organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Furan-2-yl)[(furan-2-yl)carbonyl­disul­fanyl]methanone

aRadio and TV University of Henan, Zhengzhou 450008, People's Republic of China, and bDepartment of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: muzhi527@163.com

(Received 10 October 2011; accepted 20 October 2011; online 29 October 2011)

The mol­ecule of the title compound, C10H6O4S2, has crystallographically imposed twofold symmetry. The dihedral angle formed by the furan rings is 80.90 (8)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds into chains running parallel to the a axis [C—S—S—C torsion angle = 82.04 (11)°].

Related literature

For the applications of furan-2-carbothioic-S-acid, see: Deshpande et al. (2004[Deshpande, P., Luthra, P. & Sathe, P. (2004). US Patent 6800756.]); Stoll et al. (1967[Stoll, M., Winter, M., Gautschi, F., Flament, I. & Willhalm, B. (1967). Helv. Chim. Acta, 50, 628-694.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6O4S2

  • Mr = 254.29

  • Orthorhombic, P c c n

  • a = 13.6900 (13) Å

  • b = 7.9611 (7) Å

  • c = 9.9042 (10) Å

  • V = 1079.43 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 298 K

  • 0.41 × 0.39 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.826, Tmax = 0.868

  • 3627 measured reflections

  • 952 independent reflections

  • 750 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.103

  • S = 1.00

  • 952 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.57 3.463 (3) 162
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is a dimeric form of furan-2-carbothioic-S-acid, which has a broad spectrum of applications in the fields of medicinal chemistry (Deshpande et al., 2004) and food additives (Stoll et al., 1967). As a contribution in this field, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The molecule has crystallographically imposed twofold axis. The furan rings are oriented to form a dihedral angle of 80.90 (8)°. In the crystal structure (Fig. 2), molecules are linked by weak intermolecular C—H···O hydrogen bonds (Table 1) forming chains parallel to the a axis.

Related literature top

For the applications of furan-2-carbothioic-S-acid, see: Deshpande et al. (2004); Stoll et al. (1967).

Experimental top

To a solution of furan-2-carboxylic acid (11.2 g, 0.10 mol) in dioxane, NaHS (11.2 g, 0.20 mol) was added. The mixture was stirred at 50°C for 4 h. Then mixture was concentrated and purified by crystallization from ethyl acetate. Colourless crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5U eq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis. INtermolecular hydrogen bonds are shown as dashed lines.
(Furan-2-yl)[(furan-2-yl)carbonyldisulfanyl]methanone top
Crystal data top
C10H6O4S2F(000) = 520
Mr = 254.29Dx = 1.565 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 1606 reflections
a = 13.6900 (13) Åθ = 2.6–25.7°
b = 7.9611 (7) ŵ = 0.49 mm1
c = 9.9042 (10) ÅT = 298 K
V = 1079.43 (18) Å3Block, colourless
Z = 40.41 × 0.39 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
952 independent reflections
Radiation source: fine-focus sealed tube750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 169
Tmin = 0.826, Tmax = 0.868k = 79
3627 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.4883P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
952 reflectionsΔρmax = 0.17 e Å3
74 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
C10H6O4S2V = 1079.43 (18) Å3
Mr = 254.29Z = 4
Orthorhombic, PccnMo Kα radiation
a = 13.6900 (13) ŵ = 0.49 mm1
b = 7.9611 (7) ÅT = 298 K
c = 9.9042 (10) Å0.41 × 0.39 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
952 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
750 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.868Rint = 0.028
3627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
952 reflectionsΔρmin = 0.23 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32229 (4)0.22302 (9)0.54908 (7)0.0562 (3)
O10.51977 (13)0.2344 (2)0.46510 (19)0.0596 (5)
O20.30932 (12)0.4503 (2)0.35136 (19)0.0651 (6)
C10.36270 (17)0.3584 (3)0.4132 (2)0.0483 (6)
C30.5256 (2)0.4169 (3)0.2957 (3)0.0621 (7)
H30.50750.49550.23080.074*
C20.46678 (16)0.3429 (3)0.3863 (2)0.0478 (6)
C40.6204 (2)0.3519 (4)0.3184 (3)0.0683 (8)
H40.67690.37990.27130.082*
C50.6134 (2)0.2437 (4)0.4195 (3)0.0676 (8)
H50.66540.18230.45450.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (4)0.0597 (5)0.0569 (5)0.0007 (3)0.0038 (3)0.0117 (3)
O10.0531 (10)0.0581 (11)0.0676 (12)0.0036 (8)0.0012 (8)0.0087 (8)
O20.0632 (11)0.0682 (12)0.0640 (11)0.0093 (9)0.0095 (9)0.0170 (9)
C10.0548 (13)0.0449 (13)0.0452 (12)0.0018 (11)0.0073 (11)0.0034 (10)
C30.0696 (17)0.0600 (15)0.0566 (15)0.0131 (13)0.0038 (13)0.0064 (12)
C20.0516 (13)0.0438 (13)0.0479 (13)0.0037 (11)0.0064 (11)0.0034 (10)
C40.0555 (16)0.0747 (19)0.0747 (19)0.0175 (14)0.0093 (14)0.0103 (16)
C50.0477 (14)0.0661 (17)0.089 (2)0.0021 (12)0.0003 (15)0.0066 (16)
Geometric parameters (Å, º) top
S1—C11.811 (2)C3—C21.341 (3)
S1—S1i2.0254 (12)C3—C41.416 (4)
O1—C51.361 (3)C3—H30.9300
O1—C21.372 (3)C4—C51.324 (4)
O2—C11.202 (3)C4—H40.9300
C1—C21.455 (3)C5—H50.9300
C1—S1—S1i99.92 (8)C3—C2—C1132.3 (2)
C5—O1—C2106.0 (2)O1—C2—C1117.8 (2)
O2—C1—C2123.6 (2)C5—C4—C3106.9 (3)
O2—C1—S1123.74 (19)C5—C4—H4126.5
C2—C1—S1112.64 (17)C3—C4—H4126.5
C2—C3—C4106.5 (2)C4—C5—O1110.8 (3)
C2—C3—H3126.8C4—C5—H5124.6
C4—C3—H3126.8O1—C5—H5124.6
C3—C2—O1109.9 (2)
S1i—S1—C1—O21.2 (2)S1—C1—C2—C3179.3 (2)
S1i—S1—C1—C2178.38 (15)O2—C1—C2—O1179.5 (2)
C4—C3—C2—O10.0 (3)S1—C1—C2—O11.0 (3)
C4—C3—C2—C1179.7 (2)C2—C3—C4—C50.2 (3)
C5—O1—C2—C30.2 (3)C3—C4—C5—O10.4 (3)
C5—O1—C2—C1180.0 (2)C2—O1—C5—C40.4 (3)
O2—C1—C2—C30.3 (4)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.573.463 (3)162
Symmetry code: (ii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H6O4S2
Mr254.29
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)13.6900 (13), 7.9611 (7), 9.9042 (10)
V3)1079.43 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.41 × 0.39 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.826, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
3627, 952, 750
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.103, 1.00
No. of reflections952
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.573.463 (3)161.9
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Natural Scientific Research Programs of Henan Province (grant No. 2008138) and the Young Teachers Aid Programs of the College of Henan Province (grant No. 2009B150011).

References

First citationDeshpande, P., Luthra, P. & Sathe, P. (2004). US Patent 6800756.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStoll, M., Winter, M., Gautschi, F., Flament, I. & Willhalm, B. (1967). Helv. Chim. Acta, 50, 628–694.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds