metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­chloro­benz­yl)pyridinium bis­­(2-sulfanyl­­idene-1,3-di­thiole-4,5-di­thiol­ato-κ2S,S′)nickelate(III)

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China
*Correspondence e-mail: njuliugx@gmail.com

(Received 8 October 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, (C12H10Cl2N)[Ni(C3S5)2], is an ion-pair complex consisting of 1-(3,4-dichloro­benz­yl)pyridinium cations and [Ni(dmit)2] anions (dmit = 2-sulfanyl­idene-1,3-dithiole-4,5-dithiol­ate). In the anion, the NiIII ion exhibits a square-planar coordination involving four S atoms from two dmit ligands. In the crystal, weak S⋯S [3.368 (2) and 3.482 (3) Å], Ni⋯S [3.680 (2) Å] and Cl⋯S [3.491 (2) Å] inter­actions and C—H⋯S hydrogen bonds lead to a three-dimensional supra­molecular network.

Related literature

For general background to the network topologies and applications of bis­(dithiol­ate)–metal complexes, see: Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000[Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297-311.]); Liu et al. (2010[Liu, G.-X., Yang, H., Guo, W., Liu, Y., Huang, R.-Y., Nishihara, S. & Ren, X.-M. (2010). Polyhedron, 29, 2916-2923.]); Li et al. (2006[Li, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990-m1991.]); Zang et al. (2006[Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004-m1005.], 2009[Zang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem. 48, 9623-9630.]). For the synthesis of a starting material, see: Wang et al. (1998[Wang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H10Cl2N)[Ni(C3S5)2]

  • Mr = 690.48

  • Triclinic, [P \overline 1]

  • a = 9.3711 (11) Å

  • b = 11.7210 (14) Å

  • c = 11.9640 (14) Å

  • α = 82.814 (1)°

  • β = 88.854 (1)°

  • γ = 76.644 (1)°

  • V = 1268.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.761

  • 9520 measured reflections

  • 4692 independent reflections

  • 4083 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.04

  • 4692 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S10i 0.93 2.82 3.622 (3) 145
C18—H18⋯S1ii 0.93 2.79 3.708 (3) 168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Extensive research has been focused on the synthesis and characterization of bis(dithiolate)-metal complexes and their analogues, due to their properties and potential applications as conducting, magnetic and non-linear optical (NLO) materials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complexes are in fact excellent building blocks employed for the construction of molecular magnetic materials (Li et al., 2006; Liu et al., 2010; Zang et al., 2006, 2009) apart from their well known electric conductivity as molecular conductors (Akutagawa & Nakamura, 2000). Herein the crystal structure of the title compound, a new ion-pair complex, is reported.

The title compound comprises [Ni(dmit)2]- anions and 1-(3,4-dichlorobenzyl)pyridinium cations (Fig. 1). The Ni ion adopts a square-planar geometry coordinated by four S atoms from two dmit ligands, with Ni—S bond lengths ranging from 2.1518 (7) to 2.1714 (7) Å. The [Ni(dmit)2]- anions are in a parallel arrangement, with S···S interactions ranging from 3.474 (3) to 3.547 (3) Å. Two neighbouring anions are parallel in a face-to-face fashion with the shortest Ni···S distance of 3.680 (2) Å (Ni1—S2i) [symmetry code: (i) -x, -y, -z], indicating the existence of the Ni···S interactions. Adjacent [Ni(dmit)2]- anions are associated together through such Ni···S interactions resulting in a dimer. The dimers are linked together through S9···S3ii and S9···S5ii [symmetry code: (ii) x, 1 + y, z] interactions forming a one-dimensional chain structure, as depicted in Fig. 2. The (C12H10Cl2N)+ cation has a Λ-shaped conformation, and the dihedral angles formed by the C12/C13/N1 plane with the benzene and pyridinium rings are 85.29 (2) and 77.84 (2)°, respectively. Cations and the anions are linked by S···Cl interactions and C—H···S hydrogen bonds to generate a three-dimensional supramolecular structure (Fig. 3).

Related literature top

For general background to the network topologies and applications of bis(dithiolate)–metal complexes, see: Cassoux (1999). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000); Liu et al. (2010); Li et al. (2006); Zang et al. (2006, 2009). For the synthesis of a starting material, see: Wang et al. (1998).

Experimental top

4,5-Di(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2 mmol; Wang et al., 1998) was suspended in methanol (10 ml). Sodium methoxide in methanol (prepared form 184 mg of sodium in 10 ml of methanol) was added to the above mixture under argon atmosphere at room temperature from 30 min to give a dark red solution. To this solution, NiCl~2~.6H~2Õ (238 mg, 1 mmol) was added. After 30 min, a solution of I~2~ (127 mg, 1 mmol) and NaI (150 mg, 1 mmol) in methanol (20 ml) was added (the monoanionic [Ni(dmit)~2~]^-^ are obtained from the dianionic [Ni(dmit)~2~]^2-^ by I~3~^-^ oxidation). After another 10 min, a solution of 1-(3,4-dichlorobenzyl)pyridinium bromide [(DiClPy)Br] (317 mg, 1 mmol) in methanol (20 ml) was added to the reaction mixture. The solution was stirred for 30 min and cooled in a refrigerator overnight. The resultant dark green crystalline solid was collected by filtration, and purified by recrystallization using a mixed solution of acetonitrile and benzene (1:1 v/v).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The cation and anion in [DiClPy][Ni(dmit)~2~], showing thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The one-dimensional chain structure of [Ni(dmit)~2~]- anions through S···S and Ni···S contacts. Dashed lines indicate weak interactions.
[Figure 3] Fig. 3. Packing of [DiClPy][Ni(dmit)~2~] viewed along the b axis.
1-(3,4-Dichlorobenzyl)pyridinium bis(2-sulfanylidene-1,3-dithiole-4,5-dithiolato- κ2S,S')nickelate(III) top
Crystal data top
(C12H10Cl2N)[Ni(C3S5)2]Z = 2
Mr = 690.48F(000) = 694
Triclinic, P1Dx = 1.808 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3711 (11) ÅCell parameters from 5426 reflections
b = 11.7210 (14) Åθ = 2.2–27.4°
c = 11.9640 (14) ŵ = 1.81 mm1
α = 82.814 (1)°T = 293 K
β = 88.854 (1)°Block, black
γ = 76.644 (1)°0.22 × 0.20 × 0.16 mm
V = 1268.5 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4692 independent reflections
Radiation source: sealed tube4083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.692, Tmax = 0.761k = 1414
9520 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.037P)2 + 0.5172P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4692 reflectionsΔρmax = 0.38 e Å3
290 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (8)
Crystal data top
(C12H10Cl2N)[Ni(C3S5)2]γ = 76.644 (1)°
Mr = 690.48V = 1268.5 (3) Å3
Triclinic, P1Z = 2
a = 9.3711 (11) ÅMo Kα radiation
b = 11.7210 (14) ŵ = 1.81 mm1
c = 11.9640 (14) ÅT = 293 K
α = 82.814 (1)°0.22 × 0.20 × 0.16 mm
β = 88.854 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4692 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4083 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.761Rint = 0.028
9520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4692 reflectionsΔρmin = 0.34 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.17029 (3)0.03411 (2)0.11584 (2)0.03211 (11)
S10.32210 (7)0.05513 (5)0.00222 (5)0.03971 (16)
S20.05550 (7)0.10606 (5)0.14274 (5)0.04056 (16)
S30.09306 (7)0.33353 (5)0.04221 (5)0.03969 (16)
S40.34360 (8)0.29296 (6)0.08879 (6)0.04871 (18)
S50.24451 (11)0.51768 (7)0.09332 (7)0.0698 (3)
S60.28357 (7)0.17691 (5)0.09083 (6)0.03971 (16)
S70.01554 (7)0.11932 (5)0.23353 (6)0.04310 (17)
S80.00090 (8)0.34602 (6)0.33578 (6)0.04481 (17)
S90.23172 (7)0.40488 (5)0.19675 (6)0.03994 (16)
S100.09387 (8)0.56899 (6)0.35872 (6)0.04947 (19)
C10.2605 (3)0.1815 (2)0.00797 (19)0.0345 (5)
C20.1445 (3)0.20223 (19)0.05421 (19)0.0325 (5)
C30.2283 (3)0.3877 (2)0.0501 (2)0.0436 (6)
C40.1888 (3)0.27107 (19)0.1800 (2)0.0333 (5)
C50.0760 (3)0.2457 (2)0.2430 (2)0.0355 (5)
C60.1081 (3)0.4452 (2)0.3007 (2)0.0363 (5)
C70.6079 (3)0.9937 (2)0.3192 (2)0.0501 (7)
H70.53231.00620.26670.060*
C80.6073 (3)1.0755 (2)0.3933 (2)0.0485 (6)
C90.7202 (3)1.0565 (2)0.4706 (2)0.0498 (7)
C100.8302 (3)0.9562 (3)0.4754 (3)0.0578 (8)
H100.90470.94260.52900.069*
C110.8304 (3)0.8754 (2)0.4010 (2)0.0512 (7)
H110.90620.80800.40360.061*
C120.7197 (3)0.8940 (2)0.3231 (2)0.0445 (6)
C130.7260 (4)0.8061 (3)0.2393 (2)0.0553 (8)
H13A0.68830.84840.16710.066*
H13B0.82740.76630.22920.066*
C140.6972 (3)0.6255 (2)0.3536 (2)0.0453 (6)
H140.78720.62190.38680.054*
C150.6241 (3)0.5380 (2)0.3842 (2)0.0483 (6)
H150.66530.47420.43710.058*
C160.4906 (3)0.5447 (3)0.3368 (2)0.0522 (7)
H160.43990.48580.35690.063*
C170.4328 (3)0.6394 (3)0.2594 (3)0.0576 (8)
H170.34130.64600.22720.069*
C180.5084 (3)0.7237 (2)0.2294 (2)0.0532 (7)
H180.46910.78730.17600.064*
Cl10.72732 (13)1.15957 (9)0.56077 (8)0.0904 (3)
Cl20.46624 (11)1.19991 (8)0.38728 (9)0.0858 (3)
N10.6396 (2)0.71609 (18)0.27623 (16)0.0396 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03753 (19)0.02357 (17)0.03463 (18)0.00516 (12)0.00213 (13)0.00512 (12)
S10.0444 (4)0.0296 (3)0.0457 (4)0.0097 (3)0.0117 (3)0.0064 (3)
S20.0457 (4)0.0316 (3)0.0478 (4)0.0123 (3)0.0151 (3)0.0138 (3)
S30.0490 (4)0.0300 (3)0.0430 (4)0.0122 (3)0.0052 (3)0.0103 (3)
S40.0604 (4)0.0377 (4)0.0490 (4)0.0094 (3)0.0197 (3)0.0155 (3)
S50.1137 (7)0.0433 (4)0.0602 (5)0.0236 (4)0.0240 (5)0.0297 (4)
S60.0433 (4)0.0307 (3)0.0478 (4)0.0105 (3)0.0124 (3)0.0134 (3)
S70.0522 (4)0.0326 (3)0.0487 (4)0.0155 (3)0.0160 (3)0.0123 (3)
S80.0539 (4)0.0346 (3)0.0484 (4)0.0112 (3)0.0161 (3)0.0153 (3)
S90.0424 (4)0.0286 (3)0.0513 (4)0.0096 (3)0.0080 (3)0.0127 (3)
S100.0481 (4)0.0387 (4)0.0655 (5)0.0078 (3)0.0055 (3)0.0265 (3)
C10.0414 (13)0.0279 (11)0.0322 (12)0.0032 (10)0.0038 (10)0.0049 (9)
C20.0395 (13)0.0240 (11)0.0327 (12)0.0041 (9)0.0026 (10)0.0041 (9)
C30.0615 (17)0.0322 (13)0.0366 (13)0.0067 (12)0.0040 (12)0.0107 (10)
C40.0379 (13)0.0244 (11)0.0369 (12)0.0051 (9)0.0010 (10)0.0045 (9)
C50.0416 (13)0.0273 (11)0.0365 (13)0.0036 (10)0.0017 (10)0.0085 (10)
C60.0377 (13)0.0286 (12)0.0406 (13)0.0012 (10)0.0040 (10)0.0084 (10)
C70.0596 (17)0.0500 (16)0.0416 (15)0.0162 (14)0.0084 (13)0.0006 (12)
C80.0566 (17)0.0423 (15)0.0439 (15)0.0076 (13)0.0006 (13)0.0019 (12)
C90.0634 (18)0.0460 (15)0.0425 (15)0.0130 (13)0.0014 (13)0.0142 (12)
C100.0571 (18)0.0591 (18)0.0574 (18)0.0101 (14)0.0133 (14)0.0115 (15)
C110.0505 (16)0.0456 (15)0.0566 (17)0.0074 (13)0.0037 (13)0.0099 (13)
C120.0595 (17)0.0406 (14)0.0381 (14)0.0205 (13)0.0094 (12)0.0071 (11)
C130.083 (2)0.0518 (16)0.0410 (15)0.0342 (16)0.0201 (14)0.0110 (12)
C140.0390 (14)0.0527 (16)0.0428 (15)0.0092 (12)0.0013 (11)0.0024 (12)
C150.0506 (16)0.0469 (15)0.0432 (15)0.0080 (12)0.0037 (12)0.0039 (12)
C160.0549 (17)0.0564 (17)0.0527 (17)0.0257 (14)0.0091 (14)0.0125 (14)
C170.0458 (16)0.069 (2)0.0609 (19)0.0165 (15)0.0098 (14)0.0116 (16)
C180.0634 (19)0.0434 (15)0.0472 (16)0.0029 (13)0.0158 (14)0.0007 (12)
Cl10.1180 (8)0.0762 (6)0.0815 (6)0.0117 (5)0.0170 (6)0.0447 (5)
Cl20.0858 (6)0.0596 (5)0.0972 (7)0.0171 (5)0.0164 (5)0.0142 (5)
N10.0488 (12)0.0408 (12)0.0321 (11)0.0139 (10)0.0058 (9)0.0106 (9)
Geometric parameters (Å, º) top
Ni1—S22.1518 (7)C8—C91.380 (4)
Ni1—S72.1643 (7)C8—Cl21.722 (3)
Ni1—S62.1681 (7)C9—C101.369 (4)
Ni1—S12.1714 (7)C9—Cl11.731 (3)
S1—C11.719 (2)C10—C111.378 (4)
S2—C21.708 (2)C10—H100.9300
S3—C31.725 (3)C11—C121.370 (4)
S3—C21.739 (2)C11—H110.9300
S4—C31.738 (3)C12—C131.515 (4)
S4—C11.750 (2)C13—N11.493 (3)
S5—C31.642 (2)C13—H13A0.9700
S6—C41.717 (2)C13—H13B0.9700
S7—C51.721 (2)C14—N11.336 (3)
S8—C61.727 (2)C14—C151.369 (4)
S8—C51.742 (2)C14—H140.9300
S9—C61.717 (3)C15—C161.365 (4)
S9—C41.742 (2)C15—H150.9300
S10—C61.662 (2)C16—C171.368 (4)
C1—C21.356 (3)C16—H160.9300
C4—C51.353 (3)C17—C181.353 (4)
C7—C121.374 (4)C17—H170.9300
C7—C81.383 (4)C18—N11.340 (3)
C7—H70.9300C18—H180.9300
S2—Ni1—S785.25 (3)C7—C8—Cl2119.6 (2)
S2—Ni1—S6179.02 (3)C10—C9—C8120.1 (3)
S7—Ni1—S693.77 (2)C10—C9—Cl1119.0 (2)
S2—Ni1—S193.18 (3)C8—C9—Cl1120.9 (2)
S7—Ni1—S1178.41 (3)C9—C10—C11120.0 (3)
S6—Ni1—S187.80 (3)C9—C10—H10120.0
C1—S1—Ni1101.80 (8)C11—C10—H10120.0
C2—S2—Ni1102.21 (8)C12—C11—C10120.3 (3)
C3—S3—C297.20 (12)C12—C11—H11119.8
C3—S4—C197.08 (12)C10—C11—H11119.8
C4—S6—Ni1101.19 (8)C11—C12—C7119.8 (2)
C5—S7—Ni1101.47 (9)C11—C12—C13119.1 (3)
C6—S8—C597.19 (11)C7—C12—C13121.0 (3)
C6—S9—C497.89 (11)N1—C13—C12112.5 (2)
C2—C1—S1120.90 (18)N1—C13—H13A109.1
C2—C1—S4115.57 (18)C12—C13—H13A109.1
S1—C1—S4123.50 (14)N1—C13—H13B109.1
C1—C2—S2121.87 (17)C12—C13—H13B109.1
C1—C2—S3116.76 (18)H13A—C13—H13B107.8
S2—C2—S3121.35 (14)N1—C14—C15120.3 (2)
S5—C3—S3121.91 (17)N1—C14—H14119.9
S5—C3—S4124.71 (17)C15—C14—H14119.9
S3—C3—S4113.37 (13)C16—C15—C14119.7 (3)
C5—C4—S6122.13 (17)C16—C15—H15120.1
C5—C4—S9115.30 (17)C14—C15—H15120.1
S6—C4—S9122.56 (14)C15—C16—C17118.9 (3)
C4—C5—S7121.35 (18)C15—C16—H16120.6
C4—C5—S8116.38 (17)C17—C16—H16120.6
S7—C5—S8122.25 (15)C18—C17—C16120.1 (3)
S10—C6—S9122.86 (15)C18—C17—H17119.9
S10—C6—S8124.01 (15)C16—C17—H17119.9
S9—C6—S8113.12 (13)N1—C18—C17120.5 (3)
C12—C7—C8120.3 (3)N1—C18—H18119.7
C12—C7—H7119.9C17—C18—H18119.7
C8—C7—H7119.9C14—N1—C18120.5 (2)
C9—C8—C7119.5 (3)C14—N1—C13119.1 (2)
C9—C8—Cl2120.9 (2)C18—N1—C13120.4 (2)
S2—Ni1—S1—C11.40 (9)Ni1—S7—C5—S8175.28 (13)
S6—Ni1—S1—C1178.64 (8)C6—S8—C5—C41.5 (2)
S7—Ni1—S2—C2177.99 (8)C6—S8—C5—S7179.86 (15)
S1—Ni1—S2—C21.80 (8)C4—S9—C6—S10178.91 (15)
S7—Ni1—S6—C41.33 (8)C4—S9—C6—S82.37 (15)
S1—Ni1—S6—C4178.88 (8)C5—S8—C6—S10179.61 (16)
S2—Ni1—S7—C5177.64 (9)C5—S8—C6—S90.91 (15)
S6—Ni1—S7—C52.31 (9)C12—C7—C8—C90.4 (4)
Ni1—S1—C1—C20.6 (2)C12—C7—C8—Cl2180.0 (2)
Ni1—S1—C1—S4178.50 (13)C7—C8—C9—C101.4 (4)
C3—S4—C1—C20.5 (2)Cl2—C8—C9—C10178.9 (2)
C3—S4—C1—S1178.56 (16)C7—C8—C9—Cl1177.3 (2)
S1—C1—C2—S21.1 (3)Cl2—C8—C9—Cl12.3 (4)
S4—C1—C2—S2177.06 (12)C8—C9—C10—C111.7 (5)
S1—C1—C2—S3179.55 (12)Cl1—C9—C10—C11177.0 (2)
S4—C1—C2—S31.4 (3)C9—C10—C11—C121.1 (5)
Ni1—S2—C2—C12.0 (2)C10—C11—C12—C70.0 (4)
Ni1—S2—C2—S3179.53 (11)C10—C11—C12—C13177.6 (3)
C3—S3—C2—C11.6 (2)C8—C7—C12—C110.3 (4)
C3—S3—C2—S2176.89 (15)C8—C7—C12—C13177.2 (2)
C2—S3—C3—S5177.82 (17)C11—C12—C13—N195.9 (3)
C2—S3—C3—S41.20 (17)C7—C12—C13—N186.5 (3)
C1—S4—C3—S5178.40 (18)N1—C14—C15—C161.2 (4)
C1—S4—C3—S30.59 (17)C14—C15—C16—C170.0 (4)
Ni1—S6—C4—C50.4 (2)C15—C16—C17—C181.0 (5)
Ni1—S6—C4—S9179.73 (12)C16—C17—C18—N10.9 (5)
C6—S9—C4—C53.5 (2)C15—C14—N1—C181.4 (4)
C6—S9—C4—S6175.90 (15)C15—C14—N1—C13176.2 (2)
S6—C4—C5—S72.6 (3)C17—C18—N1—C140.4 (4)
S9—C4—C5—S7177.97 (12)C17—C18—N1—C13177.2 (3)
S6—C4—C5—S8176.01 (13)C12—C13—N1—C1478.8 (3)
S9—C4—C5—S83.4 (3)C12—C13—N1—C18103.7 (3)
Ni1—S7—C5—C43.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S10i0.932.823.622 (3)145
C18—H18···S1ii0.932.793.708 (3)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C12H10Cl2N)[Ni(C3S5)2]
Mr690.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.3711 (11), 11.7210 (14), 11.9640 (14)
α, β, γ (°)82.814 (1), 88.854 (1), 76.644 (1)
V3)1268.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.692, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
9520, 4692, 4083
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.082, 1.04
No. of reflections4692
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S10i0.932.823.622 (3)145
C18—H18···S1ii0.932.793.708 (3)168
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20971004), the Key Project of the Chinese Ministry of Education (grant No. 210102) and the Natural Science Foundation of Anhui Province (grant No. 11040606M45).

References

First citationAkutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationLi, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990–m1991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G.-X., Yang, H., Guo, W., Liu, Y., Huang, R.-Y., Nishihara, S. & Ren, X.-M. (2010). Polyhedron, 29, 2916–2923.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.  CSD CrossRef Google Scholar
First citationZang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem. 48, 9623–9630.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds