metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1531-m1532

Bis(7-amino-1,2,4-triazolo[1,5-a]pyrimidin-4-ium) bis­­(oxalato-κ2O1,O2)cuprate(II) dihydrate

aDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, c/ Severo Ochoa s/n, E-18071 Granada, Spain, and bDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: jsalas@ugr.es

(Received 21 September 2011; accepted 3 October 2011; online 12 October 2011)

The structure of the title ionic compound, (C5H6N5)2[Cu(C2O4)2]·2H2O, consists of a centrosymmetric copper(II) oxalate dianion, two monoprotonated mol­ecules of the adenine analog 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp) and two water mol­ecules of crystallization. The CuII ion, located on an inversion center, exhibits a sligthly distorted square-planar coordination geometry, in which two oxalate anions bind in a bidentate fashion. The triazolopyrimidine ligand is protonated at the N atom in position 4, instead of its most basic N atom in position 3. This fact may be explained by the network stability, which is provided through the formation of a two-dimensional wave-like network parallel to (50[\overline1]) by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. These nets are further connected via C—H⋯O inter­actions.

Related literature

For the design and synthesis of biomimetic systems, see: Hannon (2007[Hannon, M. J. (2007). Chem. Soc. Rev. 36, 280-295.]); Legraverend & Grierson (2006[Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987-4006.]). For the coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives, see: Salas et al. (1999[Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193-195, 1119-1142.]); Caballero et al. (2011[Caballero, A. B., Maclaren, J. K., Rodríguez-Diéguez, A., Vidal, I., Dobado, J., Salas, J. M. & Janiak, C. (2011). Dalton Trans. 40, doi:10/1039/c1dt10603a.]). For coordination compounds of the protonated form of triazolopyrimidine, most of them bearing the 5,7-dimethyl­ated derivative, see: Szlyk et al. (2002[Szlyk, E., Pazderski, L., Lakomska, I., Surdykowski, A., Glowiak, T., Sitkowski, J. & Kozerski, L. (2002). Polyhedron, 21, 343-348.]); Maldonado et al. (2005[Maldonado, C. R., Quirós, M., Salas, J. M. & Sánchez, M. P. (2005). Acta Cryst. E61, m1721-m1723.], 2008[Maldonado, C. R., Quirós, M. & Salas, J. M. (2008). J. Mol. Struct. 882, 30-34.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6N5)2[Cu(C2O4)2]·2H2O

  • Mr = 547.91

  • Monoclinic, P 21 /c

  • a = 3.6599 (2) Å

  • b = 24.1977 (10) Å

  • c = 11.1963 (5) Å

  • β = 92.344 (4)°

  • V = 990.73 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 293 K

  • 0.59 × 0.07 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.675, Tmax = 0.950

  • 8945 measured reflections

  • 2170 independent reflections

  • 1476 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 0.91

  • 2170 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = ? e Å−3

  • Δρmin = ? e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A⋯O3i 0.86 1.85 2.685 (3) 165
O1W—H11W⋯N1Aii 0.86 2.38 3.197 (4) 157
O1W—H12W⋯O1iii 0.86 2.15 2.985 (4) 163
N7A—H71A⋯O4iv 0.86 2.00 2.856 (3) 170
N7A—H72A⋯O1W 0.86 2.01 2.793 (4) 151
C2A—H2A⋯O2v 0.93 2.46 3.320 (3) 154
C5A—H5A⋯O2i 0.93 2.45 3.126 (3) 129
C6A—H6A⋯O3iv 0.93 2.39 3.246 (3) 153
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) -x+2, -y, -z+2; (iv) x+1, y, z; (v) x-1, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the recent years, the rational design and synthesis of biomimetic systems based on the interaction of biologically relevant molecules with inorganic species has aroused a remarkable research interest. The study of these systems not only stems from the desire to better understand the complex interactions often present in different molecular biorecognition processes (Hannon, 2007), but also to afford a powerful tool for the improvement of pharmaceutical agents (Legraverend & Grierson, 2006). 1,2,4-triazolo[1,5-a]pyrimidines may be used as purine analogs to obtain new biomimetic systems with interesting physical and biological properties, which might differ from those of purine-based systems due to their slightly different atomic arrangement. Previous studies revealed that the coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives displays great versatility, binding metal ions in several different ways, either in a monodentate (usually through the N atom in position 3), or in a bidentate fashion, bridging metal atoms and leading to binuclear or polynuclear species with interesting metal-metal interactions (Salas et al., 1999; Caballero et al., 2011). However, few examples containing a protonated form of the triazolopyrimidine have been reported, most of them bearing the 5,7-dimethylated derivative (Szlyk et al., 2002; Maldonado et al., 2005; Maldonado et al., 2008). To the best of our knowledge, the copper(II) complex reported herein is the only one obtained with the protonated form of the 7-amino derivative, 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp).

The molecular structure of the title compound is illustrated in Fig. 1. It consists of an dianionic copper(II) oxalate complex, showing a square planar geometry, two monoprotonated 7atp cations and two crystallization water molecules. The copper(II) ion is coordinated to two oxalate anions, which display a bidentate \k2O,O' mode and are related by an inversion centre. The protonation of 7atp occured through the N atom in position 4, N4, in a neutral-slightly basic media. This may be favoured by the formation of a stable two-dimensional network built from N-H···O, O-H···N and O-H···O hydrogen bonds involving the crystallization water molecules, the oxalate O atoms and the amine group (Table 1 and Fig. 2). These nets are further connected via C-H···O interactions (Table 1).

Related literature top

For the design and synthesis of biomimetic systems, see: Hannon (2007); Legraverend & Grierson (2006). For the coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives, see: Salas et al. (1999); Caballero et al. (2011). For coordination compounds of the protonated form of triazolopyrimidine, most of them bearing the 5,7-dimethylated derivative, see: Szlyk et al. (2002); Maldonado et al. (2005, 2008). AUTHOR: please supply values for the following data names which are missing from the CIF: _refine_diff_density_max _refine_diff_density_min _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_full _diffrn_reflns_theta_full _diffrn_measured_fraction_theta_max _diffrn_measured_fraction_theta_full

Experimental top

The title compound was prepare by dissolving K2[Cu(ox)2].2H2O (0.16 mmol, 0.057 g) in 10 ml of a hot aqueous solution of potassium oxalate dihydrated (0.16 mmol, 0.029 g). 10 ml of an aqueous solution of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp) (0.032 mmol, 0.043 g) was then added and the colour changed from blue to green. The solution was stirred at 50° C for 30 min, and then left standing at room temperature. After one day, prismatic dark-green crystals of the polymeric complex {[Cu(ox)(7atp)2].3H2O}n were formed and filtered off. After 3–4 days needle-shaped blue crystals of the title complex were isolated and used for the present X-ray diffraction studies.

Refinement top

The H atoms were positioned geometrically and treated as riding atoms: O-H = 0.86 Å, N-H = 0.86 Å, C—H = 0.93 Å, with Uiso(H) = k × Ueq(O,N,C) where k = 1.5 for the water H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the asymmetric unit of the title compound, showing the atom labels and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View along the a-axis showing the formation of the hydrogen bonded (thin blue lines) layer (a); view of the packing of the layers (b).
Bis(7-amino-1,2,4-triazolo[1,5-a]pyrimidin-4-ium) bis(oxalato-κ2O1,O2)cuprate(II) dihydrate top
Crystal data top
(C5H6N5)2[Cu(C2O4)2]·2H2OF(000) = 558
Mr = 547.91Dx = 1.837 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8945 reflections
a = 3.6599 (2) Åθ = 3.1–27.1°
b = 24.1977 (10) ŵ = 1.19 mm1
c = 11.1963 (5) ÅT = 293 K
β = 92.344 (4)°Needle, blue
V = 990.73 (8) Å30.59 × 0.07 × 0.05 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2170 independent reflections
Radiation source: fine-focus sealed tube1476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.1°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 34
Tmin = 0.675, Tmax = 0.950k = 3030
8945 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0552P)2]
where P = (Fo2 + 2Fc2)/3
2170 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C5H6N5)2[Cu(C2O4)2]·2H2OV = 990.73 (8) Å3
Mr = 547.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 3.6599 (2) ŵ = 1.19 mm1
b = 24.1977 (10) ÅT = 293 K
c = 11.1963 (5) Å0.59 × 0.07 × 0.05 mm
β = 92.344 (4)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2170 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
1476 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.950Rint = 0.039
8945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.91Δρmax = 0.47 e Å3
2170 reflectionsΔρmin = 0.42 e Å3
160 parameters
Special details top

Experimental. (CrysAlis RED; Oxford Diffraction, 2006) Analytical numeric absorption correction using a multifaceted crystal.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.500000.000001.000000.0235 (2)
O10.8421 (5)0.03719 (7)1.10908 (16)0.0295 (6)
O21.0514 (6)0.12235 (8)1.14517 (17)0.0308 (7)
O30.6886 (6)0.15536 (7)0.93468 (16)0.0305 (7)
O40.4741 (5)0.06976 (7)0.91704 (15)0.0238 (6)
C10.8723 (7)0.08907 (11)1.0863 (2)0.0203 (8)
C20.6629 (8)0.10777 (10)0.9703 (2)0.0209 (8)
N1A0.7487 (7)0.11549 (9)0.4729 (2)0.0255 (7)
N3A0.6315 (6)0.20038 (10)0.39005 (19)0.0259 (7)
N4A0.9285 (6)0.25338 (9)0.5496 (2)0.0230 (7)
N7A1.1147 (7)0.10032 (9)0.6956 (2)0.0297 (8)
N8A0.8882 (6)0.15695 (8)0.54508 (18)0.0193 (7)
C2A0.6026 (8)0.14399 (12)0.3835 (2)0.0264 (9)
C3A0.8143 (8)0.20707 (10)0.4929 (2)0.0203 (8)
C5A1.1084 (8)0.24886 (11)0.6569 (2)0.0250 (9)
C6A1.1821 (8)0.19969 (11)0.7099 (2)0.0238 (8)
C7A1.0687 (7)0.15005 (11)0.6543 (2)0.0215 (8)
O1W0.9004 (13)0.00801 (11)0.6425 (3)0.1037 (16)
H2A0.484600.126700.318500.0320*
H4A0.887600.285300.518000.0280*
H5A1.185000.281000.696000.0300*
H6A1.308700.198700.783600.0290*
H71A1.226800.095200.763700.0360*
H72A1.033000.072500.654800.0360*
H11W1.001400.030500.593900.1560*
H12W0.953100.023000.710500.1560*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0302 (3)0.0162 (2)0.0232 (3)0.0033 (2)0.0109 (2)0.0037 (2)
O10.0395 (13)0.0194 (9)0.0280 (11)0.0060 (9)0.0163 (9)0.0058 (8)
O20.0368 (13)0.0263 (10)0.0282 (11)0.0057 (9)0.0135 (9)0.0037 (9)
O30.0431 (13)0.0175 (10)0.0297 (11)0.0070 (9)0.0121 (9)0.0062 (8)
O40.0318 (12)0.0176 (9)0.0210 (10)0.0046 (8)0.0126 (8)0.0031 (7)
C10.0203 (15)0.0206 (13)0.0199 (13)0.0003 (12)0.0013 (11)0.0007 (11)
C20.0231 (15)0.0197 (13)0.0198 (14)0.0013 (12)0.0001 (11)0.0015 (11)
N1A0.0287 (14)0.0247 (12)0.0226 (12)0.0018 (11)0.0032 (10)0.0034 (9)
N3A0.0259 (13)0.0319 (13)0.0197 (12)0.0030 (11)0.0022 (10)0.0052 (10)
N4A0.0253 (13)0.0185 (11)0.0248 (12)0.0040 (10)0.0019 (10)0.0034 (9)
N7A0.0424 (16)0.0253 (13)0.0203 (12)0.0031 (12)0.0109 (11)0.0036 (10)
N8A0.0216 (13)0.0206 (11)0.0156 (11)0.0012 (10)0.0020 (9)0.0007 (9)
C2A0.0243 (16)0.0347 (16)0.0199 (15)0.0011 (14)0.0026 (12)0.0033 (12)
C3A0.0184 (14)0.0221 (13)0.0205 (14)0.0037 (12)0.0017 (11)0.0038 (11)
C5A0.0215 (15)0.0282 (15)0.0253 (15)0.0000 (12)0.0003 (12)0.0058 (12)
C6A0.0211 (15)0.0311 (15)0.0188 (14)0.0003 (13)0.0049 (11)0.0006 (12)
C7A0.0190 (15)0.0282 (14)0.0174 (13)0.0018 (12)0.0021 (11)0.0036 (11)
O1W0.196 (4)0.0385 (16)0.075 (2)0.000 (2)0.014 (2)0.0046 (14)
Geometric parameters (Å, º) top
Cu1—O11.9349 (18)N3A—C2A1.370 (4)
Cu1—O41.9272 (17)N4A—C5A1.351 (3)
Cu1—O1i2.8879 (18)N4A—C3A1.346 (3)
Cu1—O1ii1.9349 (18)N7A—C7A1.298 (3)
Cu1—O4ii1.9272 (17)N8A—C3A1.368 (3)
Cu1—O1iii2.8879 (18)N8A—C7A1.376 (3)
O1—C11.287 (3)N4A—H4A0.8600
O2—C11.215 (3)N7A—H72A0.8600
O3—C21.224 (3)N7A—H71A0.8600
O4—C21.283 (3)C1—C21.548 (3)
O1W—H11W0.8600C5A—C6A1.352 (4)
O1W—H12W0.8600C6A—C7A1.408 (4)
N1A—C2A1.311 (3)C2A—H2A0.9300
N1A—N8A1.374 (3)C5A—H5A0.9300
N3A—C3A1.318 (3)C6A—H6A0.9300
O1—Cu1—O485.10 (7)C3A—N4A—H4A121.00
O1—Cu1—O1i96.74 (6)C5A—N4A—H4A121.00
O1—Cu1—O1ii180.00H71A—N7A—H72A120.00
O1—Cu1—O4ii94.90 (7)C7A—N7A—H72A120.00
O1—Cu1—O1iii83.26 (6)C7A—N7A—H71A120.00
O1i—Cu1—O484.58 (6)O1—C1—O2126.0 (2)
O1ii—Cu1—O494.90 (7)O2—C1—C2119.9 (2)
O4—Cu1—O4ii180.00O1—C1—C2114.1 (2)
O1iii—Cu1—O495.43 (6)O3—C2—C1120.4 (2)
O1i—Cu1—O1ii83.26 (6)O4—C2—C1114.8 (2)
O1i—Cu1—O4ii95.43 (6)O3—C2—O4124.8 (2)
O1i—Cu1—O1iii180.00N1A—C2A—N3A117.0 (2)
O1ii—Cu1—O4ii85.10 (7)N3A—C3A—N4A130.6 (2)
O1ii—Cu1—O1iii96.74 (6)N4A—C3A—N8A119.0 (2)
O1iii—Cu1—O4ii84.58 (6)N3A—C3A—N8A110.4 (2)
Cu1—O1—C1112.79 (15)N4A—C5A—C6A122.9 (2)
Cu1—O1—Cu1iv96.74 (7)C5A—C6A—C7A120.5 (2)
Cu1iv—O1—C198.07 (15)N8A—C7A—C6A114.3 (2)
Cu1—O4—C2112.90 (15)N7A—C7A—C6A127.0 (2)
H11W—O1W—H12W102.00N7A—C7A—N8A118.7 (2)
N8A—N1A—C2A101.3 (2)N3A—C2A—H2A121.00
C2A—N3A—C3A101.8 (2)N1A—C2A—H2A121.00
C3A—N4A—C5A118.9 (2)N4A—C5A—H5A119.00
C3A—N8A—C7A124.5 (2)C6A—C5A—H5A119.00
N1A—N8A—C3A109.5 (2)C5A—C6A—H6A120.00
N1A—N8A—C7A126.0 (2)C7A—C6A—H6A120.00
O4—Cu1—O1—C15.64 (17)C2A—N3A—C3A—N8A0.3 (3)
O4—Cu1—O1—Cu1iv96.07 (7)C5A—N4A—C3A—N3A178.9 (3)
O1i—Cu1—O1—C178.29 (17)C3A—N4A—C5A—C6A0.5 (4)
O4ii—Cu1—O1—C1174.36 (17)C5A—N4A—C3A—N8A0.8 (4)
O1iii—Cu1—O1—C1101.71 (17)C7A—N8A—C3A—N4A1.2 (4)
O1—Cu1—O4—C23.55 (18)C3A—N8A—C7A—C6A1.1 (4)
O1i—Cu1—O4—C293.71 (18)C7A—N8A—C3A—N3A178.6 (2)
O1ii—Cu1—O4—C2176.45 (18)N1A—N8A—C3A—N3A0.3 (3)
O1iii—Cu1—O4—C286.29 (18)N1A—N8A—C3A—N4A180.0 (2)
Cu1—O1—C1—O2175.4 (2)N1A—N8A—C7A—C6A179.7 (2)
Cu1—O1—C1—C26.3 (3)N1A—N8A—C7A—N7A0.3 (4)
Cu1iv—O1—C1—O283.8 (3)C3A—N8A—C7A—N7A178.4 (3)
Cu1iv—O1—C1—C294.6 (2)O2—C1—C2—O4178.0 (2)
Cu1—O4—C2—O3180.0 (2)O2—C1—C2—O33.1 (4)
Cu1—O4—C2—C11.1 (3)O1—C1—C2—O3175.4 (2)
N8A—N1A—C2A—N3A0.2 (3)O1—C1—C2—O43.6 (3)
C2A—N1A—N8A—C3A0.0 (3)N4A—C5A—C6A—C7A0.5 (4)
C2A—N1A—N8A—C7A178.8 (2)C5A—C6A—C7A—N7A178.7 (3)
C3A—N3A—C2A—N1A0.4 (3)C5A—C6A—C7A—N8A0.8 (4)
C2A—N3A—C3A—N4A180.0 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+2; (iii) x+2, y, z+2; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A···O3v0.861.852.685 (3)165
O1W—H11W···N1Avi0.862.383.197 (4)157
O1W—H12W···O1iii0.862.152.985 (4)163
N7A—H71A···O4iv0.862.002.856 (3)170
N7A—H72A···O1W0.862.012.793 (4)151
N7A—H72A···N1A0.862.482.806 (3)103
C2A—H2A···O2vii0.932.463.320 (3)154
C5A—H5A···O2v0.932.453.126 (3)129
C6A—H6A···O3iv0.932.393.246 (3)153
Symmetry codes: (iii) x+2, y, z+2; (iv) x+1, y, z; (v) x, y+1/2, z1/2; (vi) x+2, y, z+1; (vii) x1, y, z1.

Experimental details

Crystal data
Chemical formula(C5H6N5)2[Cu(C2O4)2]·2H2O
Mr547.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.6599 (2), 24.1977 (10), 11.1963 (5)
β (°) 92.344 (4)
V3)990.73 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.59 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.675, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
8945, 2170, 1476
Rint0.039
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 0.91
No. of reflections2170
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4A—H4A···O3i0.861.852.685 (3)165
O1W—H11W···N1Aii0.862.383.197 (4)157
O1W—H12W···O1iii0.862.152.985 (4)163
N7A—H71A···O4iv0.862.002.856 (3)170
N7A—H72A···O1W0.862.012.793 (4)151
C2A—H2A···O2v0.932.463.320 (3)154
C5A—H5A···O2i0.932.453.126 (3)129
C6A—H6A···O3iv0.932.393.246 (3)153
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+1; (iii) x+2, y, z+2; (iv) x+1, y, z; (v) x1, y, z1.
 

Acknowledgements

Financial support from the Junta de Andalucía (FQM-3705 and FQM-4228) and the Spanish Ministry of Education (FPU fellowship to ABC) is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCaballero, A. B., Maclaren, J. K., Rodríguez-Diéguez, A., Vidal, I., Dobado, J., Salas, J. M. & Janiak, C. (2011). Dalton Trans. 40, doi:10/1039/c1dt10603a.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHannon, M. J. (2007). Chem. Soc. Rev. 36, 280–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLegraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987–4006.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaldonado, C. R., Quirós, M. & Salas, J. M. (2008). J. Mol. Struct. 882, 30–34.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaldonado, C. R., Quirós, M., Salas, J. M. & Sánchez, M. P. (2005). Acta Cryst. E61, m1721–m1723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSalas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzlyk, E., Pazderski, L., Lakomska, I., Surdykowski, A., Glowiak, T., Sitkowski, J. & Kozerski, L. (2002). Polyhedron, 21, 343–348.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1531-m1532
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds