metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3-Benzoyl-1,7,7-tri­methyl­bi­cyclo­[2.2.1]heptan-2-olato-κ2O,O)bis­­[2-(2-pyrid­yl)phenyl-κ2C1,N]iridium(III)

aCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, People's Republic of China, and bAnalytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
*Correspondence e-mail: luodaibing690312@163.com

(Received 15 September 2011; accepted 24 September 2011; online 12 October 2011)

The title compound, [Ir(C11H8N)2(C17H19O2)], has an octa­hedral coordination geometry around the IrIII atom, retaining the cis-C,C,transN,N chelate disposition of the two 2-phenyl­pyridine ligands. The chelate rings are nearly mutually perpendicular [the inter­planar angles range from 85.48 (17) to 89.17 (19)°]. The two 2-(2-pyrid­yl)phenyl ligands are approximately planar, with the plane of the phenyl ring being inclined to that of the pyridine ring by 2.3 (3) and 5.1 (3)° in the two ligands. The inter­planar angle between the phenyl ring in 3-benzoyl-camphor and the IrO2C3 chelate ring is 35.5 (2)°.

Related literature

For general background and for related structures, see: Ulbricht et al. (2009[Ulbricht, C., Beyer, B., Friebe, C., Winter, A. & Schubert, U. (2009). Adv. Mater. 21, 4418-4441.]); Lamansky et al. (2001a[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001a). Inorg. Chem. 40, 1704-1711.]); Jones et al. (2010[Jones, P. G., Freund, A., Weinkauf, A., Kowalsky, W. & Johannes, H.-H. (2010). Acta Cryst. E66, m1088-m1089.]). For the synthesis of 3-benzoyl-camphor and the title complex, see: Tamiaki et al. (2003[Tamiaki, H., Unno, S., Takeuchi, E., Tameshinge, N., Shinoda, S. & Tsukube, H. (2003). Tetrahedron, 59, 10477-10483.]); Lamansky et al. (2001b[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001b). J. Am. Chem. Soc. 123, 4304-4312.]); Luo et al. (2011[Luo, K. J., Jiang, S. P., Wang, X., Deng, X. P., Zhu, W. G., Zhao, K. Q. & Xie, Y. (2011). Chin. J. Luminesence, 32, 639-673.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C11H8N)2(C17H19O2)]

  • Mr = 755.89

  • Monoclinic, P 21 /n

  • a = 10.4569 (6) Å

  • b = 15.0979 (9) Å

  • c = 19.9110 (11) Å

  • β = 101.755 (6)°

  • V = 3077.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.38 mm−1

  • T = 296 K

  • 0.36 × 0.32 × 0.23 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.302, Tmax = 0.433

  • 12765 measured reflections

  • 6233 independent reflections

  • 4631 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.076

  • S = 0.97

  • 6233 reflections

  • 400 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The phosphorescent cyclometalated Iridium(III) complexes have recently received considerable attention in the fabrication of phosphorescent organic light emitting diodes [OLED's] for their high quantum efficiencies, and relatively short phosphorescent lifetimes. We have synthesized a novel cyclometalated Iridium(III) complex with 3-benzoyl-camphor as ancillary ligand, and we report herein on its crystal structure.

The molecular structure of the title complex is shown in Fig. 1. The coordination at the iridium atom is octahedral. In comparison with a similar complex, bis(2-pyridylphenyl)(acetylacetonate)iridium(III) [Ir(ppy)2(acac)] (Lamansky et al., 2001a), the title complex displays longer Ir—N [2.032 (4) and 2.033 (4) Å] and Ir—O [2.153 (3) and 2.171 (3) Å] bond distances than those in Ir(ppy)2(acac) [Ir—N = 1.996 (5) and 2.001 (5) Å, and Ir—O = 2.003 (9) and 2.003 (9) Å]. In contrast the Ir—C bonds in the title complex [1.996 (5) and 2.001 (5) Å] are similar to those in Ir(ppy)2(acac) [2.003 (9) and 2.003 (9) Å].

The interplanar angles between the chelate rings, for the IrO2C3 ring A (Ir1,O1,C31,C30,C23,O2) to the IrNC3 rings B (Ir1,N1,C5,C6,C11) and C (Ir1,N2,C16,C17,C22) are 85.48 (17) and 86.79 (16) °, respectively, while the IrNC3 rings, B and C, are inclined at an angle of 89.17 (19) °. The dihedral angles between the pyridyl and phenyl rings of the 2-phenylpyridine ligands, involving atoms N1 and N2, are 2.3 (3) and 5.1 (3)°, respectively. The interplanar angle between the phenyl ring (C24-C29) in 3–benzoyl–camphor and the IrO2C3 chelate ring A is 35.5 (2) °.

Related literature top

For general background and for related structures, see: Ulbricht et al. (2009); Lamansky et al. (2001a); Jones et al. (2010). For the synthesis of 3-benzoyl-camphor and the title complex, see: Tamiaki et al. (2003); Lamansky et al. (2001b); Luo et al. (2011).

Experimental top

The 3–benzoyl–camphor was prepared according to the method of (Tamiaki et al., 2003). The Ir(III) µ–dichloro–bridged dimer, [IrCl(ppy)2]2, was prepared according to the method of (Lamansky et al., 2001b). To a solution of 3–benzoyl–camphor (5.0 mmol, 1.27 g) in 2–ethoxyethanol (30 ml), were added [IrCl(ppy)2]2 (2 mmol, 2.14 g) and anhydrous Cs2CO3 (2 mmol, 0.652 g). The mixture was stirred under an inert atmosphere at 373 K for 20 h. After cooling to room temperature, the resulting solution was filtered to remove residual Cs2CO3 and washed with water, and then concentrated under reduced pressure. The residue was purified by chromatography on silica gel [eluent: dichloromethane and petroleum ether, v/v = 2:3] Yellow crystals, suitable for X-ray diffraction analysis, were obtained by slow diffusion of methanol into a dichloromethane solution of the title complex.

Refinement top

H atoms were placed at calculated positions and treated as riding atoms: C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(aromatic), CH(methine), CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms have been omitted for clarity.
(3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato- κ2O,O)bis[2-(2-pyridyl)phenyl- κ2C1,N]iridium(III) top
Crystal data top
[Ir(C11H8N)2(C17H19O2)]F(000) = 1504
Mr = 755.89Dx = 1.631 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6379 reflections
a = 10.4569 (6) Åθ = 2.9–28.5°
b = 15.0979 (9) ŵ = 4.38 mm1
c = 19.9110 (11) ÅT = 296 K
β = 101.755 (6)°Block, yellow
V = 3077.6 (3) Å30.36 × 0.32 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
6233 independent reflections
Radiation source: Enhance (Mo) X-ray Source4631 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1618
Tmin = 0.302, Tmax = 0.433l = 2224
12765 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.002
S = 0.97Δρmax = 1.21 e Å3
6233 reflectionsΔρmin = 1.31 e Å3
400 parameters
Crystal data top
[Ir(C11H8N)2(C17H19O2)]V = 3077.6 (3) Å3
Mr = 755.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4569 (6) ŵ = 4.38 mm1
b = 15.0979 (9) ÅT = 296 K
c = 19.9110 (11) Å0.36 × 0.32 × 0.23 mm
β = 101.755 (6)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
6233 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
4631 reflections with I > 2σ(I)
Tmin = 0.302, Tmax = 0.433Rint = 0.032
12765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.97Δρmax = 1.21 e Å3
6233 reflectionsΔρmin = 1.31 e Å3
400 parameters
Special details top

Experimental. (CrysAlis PRO; Oxford Diffraction, 2010). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.011297 (17)0.240633 (12)0.384356 (9)0.03589 (7)
O10.1844 (3)0.1580 (2)0.39631 (15)0.0355 (7)
O20.0088 (3)0.2488 (2)0.27613 (16)0.0410 (8)
N10.0946 (4)0.1267 (3)0.3756 (2)0.0411 (10)
N20.1116 (4)0.3565 (3)0.40134 (18)0.0354 (9)
C10.1432 (5)0.0837 (4)0.3165 (3)0.0483 (13)
H10.12730.10730.27580.058*
C20.2153 (5)0.0065 (4)0.3132 (3)0.0551 (14)
H20.24920.02060.27150.066*
C30.2354 (5)0.0293 (4)0.3753 (3)0.0571 (16)
H30.28050.08230.37580.069*
C40.1876 (5)0.0151 (4)0.4351 (3)0.0536 (14)
H40.20330.00780.47600.064*
C50.1169 (4)0.0924 (3)0.4370 (3)0.0431 (12)
C60.0578 (4)0.1448 (3)0.4969 (2)0.0397 (12)
C70.0643 (5)0.1208 (4)0.5638 (3)0.0518 (14)
H70.10590.06850.57180.062*
C80.0086 (5)0.1750 (4)0.6182 (3)0.0574 (15)
H80.01340.15960.66290.069*
C90.0532 (6)0.2509 (4)0.6057 (3)0.0551 (15)
H90.09170.28710.64200.066*
C100.0588 (5)0.2743 (4)0.5394 (3)0.0502 (13)
H100.10040.32680.53210.060*
C110.0050 (5)0.2227 (3)0.4832 (2)0.0423 (12)
C120.2430 (5)0.3628 (4)0.4152 (3)0.0501 (14)
H120.29230.31230.41210.060*
C130.3068 (6)0.4420 (5)0.4339 (3)0.0630 (16)
H130.39750.44500.44250.076*
C140.2339 (7)0.5162 (4)0.4394 (3)0.0696 (18)
H140.27420.57000.45290.083*
C150.0998 (6)0.5094 (4)0.4245 (3)0.0545 (14)
H150.04920.55930.42750.065*
C160.0404 (5)0.4308 (4)0.4054 (2)0.0467 (13)
C170.1026 (5)0.4141 (3)0.3877 (2)0.0450 (13)
C180.1962 (6)0.4818 (4)0.3824 (3)0.0619 (16)
H180.17090.54060.39000.074*
C190.3295 (6)0.4585 (5)0.3653 (3)0.0695 (18)
H190.39330.50210.36230.083*
C200.3647 (6)0.3725 (4)0.3531 (3)0.0688 (18)
H200.45270.35760.34200.083*
C210.2731 (5)0.3079 (4)0.3569 (3)0.0592 (16)
H210.30090.24990.34750.071*
C220.1386 (5)0.3247 (3)0.3746 (2)0.0399 (12)
C230.0909 (4)0.2123 (3)0.2447 (2)0.0330 (10)
C240.0621 (4)0.2298 (3)0.1683 (2)0.0365 (11)
C250.1607 (5)0.2425 (3)0.1319 (2)0.0413 (11)
H250.24780.23870.15410.050*
C260.1288 (6)0.2608 (3)0.0621 (3)0.0556 (14)
H260.19520.26860.03790.067*
C270.0046 (6)0.2674 (4)0.0291 (3)0.0634 (17)
H270.01480.27730.01800.076*
C280.0949 (6)0.2597 (4)0.0646 (3)0.0647 (17)
H280.18120.26770.04210.078*
C290.0658 (5)0.2400 (4)0.1336 (3)0.0523 (14)
H290.13330.23340.15720.063*
C300.1920 (4)0.1572 (3)0.2748 (2)0.0337 (10)
C310.2301 (4)0.1346 (3)0.3445 (2)0.0311 (10)
C320.3490 (4)0.0745 (3)0.3523 (2)0.0349 (11)
C330.3151 (4)0.0220 (3)0.2842 (2)0.0377 (11)
C340.2894 (4)0.1080 (3)0.2407 (2)0.0377 (11)
H340.26000.09840.19130.045*
C350.4212 (5)0.1555 (4)0.2612 (2)0.0477 (13)
H35A0.48510.13110.23720.057*
H35B0.41240.21860.25190.057*
C360.4591 (5)0.1375 (3)0.3380 (2)0.0444 (12)
H36A0.46150.19190.36400.053*
H36B0.54390.10900.34960.053*
C370.1943 (5)0.0362 (4)0.2786 (3)0.0520 (14)
H37A0.16490.05440.23180.078*
H37B0.12640.00330.29330.078*
H37C0.21560.08750.30720.078*
C380.4259 (5)0.0355 (4)0.2702 (3)0.0526 (14)
H38A0.44930.07820.30630.079*
H38B0.50020.00110.26820.079*
H38C0.39840.06560.22720.079*
C390.3849 (5)0.0237 (3)0.4182 (2)0.0449 (12)
H39A0.32370.02360.41830.067*
H39B0.38300.06260.45610.067*
H39C0.47120.00040.42240.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03940 (11)0.03886 (12)0.03298 (10)0.00425 (9)0.01573 (7)0.00030 (9)
O10.0318 (18)0.049 (2)0.0268 (17)0.0043 (14)0.0096 (14)0.0017 (14)
O20.0458 (18)0.043 (2)0.0357 (17)0.0114 (15)0.0133 (14)0.0069 (15)
N10.042 (2)0.040 (2)0.045 (3)0.0126 (19)0.017 (2)0.0055 (19)
N20.038 (2)0.039 (2)0.031 (2)0.0003 (18)0.0096 (17)0.0057 (17)
C10.049 (3)0.056 (4)0.041 (3)0.004 (3)0.013 (3)0.005 (3)
C20.046 (3)0.054 (4)0.064 (4)0.003 (3)0.012 (3)0.011 (3)
C30.042 (3)0.049 (4)0.081 (5)0.001 (3)0.013 (3)0.002 (3)
C40.050 (3)0.052 (4)0.064 (4)0.002 (3)0.022 (3)0.013 (3)
C50.037 (3)0.043 (3)0.052 (3)0.007 (2)0.018 (2)0.008 (2)
C60.038 (3)0.044 (3)0.042 (3)0.009 (2)0.019 (2)0.006 (2)
C70.052 (3)0.061 (4)0.047 (3)0.001 (3)0.024 (3)0.009 (3)
C80.058 (3)0.075 (4)0.046 (3)0.016 (3)0.026 (3)0.012 (3)
C90.063 (4)0.063 (4)0.044 (3)0.016 (3)0.022 (3)0.006 (3)
C100.052 (3)0.057 (4)0.046 (3)0.006 (3)0.023 (3)0.001 (3)
C110.044 (3)0.045 (3)0.043 (3)0.010 (2)0.020 (2)0.002 (2)
C120.051 (3)0.060 (4)0.042 (3)0.002 (3)0.015 (3)0.000 (3)
C130.056 (4)0.077 (5)0.055 (4)0.012 (3)0.007 (3)0.007 (3)
C140.110 (5)0.053 (4)0.044 (3)0.027 (4)0.011 (4)0.001 (3)
C150.073 (4)0.043 (3)0.049 (3)0.005 (3)0.017 (3)0.005 (3)
C160.069 (4)0.047 (3)0.027 (3)0.000 (3)0.018 (2)0.006 (2)
C170.059 (3)0.045 (3)0.036 (3)0.015 (3)0.020 (3)0.001 (2)
C180.088 (5)0.049 (4)0.052 (4)0.019 (3)0.020 (3)0.000 (3)
C190.059 (4)0.088 (6)0.062 (4)0.027 (4)0.015 (3)0.009 (4)
C200.051 (4)0.066 (5)0.091 (5)0.018 (3)0.017 (3)0.004 (4)
C210.049 (3)0.058 (4)0.073 (4)0.010 (3)0.017 (3)0.005 (3)
C220.045 (3)0.042 (3)0.036 (3)0.010 (2)0.018 (2)0.002 (2)
C230.035 (2)0.037 (3)0.029 (2)0.002 (2)0.012 (2)0.002 (2)
C240.042 (3)0.034 (3)0.032 (2)0.002 (2)0.004 (2)0.001 (2)
C250.051 (3)0.041 (3)0.033 (2)0.003 (2)0.011 (2)0.006 (2)
C260.076 (4)0.055 (4)0.039 (3)0.003 (3)0.017 (3)0.011 (3)
C270.078 (4)0.080 (5)0.027 (3)0.001 (3)0.000 (3)0.013 (3)
C280.056 (3)0.084 (5)0.046 (3)0.012 (3)0.008 (3)0.002 (3)
C290.044 (3)0.069 (4)0.044 (3)0.005 (3)0.008 (2)0.006 (3)
C300.038 (3)0.039 (3)0.024 (2)0.000 (2)0.008 (2)0.002 (2)
C310.033 (2)0.035 (3)0.027 (2)0.0026 (19)0.0097 (19)0.001 (2)
C320.037 (3)0.040 (3)0.029 (2)0.002 (2)0.009 (2)0.002 (2)
C330.041 (3)0.041 (3)0.032 (3)0.003 (2)0.009 (2)0.001 (2)
C340.045 (3)0.044 (3)0.025 (2)0.007 (2)0.009 (2)0.001 (2)
C350.051 (3)0.054 (3)0.044 (3)0.000 (2)0.025 (3)0.007 (2)
C360.039 (3)0.054 (3)0.040 (3)0.004 (2)0.007 (2)0.002 (2)
C370.055 (3)0.051 (3)0.049 (3)0.011 (3)0.007 (3)0.002 (3)
C380.064 (3)0.051 (3)0.042 (3)0.020 (3)0.009 (3)0.002 (3)
C390.041 (3)0.055 (3)0.038 (3)0.004 (2)0.005 (2)0.008 (2)
Geometric parameters (Å, º) top
Ir1—O12.171 (3)C19—H190.9300
Ir1—O22.153 (3)C19—C201.358 (9)
Ir1—N12.033 (4)C20—H200.9300
Ir1—N22.032 (4)C20—C211.358 (7)
Ir1—C112.001 (5)C21—H210.9300
Ir1—C221.996 (5)C21—C221.402 (6)
O1—C311.272 (5)C23—C241.512 (6)
O2—C231.285 (5)C23—C301.382 (6)
N1—C11.349 (6)C24—C251.390 (6)
N1—C51.392 (6)C24—C291.384 (7)
N2—C121.349 (6)C25—H250.9300
N2—C161.358 (6)C25—C261.388 (7)
C1—H10.9300C26—H260.9300
C1—C21.383 (7)C26—C271.334 (8)
C2—H20.9300C27—H270.9300
C2—C31.404 (7)C27—C281.376 (8)
C3—H30.9300C28—H280.9300
C3—C41.368 (8)C28—C291.377 (7)
C4—H40.9300C29—H290.9300
C4—C51.377 (7)C30—C311.406 (6)
C5—C61.459 (7)C30—C341.526 (6)
C6—C71.396 (6)C31—C321.522 (6)
C6—C111.401 (6)C32—C331.549 (6)
C7—H70.9300C32—C361.564 (6)
C7—C81.388 (8)C32—C391.500 (6)
C8—H80.9300C33—C341.553 (6)
C8—C91.364 (8)C33—C371.524 (6)
C9—H90.9300C33—C381.518 (6)
C9—C101.380 (7)C34—H340.9800
C10—H100.9300C34—C351.534 (6)
C10—C111.384 (7)C35—H35A0.9700
C12—H120.9300C35—H35B0.9700
C12—C131.383 (8)C35—C361.523 (6)
C13—H130.9300C36—H36A0.9700
C13—C141.371 (8)C36—H36B0.9700
C14—H140.9300C37—H37A0.9600
C14—C151.377 (8)C37—H37B0.9600
C15—H150.9300C37—H37C0.9600
C15—C161.356 (7)C38—H38A0.9600
C16—C171.487 (7)C38—H38B0.9600
C17—C181.404 (7)C38—H38C0.9600
C17—C221.411 (7)C39—H39A0.9600
C18—H180.9300C39—H39B0.9600
C18—C191.410 (8)C39—H39C0.9600
O2—Ir1—O188.99 (11)C21—C20—H20119.5
N1—Ir1—O187.18 (13)C20—C21—H21118.5
N1—Ir1—O293.82 (14)C20—C21—C22122.9 (6)
N2—Ir1—O194.93 (14)C22—C21—H21118.5
N2—Ir1—O291.04 (13)C17—C22—Ir1114.5 (4)
N2—Ir1—N1174.74 (14)C21—C22—Ir1129.6 (4)
C11—Ir1—O190.47 (15)C21—C22—C17115.9 (5)
C11—Ir1—O2174.84 (17)O2—C23—C24113.5 (4)
C11—Ir1—N181.03 (19)O2—C23—C30125.1 (4)
C11—Ir1—N294.12 (18)C30—C23—C24121.3 (4)
C22—Ir1—O1175.56 (16)C25—C24—C23122.2 (4)
C22—Ir1—O290.97 (15)C29—C24—C23119.8 (4)
C22—Ir1—N197.25 (18)C29—C24—C25117.9 (4)
C22—Ir1—N280.63 (19)C24—C25—H25120.1
C22—Ir1—C1189.96 (19)C26—C25—C24119.8 (5)
C31—O1—Ir1120.9 (3)C26—C25—H25120.1
C23—O2—Ir1126.1 (3)C25—C26—H26119.4
C1—N1—Ir1125.7 (3)C27—C26—C25121.2 (5)
C1—N1—C5119.1 (4)C27—C26—H26119.4
C5—N1—Ir1115.2 (3)C26—C27—H27119.9
C12—N2—Ir1124.4 (3)C26—C27—C28120.2 (5)
C12—N2—C16118.5 (5)C28—C27—H27119.9
C16—N2—Ir1116.8 (3)C27—C28—H28120.2
N1—C1—H1118.3C27—C28—C29119.5 (5)
N1—C1—C2123.5 (5)C29—C28—H28120.2
C2—C1—H1118.3C24—C29—H29119.4
C1—C2—H2121.3C28—C29—C24121.2 (5)
C1—C2—C3117.5 (5)C28—C29—H29119.4
C3—C2—H2121.3C23—C30—C31127.7 (4)
C2—C3—H3120.5C23—C30—C34128.4 (4)
C4—C3—C2118.9 (5)C31—C30—C34104.0 (4)
C4—C3—H3120.5O1—C31—C30131.0 (4)
C3—C4—H4118.7O1—C31—C32121.1 (4)
C3—C4—C5122.6 (5)C30—C31—C32107.8 (4)
C5—C4—H4118.7C31—C32—C33100.3 (4)
N1—C5—C6113.4 (4)C31—C32—C36103.6 (4)
C4—C5—N1118.4 (5)C33—C32—C36101.3 (3)
C4—C5—C6128.2 (5)C39—C32—C31116.6 (4)
C7—C6—C5122.9 (5)C39—C32—C33118.5 (4)
C7—C6—C11121.3 (5)C39—C32—C36114.1 (4)
C11—C6—C5115.8 (4)C32—C33—C3492.5 (4)
C6—C7—H7120.1C37—C33—C32113.4 (3)
C8—C7—C6119.8 (5)C37—C33—C34113.2 (4)
C8—C7—H7120.1C38—C33—C32113.9 (4)
C7—C8—H8120.3C38—C33—C34115.3 (4)
C9—C8—C7119.5 (5)C38—C33—C37108.0 (4)
C9—C8—H8120.3C30—C34—C33102.4 (3)
C8—C9—H9119.9C30—C34—H34114.7
C8—C9—C10120.3 (6)C30—C34—C35107.4 (4)
C10—C9—H9119.9C33—C34—H34114.7
C9—C10—H10118.7C35—C34—C33101.4 (4)
C9—C10—C11122.7 (5)C35—C34—H34114.7
C11—C10—H10118.7C34—C35—H35A111.2
C6—C11—Ir1114.5 (4)C34—C35—H35B111.2
C10—C11—Ir1129.0 (4)H35A—C35—H35B109.1
C10—C11—C6116.4 (4)C36—C35—C34102.7 (4)
N2—C12—H12118.9C36—C35—H35A111.2
N2—C12—C13122.1 (5)C36—C35—H35B111.2
C13—C12—H12118.9C32—C36—H36A111.0
C12—C13—H13120.6C32—C36—H36B111.0
C14—C13—C12118.8 (6)C35—C36—C32104.0 (4)
C14—C13—H13120.6C35—C36—H36A111.0
C13—C14—H14120.6C35—C36—H36B111.0
C13—C14—C15118.7 (6)H36A—C36—H36B109.0
C15—C14—H14120.6C33—C37—H37A109.5
C14—C15—H15119.5C33—C37—H37B109.5
C16—C15—C14120.9 (6)C33—C37—H37C109.5
C16—C15—H15119.5H37A—C37—H37B109.5
N2—C16—C17112.5 (5)H37A—C37—H37C109.5
C15—C16—N2120.9 (5)H37B—C37—H37C109.5
C15—C16—C17126.6 (5)C33—C38—H38A109.5
C18—C17—C16123.1 (5)C33—C38—H38B109.5
C18—C17—C22121.8 (5)C33—C38—H38C109.5
C22—C17—C16115.1 (4)H38A—C38—H38B109.5
C17—C18—H18120.8H38A—C38—H38C109.5
C17—C18—C19118.4 (6)H38B—C38—H38C109.5
C19—C18—H18120.8C32—C39—H39A109.5
C18—C19—H19120.0C32—C39—H39B109.5
C20—C19—C18120.0 (6)C32—C39—H39C109.5
C20—C19—H19120.0H39A—C39—H39B109.5
C19—C20—H20119.5H39A—C39—H39C109.5
C21—C20—C19121.0 (6)H39B—C39—H39C109.5
Ir1—O1—C31—C304.1 (7)C11—Ir1—N1—C51.2 (3)
Ir1—O1—C31—C32178.1 (3)C11—Ir1—N2—C1290.3 (4)
Ir1—O2—C23—C24179.6 (3)C11—Ir1—N2—C1683.1 (3)
Ir1—O2—C23—C303.6 (7)C11—Ir1—C22—C1790.6 (4)
Ir1—N1—C1—C2179.7 (4)C11—Ir1—C22—C2189.3 (5)
Ir1—N1—C5—C4179.7 (4)C11—C6—C7—C80.5 (7)
Ir1—N1—C5—C60.8 (5)C12—N2—C16—C151.5 (7)
Ir1—N2—C12—C13172.6 (4)C12—N2—C16—C17179.0 (4)
Ir1—N2—C16—C15172.3 (4)C12—C13—C14—C151.5 (8)
Ir1—N2—C16—C177.2 (5)C13—C14—C15—C160.7 (8)
O1—Ir1—O2—C230.2 (4)C14—C15—C16—N20.9 (8)
O1—Ir1—N1—C190.4 (4)C14—C15—C16—C17179.7 (5)
O1—Ir1—N1—C589.7 (3)C15—C16—C17—C186.2 (8)
O1—Ir1—N2—C120.5 (4)C15—C16—C17—C22175.4 (5)
O1—Ir1—N2—C16173.9 (3)C16—N2—C12—C130.6 (7)
O1—Ir1—C11—C684.1 (4)C16—C17—C18—C19179.9 (5)
O1—Ir1—C11—C1092.7 (5)C16—C17—C22—Ir10.9 (5)
O1—Ir1—C22—C175 (2)C16—C17—C22—C21179.2 (4)
O1—Ir1—C22—C21175.2 (16)C17—C18—C19—C201.2 (9)
O1—C31—C32—C33146.6 (4)C18—C17—C22—Ir1179.4 (4)
O1—C31—C32—C36109.0 (4)C18—C17—C22—C210.8 (7)
O1—C31—C32—C3917.2 (6)C18—C19—C20—C210.2 (10)
O2—Ir1—O1—C313.3 (3)C19—C20—C21—C221.2 (9)
O2—Ir1—N1—C11.6 (4)C20—C21—C22—Ir1179.2 (5)
O2—Ir1—N1—C5178.5 (3)C20—C21—C22—C170.7 (8)
O2—Ir1—N2—C1289.6 (4)C22—Ir1—O1—C3192.8 (19)
O2—Ir1—N2—C1697.0 (3)C22—Ir1—O2—C23175.3 (4)
O2—Ir1—C11—C60.1 (19)C22—Ir1—N1—C189.9 (4)
O2—Ir1—C11—C10176.7 (14)C22—Ir1—N1—C590.0 (3)
O2—Ir1—C22—C1794.5 (4)C22—Ir1—N2—C12179.6 (4)
O2—Ir1—C22—C2185.7 (4)C22—Ir1—N2—C166.2 (3)
O2—C23—C24—C25143.4 (4)C22—Ir1—C11—C6100.3 (4)
O2—C23—C24—C2931.9 (6)C22—Ir1—C11—C1082.8 (5)
O2—C23—C30—C314.2 (8)C22—C17—C18—C191.7 (8)
O2—C23—C30—C34176.9 (4)C23—C24—C25—C26178.2 (4)
N1—Ir1—O1—C3190.6 (3)C23—C24—C29—C28177.3 (5)
N1—Ir1—O2—C2387.3 (4)C23—C30—C31—O10.3 (8)
N1—Ir1—N2—C12112.9 (16)C23—C30—C31—C32178.2 (5)
N1—Ir1—N2—C1660.5 (17)C23—C30—C34—C33146.9 (5)
N1—Ir1—C11—C63.0 (3)C23—C30—C34—C35106.7 (5)
N1—Ir1—C11—C10179.8 (5)C24—C23—C30—C31179.9 (4)
N1—Ir1—C22—C17171.5 (3)C24—C23—C30—C341.2 (8)
N1—Ir1—C22—C218.3 (5)C24—C25—C26—C270.6 (8)
N1—C1—C2—C31.6 (8)C25—C24—C29—C281.7 (8)
N1—C5—C6—C7177.8 (4)C25—C26—C27—C282.7 (9)
N1—C5—C6—C113.3 (6)C26—C27—C28—C293.7 (9)
N2—Ir1—O1—C3194.2 (3)C27—C28—C29—C241.5 (9)
N2—Ir1—O2—C2394.7 (4)C29—C24—C25—C262.8 (7)
N2—Ir1—N1—C1155.9 (15)C30—C23—C24—C2540.4 (7)
N2—Ir1—N1—C524.0 (18)C30—C23—C24—C29144.2 (5)
N2—Ir1—C11—C6179.0 (3)C30—C31—C32—C3335.2 (4)
N2—Ir1—C11—C102.2 (5)C30—C31—C32—C3669.2 (4)
N2—Ir1—C22—C173.6 (3)C30—C31—C32—C39164.6 (4)
N2—Ir1—C22—C21176.6 (5)C30—C34—C35—C3667.0 (5)
N2—C12—C13—C140.9 (8)C31—C30—C34—C3334.0 (5)
N2—C16—C17—C18174.3 (4)C31—C30—C34—C3572.4 (4)
N2—C16—C17—C224.1 (6)C31—C32—C33—C3451.7 (4)
C1—N1—C5—C40.4 (7)C31—C32—C33—C3765.0 (5)
C1—N1—C5—C6179.3 (4)C31—C32—C33—C38170.9 (4)
C1—C2—C3—C42.4 (8)C31—C32—C36—C3571.1 (4)
C2—C3—C4—C51.9 (8)C32—C33—C34—C3052.6 (4)
C3—C4—C5—N10.5 (8)C32—C33—C34—C3558.3 (4)
C3—C4—C5—C6178.2 (5)C33—C32—C36—C3532.6 (5)
C4—C5—C6—C71.0 (8)C33—C34—C35—C3640.0 (4)
C4—C5—C6—C11177.8 (5)C34—C30—C31—O1178.8 (5)
C5—N1—C1—C20.2 (7)C34—C30—C31—C320.8 (5)
C5—C6—C7—C8178.4 (4)C34—C35—C36—C324.4 (5)
C5—C6—C11—Ir14.3 (5)C36—C32—C33—C3454.5 (4)
C5—C6—C11—C10178.4 (4)C36—C32—C33—C37171.2 (4)
C6—C7—C8—C90.6 (8)C36—C32—C33—C3864.7 (5)
C7—C6—C11—Ir1176.8 (4)C37—C33—C34—C3064.3 (5)
C7—C6—C11—C100.5 (7)C37—C33—C34—C35175.2 (4)
C7—C8—C9—C100.8 (8)C38—C33—C34—C30170.6 (4)
C8—C9—C10—C110.9 (8)C38—C33—C34—C3559.7 (5)
C9—C10—C11—Ir1176.1 (4)C39—C32—C33—C34179.8 (4)
C9—C10—C11—C60.7 (7)C39—C32—C33—C3763.1 (5)
C11—Ir1—O1—C31171.6 (3)C39—C32—C33—C3861.0 (5)
C11—Ir1—O2—C2384.2 (17)C39—C32—C36—C35161.1 (4)
C11—Ir1—N1—C1178.7 (4)

Experimental details

Crystal data
Chemical formula[Ir(C11H8N)2(C17H19O2)]
Mr755.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.4569 (6), 15.0979 (9), 19.9110 (11)
β (°) 101.755 (6)
V3)3077.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.38
Crystal size (mm)0.36 × 0.32 × 0.23
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.302, 0.433
No. of measured, independent and
observed [I > 2σ(I)] reflections
12765, 6233, 4631
Rint0.032
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.076, 0.97
No. of reflections6233
No. of parameters400
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

Support from the National Natural Science Foundation of China (grant Nos. 21072141, 21172161) is gratefully acknowledged.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G., Freund, A., Weinkauf, A., Kowalsky, W. & Johannes, H.-H. (2010). Acta Cryst. E66, m1088–m1089.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel–Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001a). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H. E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001b). J. Am. Chem. Soc. 123, 4304–4312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, K. J., Jiang, S. P., Wang, X., Deng, X. P., Zhu, W. G., Zhao, K. Q. & Xie, Y. (2011). Chin. J. Luminesence, 32, 639–673.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamiaki, H., Unno, S., Takeuchi, E., Tameshinge, N., Shinoda, S. & Tsukube, H. (2003). Tetrahedron, 59, 10477–10483.  Web of Science CrossRef CAS Google Scholar
First citationUlbricht, C., Beyer, B., Friebe, C., Winter, A. & Schubert, U. (2009). Adv. Mater. 21, 4418–4441.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds