metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Iodo­benz­yl)-3-methyl­pyridinium bis­­(benzene-1,2-di­thiol­ato)nickelate(III)

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China
*Correspondence e-mail: njuliugx@gmail.com

(Received 9 October 2011; accepted 20 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, (C13H13IN)[Ni(C6H4S2)2], contains half each of two centrosymmetric anions and a single cation in a general position. In the anions, the NiIII ions are surrounded by four S atoms in a distorted square-planar geometry. In the crystal, the anions exhibit two different packing modes by stacking along the a axis in face-to-face and side-by-side fashions. Inter­ionic C—H⋯S hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.6947 (5) Å] are observed.

Related literature

For background to the synthesis and properties of metal complexes of dithiol­ato and dithiol­ene ligands, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Kato (2004[Kato, R. (2004). Chem. Rev. 104, 5319-5346.]); Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]); Canadell (1999[Canadell, E. (1999). Coord. Chem. Rev. 185-186, 629-651.]); Akutagawa & Nakamura (2000[Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297-311.]); Ren et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931-5933.], 2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569-2576.], 2008[Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009-8014.]). For the structure of a related compound, see: Liu et al. (2007[Liu, G. X., Huang, L. F. & Ren, X. M. (2007). Appl. Organomet. Chem. 21, 1054-1058.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H13IN)[Ni(C6H4S2)2]

  • Mr = 649.28

  • Triclinic, [P \overline 1]

  • a = 7.3222 (14) Å

  • b = 12.267 (2) Å

  • c = 14.628 (3) Å

  • α = 98.425 (2)°

  • β = 98.466 (2)°

  • γ = 96.216 (3)°

  • V = 1274.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.584, Tmax = 0.769

  • 6282 measured reflections

  • 4392 independent reflections

  • 3397 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.196

  • S = 1.09

  • 4392 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 1.52 e Å−3

  • Δρmin = −1.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯S2i 0.97 2.81 3.613 (7) 141
C20—H20⋯S4ii 0.93 2.86 3.580 (8) 135
Symmetry codes: (i) x-1, y+1, z; (ii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes of 1,2-dithiolate ligands have been intensively studied because of their novel properties and applications in the areas of molecular conductivity, magnetic materials, nonlinear optics, and others (Robertson & Cronin, 2002; Kato, 2004). Over the last decade, a large number of new dithiolene ligands and metal complexes have been prepared in an effort to obtain novel and advanced material, whose molecular arrangement can be sensitively affected by strong and directional noncovalent interactions (Cassoux, 1999; Canadell, 1999; Akutagawa & Nakamura, 2000). Although the closed-shell cations make no contribution to the conductivity and magnetism, their size and shapes play a predominant role in influencing the crystal structure and, consequently, in altering the electronic and magnetic properties. Recently, using benzylpyridinium derivatives ([RBzPy]+) as counter cation of [M(mnt)2]- (M = Ni, Pd, and Pt; mnt = maleonitriledithiolate), a series of ion-pair complexes with segregated columnar stacks of cations and anions have been reported (Ren et al., 2002, 2008). The quasi-one-dimensional magnetic nature of these complexes was attributed to intermolecular π orbital interactions within the anionic columns. Furthermore, for some complexes, spin-Peierls-like transition was observed (Ren et al., 2004). More presently, we are devoted our research interesting on the molecular magnets self-assembled from the [Ni(bdt)2]- ion (bdt = benzene-1,2-dithiolato) due to its molecular and electronic structure resembling the [Ni(mnt)2]- ion, which is expected to obtain new series of molecular magnets with peculiar magnetic phase transition via incorporating benzylpyridinium derivatives into the [Ni(bdt)2]- spin system. The synthesis and crystal structure of the title compound, a new ion-pair complex, is reported herein.

As shown in Fig. 1, the asymmetric unit of the title complex contains two independent halves of centrosymmetric [Ni(bdt)2]- anions and one [IBzPyCH3]+ cation. The nickel atoms are each surrounded by four sulfur atoms in a square-planar geometry. As for the Ni1-containing unit, the Ni1—S1 and Ni1—S2 distances are 2.1470 (16) and 2.1562 (16) Å, respectively. These values are in agreement with those found in the related [Ni(bdt)2]- complex reported recently (Liu et al., 2007). The S—Ni—S bond angle is 91.59 (6)°, which is slightly larger than that observed in the complex with substituent groups on benzene rings (Liu et al., 2007). There exists a dihedral angle of 6.92 (6)° between the planes through C1–C6/S1/S2 and Ni1/S1/S2, so the five-membered ring adopts an envelope conformation and the Ni1 atom deviates by 0.1808 (2) Å from the C6S2 plane. In the Ni2-containing unit, the Ni—S bonds cover the range from 2.1447 (15) to 2.1504 (17) Å and the S—Ni—S bond angle 91.79 (6)°. The Ni2 atom deviates by 0.0245 (2) Å from the C7–C12/S3/S4 plane and the angle between the C6S2 and Ni2/S3/S4 planes is 0.98 (8)°. The two C6S2 planes are roughly perpendicular to each other with a dihedral angle of 73.67 (7)°. In the [IBzPyCH3]+ cation, the dihedral angles between the phenyl and pyridine rings is 86.7 (2)°. The molecule packings of two anionic units differ from each other (Fig. 2). The Ni1-containing anions stack in face-to-face fashion along the a axis with an alternating arrangement of the [Ni(bdt)2]-anions and [IBzPyCH3]+ cations, so that the pyridine ring of the cation overlaps the phenyl ring of the anion with a centroid-to-centroid distance of 3.6947 (5) Å. Conversely, the Ni2-containing anions stack in side-by-side fashion in which the anions are uniformly spaced to form one-dimensional chains along the a axis. For both stacking modes the Ni···Ni separation is 7.3223 (14) Å. The shortest separation between Ni1-containing and Ni2-containing anions is 7.3140 (15) Å. The anions and cation are linked via C—H···S H-bonding interactions consolidating the crystal structure (Table 1).

Related literature top

For background to the synthesis and properties of metal complexes of dithiolato and dithiolene ligands, see: Robertson & Cronin (2002); Kato (2004); Cassoux (1999); Canadell (1999); Akutagawa & Nakamura (2000); Ren et al. (2002, 2004, 2008). For the structure of a related compound, see: Liu et al. (2007).

Experimental top

Under argon atmosphere at room temperature, benzene-1,2-dithiol (284 mg, 2 mmol) was added to a solution of sodium metal (92 mg, 4 mmol) in absolute methanol (25 ml. A solution of NiCl2.6H2O (240 mg, 1 mmol) in methanol was then added, resulting in the formation of a muddy red-brown colour. Following this, 1-(4-iodobenzyl)-3-methylpyridinium bromide (780 mg, 2 mmol) was added, the mixture allowed to stand with stirring for 1 h and then stirred for additional 24 h in air. The colour of the mixture gradually turned green, indicating oxidation from a dianionic species to the more stable monoanionic form. The precipitate was washed with absolute methanol and ether and then dried. The crude product was recrystallized twice from methylene chloride to give dark green crystals suitable for X-ray analysis in ~52% yield.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = x Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. The highest peak (1.52 e\&A-3) and the deepest hole (-1.91 e\&A-3) are located 1.00 and 0.96 Å, respectively, from I1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probabilility level. Symmetry codes: (i) 1-x, -y, 1-z; (ii) 1-x, 2-y, 2-z.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
1-(4-Iodobenzyl)-3-methylpyridinium bis(benzene-1,2-dithiolato)nickelate(III) top
Crystal data top
(C13H13IN)[Ni(C6H4S2)2]Z = 2
Mr = 649.28F(000) = 646
Triclinic, P1Dx = 1.692 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3222 (14) ÅCell parameters from 2848 reflections
b = 12.267 (2) Åθ = 2.4–27.0°
c = 14.628 (3) ŵ = 2.32 mm1
α = 98.425 (2)°T = 296 K
β = 98.466 (2)°Block, dark green
γ = 96.216 (3)°0.26 × 0.20 × 0.12 mm
V = 1274.2 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4392 independent reflections
Radiation source: sealed tube3397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.584, Tmax = 0.769k = 1413
6282 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.196H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1231P)2 + 0.2746P]
where P = (Fo2 + 2Fc2)/3
4392 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 1.52 e Å3
0 restraintsΔρmin = 1.91 e Å3
Crystal data top
(C13H13IN)[Ni(C6H4S2)2]γ = 96.216 (3)°
Mr = 649.28V = 1274.2 (4) Å3
Triclinic, P1Z = 2
a = 7.3222 (14) ÅMo Kα radiation
b = 12.267 (2) ŵ = 2.32 mm1
c = 14.628 (3) ÅT = 296 K
α = 98.425 (2)°0.26 × 0.20 × 0.12 mm
β = 98.466 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4392 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3397 reflections with I > 2σ(I)
Tmin = 0.584, Tmax = 0.769Rint = 0.030
6282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.196H-atom parameters constrained
S = 1.09Δρmax = 1.52 e Å3
4392 reflectionsΔρmin = 1.91 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.0571 (3)
Ni20.50001.00001.00000.0538 (3)
S10.5791 (2)0.17354 (14)0.49920 (11)0.0667 (4)
S20.4882 (2)0.03099 (14)0.64783 (11)0.0659 (4)
S30.6151 (2)0.85051 (14)0.95682 (12)0.0704 (4)
S40.2296 (2)0.90892 (14)0.99225 (11)0.0669 (4)
C10.6117 (8)0.2356 (5)0.6168 (4)0.0623 (14)
C20.6779 (10)0.3477 (6)0.6447 (5)0.0760 (17)
H20.70430.39130.60020.091*
C30.7044 (12)0.3944 (7)0.7370 (6)0.091 (2)
H30.75000.46940.75520.109*
C40.6634 (11)0.3302 (7)0.8039 (5)0.083 (2)
H40.67960.36280.86660.100*
C50.6006 (9)0.2212 (7)0.7784 (5)0.0750 (18)
H50.57560.17850.82380.090*
C60.5725 (7)0.1716 (5)0.6842 (4)0.0591 (13)
C70.4339 (9)0.7433 (5)0.9440 (4)0.0654 (15)
C80.4558 (12)0.6329 (6)0.9180 (5)0.086 (2)
H80.57280.61510.90890.103*
C90.3127 (16)0.5509 (7)0.9055 (6)0.103 (3)
H90.33190.47730.88920.124*
C100.1387 (16)0.5755 (7)0.9169 (6)0.106 (3)
H100.04000.51830.90650.127*
C110.1057 (12)0.6862 (7)0.9440 (5)0.089 (2)
H110.01240.70310.95200.107*
C120.2610 (9)0.7703 (5)0.9585 (4)0.0652 (15)
C130.1673 (11)0.6604 (5)0.6633 (4)0.0706 (17)
C140.2677 (9)0.7576 (5)0.7112 (4)0.0623 (14)
H140.39710.76420.72220.075*
C150.1810 (8)0.8458 (5)0.7435 (4)0.0604 (14)
H150.25110.91110.77680.072*
C160.0127 (8)0.8368 (5)0.7261 (4)0.0623 (15)
C170.1164 (10)0.7408 (7)0.6757 (6)0.087 (2)
H170.24570.73520.66290.104*
C180.0259 (13)0.6526 (6)0.6441 (6)0.096 (2)
H180.09510.58750.60980.115*
C190.1106 (9)0.9293 (5)0.7648 (5)0.0745 (17)
H19A0.11180.92720.83080.089*
H19B0.23890.91730.73310.089*
C200.0515 (11)1.1170 (7)0.8295 (5)0.083 (2)
H200.04711.09980.88900.100*
C210.1330 (13)1.2164 (7)0.8205 (6)0.092 (2)
H210.18671.26760.87350.110*
C220.1377 (10)1.2435 (6)0.7331 (5)0.0774 (17)
H220.19041.31390.72690.093*
C230.0637 (7)1.1657 (5)0.6538 (4)0.0599 (14)
C240.0168 (8)1.0640 (5)0.6672 (4)0.0631 (14)
H240.06711.00980.61560.076*
C250.0744 (10)1.1905 (6)0.5574 (5)0.0751 (17)
H25A0.01291.13790.51240.113*
H25B0.19811.18530.54430.113*
H25C0.04501.26430.55380.113*
I10.31005 (11)0.52863 (4)0.61739 (4)0.1153 (3)
N10.0234 (7)1.0421 (4)0.7546 (4)0.0637 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0448 (5)0.0688 (7)0.0653 (6)0.0088 (5)0.0136 (4)0.0308 (5)
Ni20.0529 (6)0.0573 (6)0.0533 (5)0.0025 (4)0.0139 (4)0.0143 (4)
S10.0681 (9)0.0696 (10)0.0701 (9)0.0055 (7)0.0186 (7)0.0324 (7)
S20.0602 (8)0.0762 (10)0.0693 (9)0.0064 (7)0.0172 (7)0.0335 (7)
S30.0628 (9)0.0658 (10)0.0836 (10)0.0076 (7)0.0165 (7)0.0117 (8)
S40.0600 (9)0.0699 (10)0.0731 (9)0.0003 (7)0.0219 (7)0.0149 (7)
C10.049 (3)0.075 (4)0.072 (3)0.018 (3)0.012 (2)0.031 (3)
C20.080 (4)0.069 (4)0.082 (4)0.012 (3)0.010 (3)0.025 (3)
C30.099 (5)0.072 (5)0.098 (5)0.009 (4)0.004 (4)0.015 (4)
C40.087 (5)0.083 (5)0.078 (4)0.019 (4)0.005 (4)0.007 (4)
C50.058 (4)0.100 (6)0.075 (4)0.023 (4)0.012 (3)0.029 (4)
C60.042 (3)0.071 (4)0.072 (3)0.015 (2)0.012 (2)0.025 (3)
C70.076 (4)0.062 (4)0.055 (3)0.004 (3)0.004 (3)0.011 (3)
C80.093 (5)0.067 (4)0.093 (5)0.012 (4)0.002 (4)0.014 (4)
C90.137 (8)0.065 (5)0.100 (6)0.002 (5)0.006 (6)0.016 (4)
C100.134 (8)0.079 (6)0.085 (5)0.040 (5)0.000 (5)0.011 (4)
C110.100 (5)0.086 (5)0.074 (4)0.021 (4)0.010 (4)0.021 (4)
C120.074 (4)0.067 (4)0.053 (3)0.007 (3)0.009 (3)0.019 (3)
C130.097 (5)0.055 (4)0.065 (3)0.006 (3)0.018 (3)0.026 (3)
C140.061 (3)0.067 (4)0.062 (3)0.003 (3)0.017 (3)0.018 (3)
C150.063 (3)0.065 (4)0.056 (3)0.002 (3)0.018 (2)0.018 (3)
C160.054 (3)0.069 (4)0.074 (3)0.002 (3)0.015 (3)0.041 (3)
C170.065 (4)0.087 (5)0.104 (5)0.011 (4)0.007 (4)0.040 (4)
C180.119 (7)0.062 (4)0.098 (5)0.021 (4)0.000 (5)0.025 (4)
C190.059 (3)0.070 (4)0.108 (5)0.008 (3)0.031 (3)0.045 (4)
C200.101 (5)0.098 (5)0.063 (4)0.024 (4)0.030 (4)0.025 (4)
C210.106 (6)0.086 (5)0.083 (5)0.008 (4)0.022 (4)0.014 (4)
C220.083 (4)0.065 (4)0.087 (4)0.006 (3)0.021 (3)0.020 (3)
C230.050 (3)0.068 (4)0.075 (3)0.020 (3)0.022 (3)0.033 (3)
C240.057 (3)0.073 (4)0.069 (3)0.015 (3)0.019 (3)0.030 (3)
C250.072 (4)0.087 (5)0.080 (4)0.015 (3)0.029 (3)0.035 (3)
I10.1845 (7)0.0594 (4)0.1157 (5)0.0307 (4)0.0520 (4)0.0213 (3)
N10.058 (3)0.070 (3)0.078 (3)0.020 (2)0.029 (2)0.035 (3)
Geometric parameters (Å, º) top
Ni1—S1i2.1470 (16)C11—H110.9300
Ni1—S12.1470 (16)C13—C141.367 (9)
Ni1—S22.1562 (16)C13—C181.391 (11)
Ni1—S2i2.1562 (16)C13—I12.101 (7)
Ni2—S42.1447 (15)C14—C151.372 (9)
Ni2—S4ii2.1447 (15)C14—H140.9300
Ni2—S3ii2.1504 (17)C15—C161.393 (8)
Ni2—S32.1504 (17)C15—H150.9300
S1—C11.747 (6)C16—C171.376 (10)
S2—C61.745 (6)C16—C191.492 (9)
S3—C71.732 (6)C17—C181.387 (12)
S4—C121.749 (7)C17—H170.9300
C1—C21.388 (9)C18—H180.9300
C1—C61.390 (8)C19—N11.498 (8)
C2—C31.364 (11)C19—H19A0.9700
C2—H20.9300C19—H19B0.9700
C3—C41.388 (10)C20—N11.328 (9)
C3—H30.9300C20—C211.331 (11)
C4—C51.345 (11)C20—H200.9300
C4—H40.9300C21—C221.371 (10)
C5—C61.399 (9)C21—H210.9300
C5—H50.9300C22—C231.388 (9)
C7—C121.381 (9)C22—H220.9300
C7—C81.385 (9)C23—C241.374 (8)
C8—C91.344 (12)C23—C251.497 (8)
C8—H80.9300C24—N11.352 (7)
C9—C101.369 (14)C24—H240.9300
C9—H90.9300C25—H25A0.9600
C10—C111.414 (13)C25—H25B0.9600
C10—H100.9300C25—H25C0.9600
C11—C121.419 (9)
S1i—Ni1—S1180.000 (1)C7—C12—S4120.4 (5)
S1i—Ni1—S288.41 (6)C11—C12—S4119.2 (6)
S1—Ni1—S291.59 (6)C14—C13—C18119.2 (7)
S1i—Ni1—S2i91.59 (6)C14—C13—I1118.9 (5)
S1—Ni1—S2i88.41 (6)C18—C13—I1121.9 (5)
S2—Ni1—S2i180.0C13—C14—C15121.2 (6)
S4—Ni2—S4ii180.0C13—C14—H14119.4
S4—Ni2—S3ii88.21 (6)C15—C14—H14119.4
S4ii—Ni2—S3ii91.79 (6)C14—C15—C16119.5 (6)
S4—Ni2—S391.79 (6)C14—C15—H15120.2
S4ii—Ni2—S388.21 (6)C16—C15—H15120.2
S3ii—Ni2—S3180.000 (1)C17—C16—C15120.3 (7)
C1—S1—Ni1104.7 (2)C17—C16—C19119.2 (6)
C6—S2—Ni1105.1 (2)C15—C16—C19120.5 (6)
C7—S3—Ni2105.5 (2)C16—C17—C18119.2 (7)
C12—S4—Ni2104.1 (2)C16—C17—H17120.4
C2—C1—C6119.1 (6)C18—C17—H17120.4
C2—C1—S1121.3 (5)C17—C18—C13120.6 (7)
C6—C1—S1119.6 (5)C17—C18—H18119.7
C3—C2—C1120.4 (7)C13—C18—H18119.7
C3—C2—H2119.8C16—C19—N1113.7 (5)
C1—C2—H2119.8C16—C19—H19A108.8
C2—C3—C4120.2 (7)N1—C19—H19A108.8
C2—C3—H3119.9C16—C19—H19B108.8
C4—C3—H3119.9N1—C19—H19B108.8
C5—C4—C3120.3 (7)H19A—C19—H19B107.7
C5—C4—H4119.8N1—C20—C21120.9 (6)
C3—C4—H4119.8N1—C20—H20119.5
C4—C5—C6120.4 (7)C21—C20—H20119.5
C4—C5—H5119.8C20—C21—C22120.1 (7)
C6—C5—H5119.8C20—C21—H21120.0
C1—C6—C5119.5 (6)C22—C21—H21120.0
C1—C6—S2118.5 (5)C21—C22—C23120.0 (7)
C5—C6—S2122.0 (5)C21—C22—H22120.0
C12—C7—C8119.4 (6)C23—C22—H22120.0
C12—C7—S3118.1 (5)C24—C23—C22117.5 (5)
C8—C7—S3122.5 (6)C24—C23—C25121.1 (6)
C9—C8—C7121.8 (8)C22—C23—C25121.4 (6)
C9—C8—H8119.1N1—C24—C23120.5 (6)
C7—C8—H8119.1N1—C24—H24119.7
C8—C9—C10120.0 (8)C23—C24—H24119.7
C8—C9—H9120.0C23—C25—H25A109.5
C10—C9—H9120.0C23—C25—H25B109.5
C9—C10—C11121.4 (8)H25A—C25—H25B109.5
C9—C10—H10119.3C23—C25—H25C109.5
C11—C10—H10119.3H25A—C25—H25C109.5
C10—C11—C12116.9 (8)H25B—C25—H25C109.5
C10—C11—H11121.5C20—N1—C24121.0 (6)
C12—C11—H11121.5C20—N1—C19120.9 (5)
C7—C12—C11120.4 (7)C24—N1—C19118.1 (6)
S2—Ni1—S1—C16.0 (2)S3—C7—C12—C11176.6 (5)
S2i—Ni1—S1—C1174.0 (2)C8—C7—C12—S4179.5 (5)
S1i—Ni1—S2—C6173.59 (19)S3—C7—C12—S41.8 (7)
S1—Ni1—S2—C66.41 (19)C10—C11—C12—C71.6 (9)
S4—Ni2—S3—C71.8 (2)C10—C11—C12—S4179.9 (5)
S4ii—Ni2—S3—C7178.2 (2)Ni2—S4—C12—C70.2 (5)
S3ii—Ni2—S4—C12178.97 (19)Ni2—S4—C12—C11178.3 (4)
S3—Ni2—S4—C121.03 (19)C18—C13—C14—C152.4 (9)
Ni1—S1—C1—C2175.1 (5)I1—C13—C14—C15179.3 (4)
Ni1—S1—C1—C64.3 (5)C13—C14—C15—C160.9 (8)
C6—C1—C2—C30.1 (10)C14—C15—C16—C171.0 (8)
S1—C1—C2—C3179.3 (6)C14—C15—C16—C19176.8 (5)
C1—C2—C3—C40.7 (12)C15—C16—C17—C181.3 (10)
C2—C3—C4—C51.2 (12)C19—C16—C17—C18176.5 (6)
C3—C4—C5—C61.2 (11)C16—C17—C18—C130.2 (11)
C2—C1—C6—C50.1 (8)C14—C13—C18—C172.0 (10)
S1—C1—C6—C5179.3 (4)I1—C13—C18—C17179.7 (5)
C2—C1—C6—S2179.7 (5)C17—C16—C19—N1138.2 (6)
S1—C1—C6—S20.9 (6)C15—C16—C19—N144.0 (8)
C4—C5—C6—C10.6 (9)N1—C20—C21—C221.1 (13)
C4—C5—C6—S2179.1 (5)C20—C21—C22—C232.4 (12)
Ni1—S2—C6—C15.6 (5)C21—C22—C23—C241.7 (10)
Ni1—S2—C6—C5174.6 (4)C21—C22—C23—C25177.1 (7)
Ni2—S3—C7—C122.5 (5)C22—C23—C24—N10.3 (8)
Ni2—S3—C7—C8178.9 (5)C25—C23—C24—N1179.1 (5)
C12—C7—C8—C90.6 (10)C21—C20—N1—C241.0 (11)
S3—C7—C8—C9178.0 (6)C21—C20—N1—C19178.4 (7)
C7—C8—C9—C101.2 (12)C23—C24—N1—C201.7 (8)
C8—C9—C10—C111.6 (13)C23—C24—N1—C19179.2 (5)
C9—C10—C11—C120.3 (11)C16—C19—N1—C20115.7 (7)
C8—C7—C12—C112.0 (9)C16—C19—N1—C2461.8 (7)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···S2iii0.972.813.613 (7)141
C20—H20···S4iv0.932.863.580 (8)135
Symmetry codes: (iii) x1, y+1, z; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula(C13H13IN)[Ni(C6H4S2)2]
Mr649.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3222 (14), 12.267 (2), 14.628 (3)
α, β, γ (°)98.425 (2), 98.466 (2), 96.216 (3)
V3)1274.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.26 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.584, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
6282, 4392, 3397
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.196, 1.09
No. of reflections4392
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.52, 1.91

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···S2i0.972.813.613 (7)141
C20—H20···S4ii0.932.863.580 (8)135
Symmetry codes: (i) x1, y+1, z; (ii) x, y+2, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20971004), the Key Project of Chinese Ministry of Education (grant No. 210102) and the Natural Science Foundation of Anhui Province (grant No. 11040606M45).

References

First citationAkutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanadell, E. (1999). Coord. Chem. Rev. 185–186, 629–651.  Web of Science CrossRef CAS Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationKato, R. (2004). Chem. Rev. 104, 5319–5346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, G. X., Huang, L. F. & Ren, X. M. (2007). Appl. Organomet. Chem. 21, 1054–1058.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds