114.7O1B—C5B—C4B118.8 (3)
C13A—C8A—C9A115.9 (3)C6B—C5B—C4B116.9 (3)
C13A—C8A—C7A125.1 (3)C7B—C6B—C5B119.4 (3)
C9A—C8A—C7A119.0 (3)C7B—C6B—H6B120.3
O2A—C9A—C10A122.3 (3)C5B—C6B—H6B120.3
O2A—C9A—C8A115.5 (3)C6B—C7B—C8B130.2 (3)
C10A—C9A—C8A122.1 (3)C6B—C7B—H7B114.9
C9A—C10A—C11A119.4 (3)C8B—C7B—H7B114.9
C9A—C10A—H10A120.3C9B—C8B—C13B116.6 (3)
C11A—C10A—H10A120.3C9B—C8B—C7B119.0 (3)
O3A—C11A—C12A124.4 (3)C13B—C8B—C7B124.4 (3)
O3A—C11A—C10A114.9 (3)O2B—C9B—C10B121.5 (3)
C12A—C11A—C10A120.7 (3)O2B—C9B—C8B115.4 (3)
C11A—C12A—C13A119.1 (3)C10B—C9B—C8B123.1 (3)
C11A—C12A—H12A120.4C9B—C10B—C11B117.7 (3)
C13A—C12A—H12A120.4C9B—C10B—H10B121.2
O4A—C13A—C12A121.5 (3)C11B—C10B—H10B121.2
O4A—C13A—C8A115.8 (3)O3B—C11B—C12B114.1 (3)
C12A—C13A—C8A122.7 (3)O3B—C11B—C10B123.5 (3)
O2A—C14A—H14A109.5C12B—C11B—C10B122.4 (3)
O2A—C14A—H14B109.5C11B—C12B—C13B118.2 (3)
H14A—C14A—H14B109.5C11B—C12B—H12B120.9
O2A—C14A—H14C109.5C13B—C12B—H12B120.9
H14A—C14A—H14C109.5O4B—C13B—C12B121.3 (3)
H14B—C14A—H14C109.5O4B—C13B—C8B116.7 (3)
O3A—C15A—H15A109.5C12B—C13B—C8B122.0 (3)
O3A—C15A—H15B109.5O2B—C14B—H14D109.5
H15A—C15A—H15B109.5O2B—C14B—H14E109.5
O3A—C15A—H15C109.5H14D—C14B—H14E109.5
H15A—C15A—H15C109.5O2B—C14B—H14F109.5
H15B—C15A—H15C109.5H14D—C14B—H14F109.5
O4A—C16A—H16A109.5H14E—C14B—H14F109.5
O4A—C16A—H16B109.5O3B—C15B—H15D109.5
H16A—C16A—H16B109.5O3B—C15B—H15E109.5
O4A—C16A—H16C109.5H15D—C15B—H15E109.5
H16A—C16A—H16C109.5O3B—C15B—H15F109.5
H16B—C16A—H16C109.5H15D—C15B—H15F109.5
C4B—S1B—C1B92.4 (4)H15E—C15B—H15F109.5
C9B—O2B—C14B118.2 (3)O4B—C16B—H16D109.5
C11B—O3B—C15B117.3 (3)O4B—C16B—H16E109.5
C13B—O4B—C16B117.3 (3)H16D—C16B—H16E109.5
C2B—C1B—S1B112.0 (7)O4B—C16B—H16F109.5
C2B—C1B—H1B124.0H16D—C16B—H16F109.5
S1B—C1B—H1B124.0H16E—C16B—H16F109.5
C1B—C2B—C3B110.0 (10)
C4A—S1A—C1A—C2A1.0 (3)C2B—C3B—C4B—S1B6.2 (11)
S1A—C1A—C2A—C3A1.3 (5)C2X—C3X—C4B—C3B3 (2)
C1A—C2A—C3A—C4A0.9 (5)C2X—C3X—C4B—C5B171.8 (15)
C2A—C3A—C4A—C5A176.5 (4)C2X—C3X—C4B—S1X8 (2)
C2A—C3A—C4A—S1A0.2 (5)C1X—S1X—C4B—C3B51 (7)
C1A—S1A—C4A—C3A0.5 (3)C1X—S1X—C4B—C3X3.7 (16)
C1A—S1A—C4A—C5A177.6 (3)C1X—S1X—C4B—C5B176.0 (10)
C3A—C4A—C5A—O1A171.1 (4)C1X—S1X—C4B—S1B3.0 (10)
S1A—C4A—C5A—O1A5.4 (5)C1B—S1B—C4B—C3B4.2 (7)
C3A—C4A—C5A—C6A11.1 (6)C1B—S1B—C4B—C5B178.0 (4)
S1A—C4A—C5A—C6A172.3 (3)C1B—S1B—C4B—S1X1.1 (5)
O1A—C5A—C6A—C7A5.8 (6)C3B—C4B—C5B—O1B176.9 (7)
C4A—C5A—C6A—C7A176.6 (4)C3X—C4B—C5B—O1B3.9 (14)
C5A—C6A—C7A—C8A178.5 (4)S1X—C4B—C5B—O1B176.4 (5)
C6A—C7A—C8A—C13A5.4 (7)S1B—C4B—C5B—O1B4.6 (5)
C6A—C7A—C8A—C9A176.6 (4)C3B—C4B—C5B—C6B4.9 (9)
C14A—O2A—C9A—C10A5.3 (5)C3X—C4B—C5B—C6B177.9 (13)
C14A—O2A—C9A—C8A177.2 (3)S1X—C4B—C5B—C6B1.7 (6)
C13A—C8A—C9A—O2A179.4 (3)S1B—C4B—C5B—C6B177.3 (3)
C7A—C8A—C9A—O2A2.4 (5)O1B—C5B—C6B—C7B6.6 (6)
C13A—C8A—C9A—C10A1.9 (5)C4B—C5B—C6B—C7B175.3 (4)
C7A—C8A—C9A—C10A179.9 (4)C5B—C6B—C7B—C8B176.7 (4)
O2A—C9A—C10A—C11A177.8 (4)C6B—C7B—C8B—C9B169.3 (4)
C8A—C9A—C10A—C11A0.5 (6)C6B—C7B—C8B—C13B9.2 (7)
C15A—O3A—C11A—C12A3.7 (5)C14B—O2B—C9B—C10B0.6 (5)
C15A—O3A—C11A—C10A176.6 (3)C14B—O2B—C9B—C8B177.6 (3)
C9A—C10A—C11A—O3A179.4 (3)C13B—C8B—C9B—O2B179.6 (3)
C9A—C10A—C11A—C12A1.0 (6)C7B—C8B—C9B—O2B1.0 (5)
O3A—C11A—C12A—C13A179.4 (3)C13B—C8B—C9B—C10B1.5 (6)
C10A—C11A—C12A—C13A1.0 (6)C7B—C8B—C9B—C10B177.1 (4)
C16A—O4A—C13A—C12A0.3 (5)O2B—C9B—C10B—C11B177.9 (3)
C16A—O4A—C13A—C8A179.5 (3)C8B—C9B—C10B—C11B0.2 (6)
C11A—C12A—C13A—O4A179.2 (4)C15B—O3B—C11B—C12B178.0 (3)
C11A—C12A—C13A—C8A0.6 (6)C15B—O3B—C11B—C10B1.0 (5)
C9A—C8A—C13A—O4A177.9 (3)C9B—C10B—C11B—O3B177.6 (3)
C7A—C8A—C13A—O4A0.2 (6)C9B—C10B—C11B—C12B1.4 (6)
C9A—C8A—C13A—C12A1.9 (5)O3B—C11B—C12B—C13B178.2 (3)
C7A—C8A—C13A—C12A180.0 (4)C10B—C11B—C12B—C13B0.9 (6)
C4B—S1B—C1B—C2B1.4 (8)C16B—O4B—C13B—C12B0.6 (5)
S1B—C1B—C2B—C3B1.8 (12)C16B—O4B—C13B—C8B179.7 (3)
C1B—C2B—C3B—C4B5.1 (14)C11B—C12B—C13B—O4B179.4 (3)
C4B—S1X—C1X—C2X2 (2)C11B—C12B—C13B—C8B0.9 (6)
S1X—C1X—C2X—C3X7 (3)C9B—C8B—C13B—O4B178.2 (3)
C1X—C2X—C3X—C4B9 (3)C7B—C8B—C13B—O4B3.2 (6)
C2B—C3B—C4B—C3X5.4 (16)C9B—C8B—C13B—C12B2.1 (6)
C2B—C3B—C4B—C5B179.0 (7)C7B—C8B—C13B—C12B176.5 (4)
C2B—C3B—C4B—S1X121 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···O3A0.932.563.482 (10)171
C6A—H6A···O4A0.932.222.815 (4)121
C6B—H6B···O4B0.932.242.824 (4)120
C15A—H15C···O1Bi0.962.513.451 (5)166
C15B—H15F···O1Aii0.962.553.355 (5)141
C16B—H16E···O3Biii0.962.593.401 (4)142
Symmetry codes: (i) x1/2, y+3/2, z1; (ii) x+1, y+1, z1/2; (iii) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16O4S
Mr304.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)22.8482 (10), 31.2117 (13), 3.9876 (2)
V3)2843.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.60 × 0.06 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.869, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20029, 8085, 5348
Rint0.065
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.178, 1.01
No. of reflections8085
No. of parameters402
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.56
Absolute structureFlack (1983), with 3389 Friedel pairs
Absolute structure parameter0.09 (11)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···O3A0.932.563.482 (10)171
C6A—H6A···O4A0.932.222.815 (4)121
C6B—H6B···O4B0.932.242.824 (4)120
C15A—H15C···O1Bi0.962.513.451 (5)166
C15B—H15F···O1Aii0.962.553.355 (5)141
C16B—H16E···O3Biii0.962.593.401 (4)142
Symmetry codes: (i) x1/2, y+3/2, z1; (ii) x+1, y+1, z1/2; (iii) x+1, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, email: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for a research grant (No. RSA 5280033) and Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for a Research University grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Suwunwong, T., Karalai, C. & Fun, H.-K. (2009). Acta Cryst. E65, o893–o894.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010). Acta Cryst. E66, o2559–o2560.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationLiu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681–1687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, L.-T., Ko, H.-H. & Lu, T.-M. (2009). Bioorg. Med. Chem. 17, 4360–4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNi, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669–1691.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Chem. Pap. 65, 890–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o1575–o1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3074-o3075
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds