metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1514-m1515

Di-μ-pivalato-κ3O,O′:O′;κ3O:O,O′-bis­­[(methanol-κO)bis­­(2,2,6,6-tetra­methylhepta­ne-3,5-dionato)praseo­dymium(III)]

aDepartment of Chemistry, University of South Dakota, 414E Clark, CL115, Vermillion, SD 57069, USA
*Correspondence e-mail: Qingguo.meng@usd.edu

(Received 7 September 2011; accepted 29 September 2011; online 12 October 2011)

In the centrosymmetric dimeric title compound, [Pr2(C5H9O2)2(C11H19O2)4(CH3OH)2], the two praseodymium(III) atoms are eight-coordinate and are bridged by O atoms from the two pivalate anions. Each PrIII ion is further coordinated by two chelating 2,2,6,6-tetra­methyl-3,5-hepta­nedionate (thd) ligands and one methanol mol­ecule. The distance between the two PrIII ions is 4.273 (5) Å. Intra­molecular hydrogen bonds exists between the methanol hy­droxy group on one PrIII atom and a chelating O atom of a thd ligand coordinated to the symmetry-related PrIII atom.

Related literature

For general background to 2,2,6,6-tetra­methyl-3,5-hepta­nedione-based volatile complexes involving lanthanide ions, see: Sievers et al. (1967[Sievers, R. E., Eisentraut, K. J., Springer, C. S. Jr & Meek, D. W. (1967). Lanthanide/Actinide Chemistry, edited by R. F. Gould, ch. 11, pp. 141-154. Washington, DC: American Chemical Society.]). For the preparation of [Pr(thd)3], see: Eisentraut & Sievers (1965[Eisentraut, K. J. & Sievers, R. E. (1965). J. Am. Chem. Soc. 87, 5254-5256.]). For a related [Ln2(thd)6] dimeric structure, see: Mode & Smith (1969[Mode, V. A. & Smith, G. S. (1969). J. Inorg. Nucl. Chem. 31, 1857-1859.]). For an example of adducts of [Ln(thd)3], see: Baxter et al. (1995[Baxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34, 1384-1394.]). For the dimeric structure of [Pr2(thd)6], see: Erasmus & Boeyens (1970[Erasmus, C. S. & Boeyens, J. C. A. (1970). Acta Cryst. B26, 1843-1854.]). For applications of these compounds, see: Meng et al. (2010[Meng, Q. G., Witte, R. J., Gong, Y. J., Day, E. L., Chen, J. C., May, P. S. & Berry, M. T. (2010). Chem. Mater. 22, 6056-6064.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr2(C5H9O2)2(C11H19O2)4(CH4O)2]

  • Mr = 1281.20

  • Monoclinic, P 21 /n

  • a = 12.6248 (14) Å

  • b = 16.5113 (18) Å

  • c = 15.5218 (17) Å

  • β = 94.372 (1)°

  • V = 3226.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 125 K

  • 0.45 × 0.38 × 0.32 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: analytical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.543, Tmax = 0.637

  • 30451 measured reflections

  • 5712 independent reflections

  • 4618 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.25

  • 5712 reflections

  • 329 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.54 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1⋯O1i 0.71 (7) 2.04 (7) 2.741 (4) 178 (9)
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2,2,6,6-tetramethyl-3,5-heptanedione (thd) lanthanide complexes have found application in many fields, such as in MOCVD, being excellent low temperature precursors. The dimeric structure of Pr2(thd)6 has been reported on previously (Erasmus & Boeyens, 1970). There each praseodymium(III) atom is surrounded by seven oxygen atoms, two of which are shared equally between the praseodymium(III) atoms.

We report herein on the crystal structure of a dimeric analog of the above mentioned complex with each PrIII ion coordinating to two 2,2,6,6-tetramethyl-3,5-heptanedionate (thd-) ligands, one pivalate ligand, and one solvent methanol molecule. The pivalate ligand in the title compound is thought to be formed by thermal decomposition of one of a thd- ligands of the precursor Pr(thd)3 under the current reaction conditions. The thermal decomposition mechanism is not quite clear at the moment, but it is probably due to the dissociation of the tert-butyl group from the thd- ligand, followed by the rearrangement of the fragment.

The molecular structure of the title compound is illustrated in Fig. 1. It is a centrosymmetric dimeric structure where each metal is octa-coordinate, not septa as in the Pr2(thd)6 structure mentioned above. Two thd- ligands chelate to each metal center in addition to a chelating pivalate anion and a methanol solvate molecule. One of the pivalate oxygen atoms, O6, bridges the two PrIII atoms in a µ2-pivalto-O,O,O' manner; as does one of the O atoms of the thd- ligands in Pr2(thd)6 (Erasmus & Boeyens, 1970). Intramolecular O-H···O hydrogen bonds involving the methanol hydroxyl group on one PrIII atom with a chelating O atom of a thd- ligand coordinated to the symmetry related PrIII atom, stablise the molecular structure (Table 1).

Decomposition of the crystal was observed upon heating to around 340 K, before melting. So compared to Pr(thd)3 [Eisentraut & Sievers, 1965] the title compound cannot be considered as a good precursor for MOCVD applications.

Related literature top

For general background to 2,2,6,6-tetramethyl-3,5-heptanedione-based volatile complexes involving lanthanide ions, see: Sievers et al. (1967). For the preparation of Pr(thd)3, see: Eisentraut & Sievers (1965). For a related Ln2(thd)6 dimeric structure, see: Mode et al. (1969). For an example of adducts of Ln(thd)3, see: Baxter et al. (1995). For applications of these compounds, see: Meng et al. (2010). For related literature, see: Erasmus & Boeyens (1970).

Experimental top

Pr(thd)3 (where thd- = 2,2,6,6-tetramethyl-3,5-heptanedionate) was prepared as described previously (Eisentraut & Sievers, 1965). For the preparation of the title compound, 0.1 g of Pr(thd)3 was heated to 420 K under the vacuum of 10 -6 Torr for 6 h. The pivalate ligand in the title compound is thought to be formed by thermal decomposition of one of the thd- ligands under the current reaction conditions. After heat-treatment, the residual product obtained was dissolved in 10 ml of methanol. The solution was stirred for 30 mins untill completely dissolved and then filtered. Green crystals, suitable for X-ray diffraction analysis, were obtained from the methanol solution, left to evaporate slowly at room temperature, after 48 h [Yield ca. 30%]. Decomposition of the crystals was observed upon heating to around 340 K, before melting.

Refinement top

The OH H atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calulated positions and treated as riding atoms: C-H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and k = 1.5 for CH3 H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with the numbering scheme and displacement ellipsoids drawn at the 35% probability level [the H atoms have been omitted for clarity].
Di-µ-pivalato-κ3O,O':O';κ3O:O, O'-bis[(methanol-κO)bis(2,2,6,6-tetramethylheptane-3,5- dionato)praseodymium(III)] top
Crystal data top
[Pr2(C5H9O2)2(C11H19O2)4(CH4O)2]F(000) = 1336
Mr = 1281.20Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9813 reflections
a = 12.6248 (14) Åθ = 2.4–25.1°
b = 16.5113 (18) ŵ = 1.55 mm1
c = 15.5218 (17) ÅT = 125 K
β = 94.372 (1)°Block, green
V = 3226.1 (6) Å30.45 × 0.38 × 0.32 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
5712 independent reflections
Radiation source: fine-focus sealed tube4618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: analytical
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.543, Tmax = 0.637k = 1919
30451 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0263P)2 + 9.812P]
where P = (Fo2 + 2Fc2)/3
5712 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Pr2(C5H9O2)2(C11H19O2)4(CH4O)2]V = 3226.1 (6) Å3
Mr = 1281.20Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.6248 (14) ŵ = 1.55 mm1
b = 16.5113 (18) ÅT = 125 K
c = 15.5218 (17) Å0.45 × 0.38 × 0.32 mm
β = 94.372 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
5712 independent reflections
Absorption correction: analytical
(SADABS; Sheldrick, 1996)
4618 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.637Rint = 0.046
30451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 1.54 e Å3
5712 reflectionsΔρmin = 0.99 e Å3
329 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.98360 (2)0.12656 (1)0.97361 (1)0.0203 (1)
O11.1711 (2)0.10441 (18)0.9683 (2)0.0262 (10)
O21.0808 (2)0.21145 (18)1.07815 (19)0.0278 (10)
O31.0094 (3)0.24206 (19)0.8849 (2)0.0308 (10)
O40.8519 (2)0.22213 (18)0.9949 (2)0.0284 (10)
O50.9711 (3)0.07544 (19)0.8224 (2)0.0341 (11)
O60.9893 (2)0.02507 (18)1.08838 (18)0.0246 (9)
O70.8080 (3)0.0510 (2)0.9706 (2)0.0322 (11)
C11.2114 (7)0.3914 (4)1.0976 (4)0.069 (3)
C21.1907 (4)0.3149 (3)1.1468 (3)0.0303 (16)
C31.2858 (5)0.2944 (4)1.2099 (4)0.064 (2)
C41.0950 (5)0.3276 (4)1.1989 (4)0.0503 (19)
C51.1705 (4)0.2443 (3)1.0824 (3)0.0258 (14)
C61.2523 (4)0.2210 (3)1.0312 (3)0.0310 (16)
C71.2507 (4)0.1533 (3)0.9784 (3)0.0275 (14)
C81.3480 (4)0.1339 (3)0.9275 (3)0.0324 (16)
C91.3721 (5)0.2076 (3)0.8721 (4)0.0462 (17)
C101.4445 (4)0.1180 (4)0.9916 (4)0.048 (2)
C111.3275 (5)0.0608 (4)0.8686 (4)0.052 (2)
C121.0987 (6)0.4229 (5)0.8574 (4)0.069 (3)
C131.0794 (5)0.3147 (4)0.7452 (4)0.0482 (19)
C140.9372 (5)0.4167 (4)0.7546 (4)0.0481 (19)
C151.0207 (4)0.3665 (3)0.8080 (3)0.0311 (14)
C160.9708 (4)0.3120 (3)0.8746 (3)0.0262 (12)
C170.8885 (4)0.3415 (3)0.9219 (3)0.0278 (16)
C180.8339 (3)0.2971 (3)0.9793 (3)0.0244 (12)
C190.7440 (4)0.3330 (3)1.0288 (3)0.0287 (16)
C200.7766 (4)0.3273 (3)1.1259 (3)0.0398 (17)
C210.7197 (4)0.4216 (3)1.0063 (3)0.0350 (17)
C220.6450 (4)0.2819 (3)1.0081 (4)0.0419 (19)
C230.9975 (4)0.0033 (3)0.8346 (3)0.0266 (12)
C241.0108 (4)0.0528 (3)0.7589 (3)0.0340 (14)
C251.0440 (6)0.0038 (4)0.6821 (4)0.060 (2)
C261.0937 (5)0.1185 (3)0.7836 (4)0.0457 (19)
C270.9012 (5)0.0911 (4)0.7371 (3)0.0490 (19)
C280.7280 (5)0.0543 (4)0.9025 (4)0.055 (2)
H10.815 (6)0.011 (4)0.986 (4)0.06 (2)*
H1A1.273200.383501.064000.1040*
H1B1.225200.436201.138300.1040*
H1C1.149100.404201.058400.1040*
H3A1.348800.286201.177800.0960*
H3B1.270800.244701.241400.0960*
H3C1.298700.339001.251100.0960*
H4A1.081700.278201.231300.0760*
H4B1.032600.340101.159700.0760*
H4C1.109000.372701.239300.0760*
H71.313800.254401.033000.0370*
H9A1.386100.254800.909400.0690*
H9B1.311000.218700.831000.0690*
H9C1.434700.196200.840300.0690*
H10A1.457100.165301.029100.0720*
H10B1.507200.108000.959700.0720*
H10C1.430700.070501.026900.0720*
H11A1.265900.071600.827900.0780*
H11B1.313200.013200.903500.0780*
H11C1.390100.050700.836500.0780*
H12A1.151900.390800.891700.1040*
H12B1.060400.457400.895900.1040*
H12C1.134100.456800.816500.1040*
H13A1.028900.278500.713400.0720*
H13B1.134100.282400.777700.0720*
H13C1.112900.350000.704400.0720*
H14A0.887300.380300.722400.0720*
H14B0.972500.451000.714000.0720*
H14C0.898500.450700.793300.0720*
H170.868700.396600.913600.0330*
H20A0.792100.270801.141500.0600*
H20B0.718500.347101.158600.0600*
H20C0.840100.360401.139700.0600*
H21A0.783400.454501.020200.0530*
H21B0.662000.440901.039800.0530*
H21C0.698300.426100.944400.0530*
H22A0.660500.225301.023000.0630*
H22B0.623200.286100.946300.0630*
H22C0.587600.301601.041700.0630*
H25A1.052500.040100.633200.0900*
H25B1.111500.023700.698000.0900*
H25C0.989200.036600.665800.0900*
H26A1.101300.154200.734000.0680*
H26B1.070400.150400.832000.0680*
H26C1.162200.093000.800700.0680*
H27A0.904900.128200.688100.0730*
H27B0.849200.048400.721900.0730*
H27C0.879600.121100.787300.0730*
H28A0.668400.019900.916200.0820*
H28B0.756500.035000.849200.0820*
H28C0.703500.110300.894500.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.0231 (1)0.0146 (1)0.0236 (1)0.0010 (1)0.0035 (1)0.0002 (1)
O10.0259 (17)0.0199 (16)0.0330 (17)0.0011 (13)0.0044 (13)0.0017 (13)
O20.0286 (18)0.0250 (16)0.0302 (17)0.0025 (14)0.0052 (13)0.0039 (13)
O30.0314 (18)0.0230 (17)0.0393 (19)0.0017 (14)0.0111 (14)0.0051 (14)
O40.0314 (18)0.0209 (16)0.0344 (17)0.0014 (14)0.0118 (14)0.0041 (13)
O50.052 (2)0.0183 (17)0.0317 (18)0.0037 (15)0.0012 (15)0.0029 (13)
O60.0296 (17)0.0212 (15)0.0233 (15)0.0004 (13)0.0042 (12)0.0026 (12)
O70.0292 (19)0.0244 (19)0.043 (2)0.0015 (15)0.0027 (15)0.0018 (16)
C10.122 (7)0.032 (3)0.058 (4)0.020 (4)0.031 (4)0.013 (3)
C20.033 (3)0.025 (2)0.033 (3)0.003 (2)0.004 (2)0.007 (2)
C30.055 (4)0.064 (4)0.069 (4)0.012 (3)0.012 (3)0.032 (4)
C40.048 (3)0.044 (3)0.060 (4)0.007 (3)0.011 (3)0.022 (3)
C50.030 (3)0.022 (2)0.025 (2)0.0015 (19)0.0001 (18)0.0026 (18)
C60.029 (3)0.024 (2)0.041 (3)0.009 (2)0.010 (2)0.009 (2)
C70.031 (3)0.025 (2)0.027 (2)0.000 (2)0.0048 (19)0.0040 (18)
C80.028 (2)0.033 (3)0.038 (3)0.004 (2)0.015 (2)0.002 (2)
C90.050 (3)0.044 (3)0.047 (3)0.003 (3)0.020 (3)0.005 (3)
C100.035 (3)0.051 (4)0.060 (4)0.007 (3)0.012 (3)0.006 (3)
C110.056 (4)0.048 (3)0.057 (4)0.012 (3)0.031 (3)0.020 (3)
C120.081 (5)0.076 (5)0.050 (4)0.050 (4)0.002 (3)0.008 (3)
C130.055 (4)0.047 (3)0.045 (3)0.009 (3)0.020 (3)0.014 (3)
C140.058 (4)0.041 (3)0.047 (3)0.009 (3)0.015 (3)0.017 (3)
C150.034 (3)0.027 (2)0.033 (2)0.002 (2)0.007 (2)0.003 (2)
C160.031 (2)0.020 (2)0.027 (2)0.0025 (19)0.0010 (19)0.0018 (18)
C170.035 (3)0.015 (2)0.034 (3)0.0027 (19)0.006 (2)0.0056 (18)
C180.023 (2)0.023 (2)0.027 (2)0.0018 (18)0.0002 (18)0.0045 (18)
C190.031 (3)0.019 (2)0.037 (3)0.0043 (19)0.008 (2)0.0000 (19)
C200.044 (3)0.039 (3)0.037 (3)0.014 (2)0.008 (2)0.003 (2)
C210.041 (3)0.028 (3)0.037 (3)0.008 (2)0.010 (2)0.003 (2)
C220.028 (3)0.037 (3)0.062 (4)0.001 (2)0.012 (2)0.001 (3)
C230.026 (2)0.025 (2)0.029 (2)0.0051 (19)0.0027 (18)0.0011 (19)
C240.059 (3)0.023 (2)0.021 (2)0.004 (2)0.010 (2)0.0028 (19)
C250.107 (6)0.041 (3)0.036 (3)0.006 (3)0.031 (3)0.001 (3)
C260.060 (4)0.037 (3)0.042 (3)0.005 (3)0.017 (3)0.009 (2)
C270.070 (4)0.042 (3)0.032 (3)0.014 (3)0.015 (3)0.002 (2)
C280.039 (3)0.067 (4)0.058 (4)0.006 (3)0.003 (3)0.011 (3)
Geometric parameters (Å, º) top
Pr1—O12.403 (3)C3—H3C0.9800
Pr1—O22.408 (3)C4—H4A0.9800
Pr1—O32.389 (3)C4—H4B0.9800
Pr1—O42.334 (3)C4—H4C0.9800
Pr1—O52.488 (3)C6—H70.9500
Pr1—O62.443 (3)C9—H9A0.9800
Pr1—O72.541 (4)C9—H9B0.9800
Pr1—O6i2.713 (3)C9—H9C0.9800
O1—C71.289 (6)C10—H10A0.9800
O2—C51.253 (6)C10—H10B0.9800
O3—C161.259 (6)C10—H10C0.9800
O4—C181.278 (6)C11—H11A0.9800
O5—C231.247 (6)C11—H11B0.9800
O6—C23i1.283 (5)C11—H11C0.9800
O7—C281.406 (7)C12—H12A0.9800
O7—H10.71 (7)C12—H12B0.9800
C1—C21.509 (8)C12—H12C0.9800
C2—C31.528 (8)C13—H13A0.9800
C2—C51.544 (7)C13—H13B0.9800
C2—C41.519 (8)C13—H13C0.9800
C5—C61.404 (7)C14—H14A0.9800
C6—C71.385 (7)C14—H14B0.9800
C7—C81.544 (7)C14—H14C0.9800
C8—C91.534 (7)C17—H170.9500
C8—C101.536 (7)C20—H20A0.9800
C8—C111.524 (8)C20—H20B0.9800
C12—C151.520 (9)C20—H20C0.9800
C13—C151.530 (8)C21—H21A0.9800
C14—C151.534 (8)C21—H21B0.9800
C15—C161.541 (7)C21—H21C0.9800
C16—C171.404 (7)C22—H22A0.9800
C17—C181.378 (7)C22—H22B0.9800
C18—C191.537 (6)C22—H22C0.9800
C19—C211.530 (7)C25—H25A0.9800
C19—C221.522 (7)C25—H25B0.9800
C19—C201.535 (7)C25—H25C0.9800
C23—C241.516 (7)C26—H26A0.9800
C24—C261.536 (8)C26—H26B0.9800
C24—C271.535 (8)C26—H26C0.9800
C24—C251.526 (8)C27—H27A0.9800
C1—H1A0.9800C27—H27B0.9800
C1—H1B0.9800C27—H27C0.9800
C1—H1C0.9800C28—H28A0.9800
C3—H3A0.9800C28—H28B0.9800
C3—H3B0.9800C28—H28C0.9800
O1—Pr1—O270.06 (10)C2—C3—H3B109.00
O1—Pr1—O385.63 (12)C2—C3—H3C110.00
O1—Pr1—O4145.29 (10)H3A—C3—H3B109.00
O1—Pr1—O584.71 (11)H3A—C3—H3C110.00
O1—Pr1—O686.92 (9)H3B—C3—H3C109.00
O1—Pr1—O7141.72 (11)C2—C4—H4A109.00
O1—Pr1—O6i72.32 (9)C2—C4—H4B109.00
O2—Pr1—O380.73 (11)C2—C4—H4C109.00
O2—Pr1—O480.97 (10)H4A—C4—H4B109.00
O2—Pr1—O5145.64 (11)H4A—C4—H4C109.00
O2—Pr1—O685.57 (10)H4B—C4—H4C110.00
O2—Pr1—O7134.20 (10)C5—C6—H7117.00
O2—Pr1—O6i134.79 (9)C7—C6—H7117.00
O3—Pr1—O470.84 (11)C8—C9—H9A110.00
O3—Pr1—O574.26 (10)C8—C9—H9B109.00
O3—Pr1—O6165.97 (10)C8—C9—H9C109.00
O3—Pr1—O7122.58 (12)H9A—C9—H9B109.00
O3—Pr1—O6i120.39 (10)H9A—C9—H9C110.00
O4—Pr1—O5111.61 (11)H9B—C9—H9C109.00
O4—Pr1—O6110.01 (10)C8—C10—H10A109.00
O4—Pr1—O772.82 (10)C8—C10—H10B109.00
O4—Pr1—O6i141.68 (9)C8—C10—H10C109.00
O5—Pr1—O6116.84 (10)H10A—C10—H10B110.00
O5—Pr1—O779.84 (11)H10A—C10—H10C109.00
O5—Pr1—O6i49.69 (9)H10B—C10—H10C109.00
O6—Pr1—O769.75 (9)C8—C11—H11A109.00
O6—Pr1—O6i68.17 (9)C8—C11—H11B109.00
O6i—Pr1—O770.97 (9)C8—C11—H11C109.00
Pr1—O1—C7131.4 (3)H11A—C11—H11B109.00
Pr1—O2—C5134.4 (3)H11A—C11—H11C110.00
Pr1—O3—C16137.5 (3)H11B—C11—H11C110.00
Pr1—O4—C18138.3 (3)C15—C12—H12A109.00
Pr1—O5—C23100.6 (3)C15—C12—H12B109.00
Pr1—O6—Pr1i111.83 (10)C15—C12—H12C109.00
Pr1—O6—C23i157.6 (3)H12A—C12—H12B109.00
Pr1i—O6—C23i89.0 (3)H12A—C12—H12C109.00
Pr1—O7—C28124.8 (3)H12B—C12—H12C110.00
Pr1—O7—H1112 (6)C15—C13—H13A110.00
C28—O7—H1111 (5)C15—C13—H13B109.00
C1—C2—C3110.6 (5)C15—C13—H13C109.00
C3—C2—C4107.9 (4)H13A—C13—H13B109.00
C3—C2—C5109.3 (4)H13A—C13—H13C109.00
C4—C2—C5110.5 (4)H13B—C13—H13C110.00
C1—C2—C4109.2 (5)C15—C14—H14A109.00
C1—C2—C5109.3 (4)C15—C14—H14B109.00
C2—C5—C6118.8 (4)C15—C14—H14C109.00
O2—C5—C2117.7 (4)H14A—C14—H14B109.00
O2—C5—C6123.5 (4)H14A—C14—H14C109.00
C5—C6—C7125.3 (5)H14B—C14—H14C110.00
O1—C7—C8116.8 (4)C16—C17—H17117.00
C6—C7—C8119.6 (4)C18—C17—H17117.00
O1—C7—C6123.6 (4)C19—C20—H20A110.00
C7—C8—C11111.5 (4)C19—C20—H20B109.00
C7—C8—C9108.8 (4)C19—C20—H20C110.00
C7—C8—C10109.1 (4)H20A—C20—H20B109.00
C10—C8—C11110.1 (5)H20A—C20—H20C109.00
C9—C8—C11108.9 (4)H20B—C20—H20C109.00
C9—C8—C10108.5 (4)C19—C21—H21A109.00
C12—C15—C14109.5 (5)C19—C21—H21B110.00
C12—C15—C16107.6 (4)C19—C21—H21C109.00
C13—C15—C16110.1 (4)H21A—C21—H21B109.00
C14—C15—C16112.3 (4)H21A—C21—H21C109.00
C13—C15—C14107.7 (4)H21B—C21—H21C110.00
C12—C15—C13109.7 (5)C19—C22—H22A109.00
C15—C16—C17120.3 (4)C19—C22—H22B109.00
O3—C16—C15116.5 (4)C19—C22—H22C109.00
O3—C16—C17123.1 (4)H22A—C22—H22B110.00
C16—C17—C18125.4 (5)H22A—C22—H22C109.00
C17—C18—C19122.9 (4)H22B—C22—H22C109.00
O4—C18—C17123.2 (4)C24—C25—H25A110.00
O4—C18—C19114.0 (4)C24—C25—H25B110.00
C18—C19—C22107.9 (4)C24—C25—H25C109.00
C20—C19—C21108.5 (4)H25A—C25—H25B110.00
C20—C19—C22109.1 (4)H25A—C25—H25C109.00
C21—C19—C22109.6 (4)H25B—C25—H25C109.00
C18—C19—C21113.4 (4)C24—C26—H26A110.00
C18—C19—C20108.3 (4)C24—C26—H26B109.00
O5—C23—O6i120.3 (4)C24—C26—H26C110.00
O5—C23—C24120.7 (4)H26A—C26—H26B109.00
O6i—C23—C24119.0 (4)H26A—C26—H26C110.00
C23—C24—C26110.6 (4)H26B—C26—H26C109.00
C23—C24—C27105.7 (4)C24—C27—H27A109.00
C25—C24—C27110.1 (4)C24—C27—H27B109.00
C26—C24—C27110.5 (4)C24—C27—H27C110.00
C25—C24—C26110.3 (5)H27A—C27—H27B109.00
C23—C24—C25109.6 (4)H27A—C27—H27C109.00
C2—C1—H1A109.00H27B—C27—H27C109.00
C2—C1—H1B110.00O7—C28—H28A110.00
C2—C1—H1C109.00O7—C28—H28B109.00
H1A—C1—H1B110.00O7—C28—H28C109.00
H1A—C1—H1C109.00H28A—C28—H28B109.00
H1B—C1—H1C109.00H28A—C28—H28C110.00
C2—C3—H3A109.00H28B—C28—H28C109.00
O2—Pr1—O1—C735.6 (4)O4—Pr1—O7—C2873.0 (4)
O3—Pr1—O1—C746.1 (4)O5—Pr1—O7—C2843.6 (4)
O4—Pr1—O1—C70.4 (5)O6—Pr1—O7—C28167.3 (4)
O5—Pr1—O1—C7120.7 (4)O6i—Pr1—O7—C2894.3 (4)
O6—Pr1—O1—C7122.0 (4)Pr1—O1—C7—C8149.2 (3)
O7—Pr1—O1—C7173.1 (3)Pr1—O1—C7—C630.4 (7)
O6i—Pr1—O1—C7169.9 (4)Pr1—O2—C5—C2161.8 (3)
O1—Pr1—O2—C529.9 (4)Pr1—O2—C5—C617.4 (7)
O3—Pr1—O2—C558.8 (4)Pr1—O3—C16—C15177.7 (3)
O4—Pr1—O2—C5130.7 (4)Pr1—O3—C16—C170.6 (8)
O5—Pr1—O2—C515.4 (5)Pr1—O4—C18—C1715.6 (7)
O6—Pr1—O2—C5118.2 (4)Pr1—O4—C18—C19165.7 (3)
O7—Pr1—O2—C5174.1 (4)Pr1—O5—C23—O6i7.1 (5)
O6i—Pr1—O2—C565.2 (4)Pr1—O5—C23—C24175.0 (4)
O1—Pr1—O3—C16146.9 (5)Pr1i—O6i—C23—O5152.6 (5)
O2—Pr1—O3—C1676.4 (5)Pr1—O6i—C23—C24175.6 (4)
O4—Pr1—O3—C167.2 (4)Pr1i—O6i—C23—C2425.4 (10)
O5—Pr1—O3—C16127.4 (5)Pr1—O6i—C23—O56.4 (5)
O7—Pr1—O3—C1660.8 (5)C1—C2—C5—O2116.5 (6)
O6i—Pr1—O3—C16146.6 (4)C3—C2—C5—C658.5 (6)
O1—Pr1—O4—C1834.9 (5)C4—C2—C5—O23.8 (6)
O2—Pr1—O4—C1868.2 (4)C3—C2—C5—O2122.3 (5)
O3—Pr1—O4—C1815.1 (4)C4—C2—C5—C6177.1 (5)
O5—Pr1—O4—C1878.6 (4)C1—C2—C5—C662.7 (6)
O6—Pr1—O4—C18150.0 (4)O2—C5—C6—C78.9 (8)
O7—Pr1—O4—C18149.9 (4)C2—C5—C6—C7171.9 (5)
O6i—Pr1—O4—C18130.2 (4)C5—C6—C7—C8178.3 (4)
O1—Pr1—O5—C2367.4 (3)C5—C6—C7—O12.1 (8)
O2—Pr1—O5—C23109.5 (3)O1—C7—C8—C10118.1 (5)
O3—Pr1—O5—C23154.4 (3)O1—C7—C8—C113.7 (6)
O4—Pr1—O5—C23144.2 (3)O1—C7—C8—C9123.8 (5)
O6—Pr1—O5—C2316.4 (3)C6—C7—C8—C11175.9 (5)
O7—Pr1—O5—C2377.4 (3)C6—C7—C8—C1062.3 (6)
O6i—Pr1—O5—C233.8 (3)C6—C7—C8—C955.9 (6)
O1—Pr1—O6—Pr1i72.17 (11)C13—C15—C16—O320.5 (6)
O2—Pr1—O6—Pr1i142.39 (11)C12—C15—C16—C1779.4 (6)
O4—Pr1—O6—Pr1i138.90 (10)C13—C15—C16—C17161.1 (5)
O5—Pr1—O6—Pr1i10.32 (15)C14—C15—C16—O3140.5 (5)
O7—Pr1—O6—Pr1i76.90 (11)C14—C15—C16—C1741.2 (6)
O6i—Pr1—O6—Pr1i0.03 (14)C12—C15—C16—O399.0 (5)
O1—Pr1—O6—C23i85.1 (7)C15—C16—C17—C18176.1 (4)
O2—Pr1—O6—C23i14.9 (7)O3—C16—C17—C185.7 (8)
O4—Pr1—O6—C23i63.8 (7)C16—C17—C18—C19179.7 (4)
O5—Pr1—O6—C23i167.6 (7)C16—C17—C18—O41.1 (8)
O7—Pr1—O6—C23i125.8 (8)C17—C18—C19—C20119.0 (5)
O6i—Pr1—O6—C23i157.3 (8)C17—C18—C19—C211.5 (6)
O1i—Pr1i—O6—Pr193.84 (12)C17—C18—C19—C22123.0 (5)
O2i—Pr1i—O6—Pr159.01 (16)O4—C18—C19—C21177.2 (4)
O3i—Pr1i—O6—Pr1167.60 (12)O4—C18—C19—C2255.7 (5)
O4i—Pr1i—O6—Pr195.03 (16)O4—C18—C19—C2062.3 (5)
O5i—Pr1i—O6—Pr1167.90 (17)O6i—C23—C24—C2631.4 (6)
O6i—Pr1i—O6—Pr10.03 (12)O6i—C23—C24—C2788.2 (5)
O7i—Pr1i—O6—Pr175.15 (11)O6i—C23—C24—C25153.2 (5)
O1—Pr1—O7—C28111.4 (4)O5—C23—C24—C2528.9 (7)
O2—Pr1—O7—C28131.0 (4)O5—C23—C24—C26150.7 (5)
O3—Pr1—O7—C2820.2 (4)O5—C23—C24—C2789.7 (6)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O1i0.71 (7)2.04 (7)2.741 (4)178 (9)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Pr2(C5H9O2)2(C11H19O2)4(CH4O)2]
Mr1281.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)12.6248 (14), 16.5113 (18), 15.5218 (17)
β (°) 94.372 (1)
V3)3226.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.45 × 0.38 × 0.32
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionAnalytical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.543, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
30451, 5712, 4618
Rint0.046
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.25
No. of reflections5712
No. of parameters329
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.54, 0.99

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1···O1i0.71 (7)2.04 (7)2.741 (4)178 (9)
Symmetry code: (i) x+2, y, z+2.
 

Acknowledgements

We thank the National Science Foundation/EPSCoR (grant No. 0554609) and the State of South Dakota, Governor's Office of Economic Development, for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaxter, I., Drake, S. R., Hursthouse, M. B., Abdul Malik, K. M., McAleese, J., Otway, D. J. & Plakatouras, J. C. (1995). Inorg. Chem. 34, 1384–1394.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEisentraut, K. J. & Sievers, R. E. (1965). J. Am. Chem. Soc. 87, 5254–5256.  CrossRef CAS Web of Science Google Scholar
First citationErasmus, C. S. & Boeyens, J. C. A. (1970). Acta Cryst. B26, 1843–1854.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeng, Q. G., Witte, R. J., Gong, Y. J., Day, E. L., Chen, J. C., May, P. S. & Berry, M. T. (2010). Chem. Mater. 22, 6056–6064.  Web of Science CrossRef CAS Google Scholar
First citationMode, V. A. & Smith, G. S. (1969). J. Inorg. Nucl. Chem. 31, 1857–1859.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSievers, R. E., Eisentraut, K. J., Springer, C. S. Jr & Meek, D. W. (1967). Lanthanide/Actinide Chemistry, edited by R. F. Gould, ch. 11, pp. 141–154. Washington, DC: American Chemical Society.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1514-m1515
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds