metal-organic compounds
Bis(7-amino-1,2,4-triazolo[1,5-a]pyrimidin-4-ium) bis(oxalato-κ2O1,O2)cuprate(II) dihydrate
aDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, c/ Severo Ochoa s/n, E-18071 Granada, Spain, and bDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
*Correspondence e-mail: jsalas@ugr.es
The structure of the title ionic compound, (C5H6N5)2[Cu(C2O4)2]·2H2O, consists of a centrosymmetric copper(II) oxalate dianion, two monoprotonated molecules of the adenine analog 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp) and two water molecules of crystallization. The CuII ion, located on an inversion center, exhibits a sligthly distorted square-planar coordination geometry, in which two oxalate anions bind in a bidentate fashion. The triazolopyrimidine ligand is protonated at the N atom in position 4, instead of its most basic N atom in position 3. This fact may be explained by the network stability, which is provided through the formation of a two-dimensional wave-like network parallel to (50) by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds. These nets are further connected via C—H⋯O interactions.
Related literature
For the design and synthesis of biomimetic systems, see: Hannon (2007); Legraverend & Grierson (2006). For the coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives, see: Salas et al. (1999); Caballero et al. (2011). For coordination compounds of the protonated form of triazolopyrimidine, most of them bearing the 5,7-dimethylated derivative, see: Szlyk et al. (2002); Maldonado et al. (2005, 2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811040724/su2318sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040724/su2318Isup2.hkl
The title compound was prepare by dissolving K2[Cu(ox)2].2H2O (0.16 mmol, 0.057 g) in 10 ml of a hot aqueous solution of potassium oxalate dihydrated (0.16 mmol, 0.029 g). 10 ml of an aqueous solution of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp) (0.032 mmol, 0.043 g) was then added and the colour changed from blue to green. The solution was stirred at 50° C for 30 min, and then left standing at room temperature. After one day, prismatic dark-green crystals of the polymeric complex {[Cu(ox)(7atp)2].3H2O}n were formed and filtered off. After 3–4 days needle-shaped blue crystals of the title complex were isolated and used for the present X-ray diffraction studies.
The H atoms were positioned geometrically and treated as riding atoms: O-H = 0.86 Å, N-H = 0.86 Å, C—H = 0.93 Å, with Uiso(H) = k × Ueq(O,N,C) where k = 1.5 for the water H atoms, and k = 1.2 for all other H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. ORTEP representation of the asymmetric unit of the title compound, showing the atom labels and displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. View along the a-axis showing the formation of the hydrogen bonded (thin blue lines) layer (a); view of the packing of the layers (b). |
(C5H6N5)2[Cu(C2O4)2]·2H2O | F(000) = 558 |
Mr = 547.91 | Dx = 1.837 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8945 reflections |
a = 3.6599 (2) Å | θ = 3.1–27.1° |
b = 24.1977 (10) Å | µ = 1.19 mm−1 |
c = 11.1963 (5) Å | T = 293 K |
β = 92.344 (4)° | Needle, blue |
V = 990.73 (8) Å3 | 0.59 × 0.07 × 0.05 mm |
Z = 2 |
Oxford Diffraction Xcalibur CCD diffractometer | 2170 independent reflections |
Radiation source: fine-focus sealed tube | 1476 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 27.1°, θmin = 3.1° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | h = −3→4 |
Tmin = 0.675, Tmax = 0.950 | k = −30→30 |
8945 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.91 | w = 1/[σ2(Fo2) + (0.0552P)2] where P = (Fo2 + 2Fc2)/3 |
2170 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
(C5H6N5)2[Cu(C2O4)2]·2H2O | V = 990.73 (8) Å3 |
Mr = 547.91 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.6599 (2) Å | µ = 1.19 mm−1 |
b = 24.1977 (10) Å | T = 293 K |
c = 11.1963 (5) Å | 0.59 × 0.07 × 0.05 mm |
β = 92.344 (4)° |
Oxford Diffraction Xcalibur CCD diffractometer | 2170 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | 1476 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.950 | Rint = 0.039 |
8945 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 0.91 | Δρmax = 0.47 e Å−3 |
2170 reflections | Δρmin = −0.42 e Å−3 |
160 parameters |
Experimental. (CrysAlis RED; Oxford Diffraction, 2006) Analytical numeric absorption correction using a multifaceted crystal. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.50000 | 0.00000 | 1.00000 | 0.0235 (2) | |
O1 | 0.8421 (5) | 0.03719 (7) | 1.10908 (16) | 0.0295 (6) | |
O2 | 1.0514 (6) | 0.12235 (8) | 1.14517 (17) | 0.0308 (7) | |
O3 | 0.6886 (6) | 0.15536 (7) | 0.93468 (16) | 0.0305 (7) | |
O4 | 0.4741 (5) | 0.06976 (7) | 0.91704 (15) | 0.0238 (6) | |
C1 | 0.8723 (7) | 0.08907 (11) | 1.0863 (2) | 0.0203 (8) | |
C2 | 0.6629 (8) | 0.10777 (10) | 0.9703 (2) | 0.0209 (8) | |
N1A | 0.7487 (7) | 0.11549 (9) | 0.4729 (2) | 0.0255 (7) | |
N3A | 0.6315 (6) | 0.20038 (10) | 0.39005 (19) | 0.0259 (7) | |
N4A | 0.9285 (6) | 0.25338 (9) | 0.5496 (2) | 0.0230 (7) | |
N7A | 1.1147 (7) | 0.10032 (9) | 0.6956 (2) | 0.0297 (8) | |
N8A | 0.8882 (6) | 0.15695 (8) | 0.54508 (18) | 0.0193 (7) | |
C2A | 0.6026 (8) | 0.14399 (12) | 0.3835 (2) | 0.0264 (9) | |
C3A | 0.8143 (8) | 0.20707 (10) | 0.4929 (2) | 0.0203 (8) | |
C5A | 1.1084 (8) | 0.24886 (11) | 0.6569 (2) | 0.0250 (9) | |
C6A | 1.1821 (8) | 0.19969 (11) | 0.7099 (2) | 0.0238 (8) | |
C7A | 1.0687 (7) | 0.15005 (11) | 0.6543 (2) | 0.0215 (8) | |
O1W | 0.9004 (13) | −0.00801 (11) | 0.6425 (3) | 0.1037 (16) | |
H2A | 0.48460 | 0.12670 | 0.31850 | 0.0320* | |
H4A | 0.88760 | 0.28530 | 0.51800 | 0.0280* | |
H5A | 1.18500 | 0.28100 | 0.69600 | 0.0300* | |
H6A | 1.30870 | 0.19870 | 0.78360 | 0.0290* | |
H71A | 1.22680 | 0.09520 | 0.76370 | 0.0360* | |
H72A | 1.03300 | 0.07250 | 0.65480 | 0.0360* | |
H11W | 1.00140 | −0.03050 | 0.59390 | 0.1560* | |
H12W | 0.95310 | −0.02300 | 0.71050 | 0.1560* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0302 (3) | 0.0162 (2) | 0.0232 (3) | −0.0033 (2) | −0.0109 (2) | 0.0037 (2) |
O1 | 0.0395 (13) | 0.0194 (9) | 0.0280 (11) | −0.0060 (9) | −0.0163 (9) | 0.0058 (8) |
O2 | 0.0368 (13) | 0.0263 (10) | 0.0282 (11) | −0.0057 (9) | −0.0135 (9) | −0.0037 (9) |
O3 | 0.0431 (13) | 0.0175 (10) | 0.0297 (11) | −0.0070 (9) | −0.0121 (9) | 0.0062 (8) |
O4 | 0.0318 (12) | 0.0176 (9) | 0.0210 (10) | −0.0046 (8) | −0.0126 (8) | 0.0031 (7) |
C1 | 0.0203 (15) | 0.0206 (13) | 0.0199 (13) | −0.0003 (12) | −0.0013 (11) | 0.0007 (11) |
C2 | 0.0231 (15) | 0.0197 (13) | 0.0198 (14) | −0.0013 (12) | 0.0001 (11) | −0.0015 (11) |
N1A | 0.0287 (14) | 0.0247 (12) | 0.0226 (12) | −0.0018 (11) | −0.0032 (10) | −0.0034 (9) |
N3A | 0.0259 (13) | 0.0319 (13) | 0.0197 (12) | 0.0030 (11) | −0.0022 (10) | 0.0052 (10) |
N4A | 0.0253 (13) | 0.0185 (11) | 0.0248 (12) | 0.0040 (10) | −0.0019 (10) | 0.0034 (9) |
N7A | 0.0424 (16) | 0.0253 (13) | 0.0203 (12) | 0.0031 (12) | −0.0109 (11) | 0.0036 (10) |
N8A | 0.0216 (13) | 0.0206 (11) | 0.0156 (11) | 0.0012 (10) | −0.0020 (9) | 0.0007 (9) |
C2A | 0.0243 (16) | 0.0347 (16) | 0.0199 (15) | −0.0011 (14) | −0.0026 (12) | −0.0033 (12) |
C3A | 0.0184 (14) | 0.0221 (13) | 0.0205 (14) | 0.0037 (12) | 0.0017 (11) | 0.0038 (11) |
C5A | 0.0215 (15) | 0.0282 (15) | 0.0253 (15) | 0.0000 (12) | −0.0003 (12) | −0.0058 (12) |
C6A | 0.0211 (15) | 0.0311 (15) | 0.0188 (14) | 0.0003 (13) | −0.0049 (11) | 0.0006 (12) |
C7A | 0.0190 (15) | 0.0282 (14) | 0.0174 (13) | 0.0018 (12) | 0.0021 (11) | 0.0036 (11) |
O1W | 0.196 (4) | 0.0385 (16) | 0.075 (2) | 0.000 (2) | −0.014 (2) | −0.0046 (14) |
Cu1—O1 | 1.9349 (18) | N3A—C2A | 1.370 (4) |
Cu1—O4 | 1.9272 (17) | N4A—C5A | 1.351 (3) |
Cu1—O1i | 2.8879 (18) | N4A—C3A | 1.346 (3) |
Cu1—O1ii | 1.9349 (18) | N7A—C7A | 1.298 (3) |
Cu1—O4ii | 1.9272 (17) | N8A—C3A | 1.368 (3) |
Cu1—O1iii | 2.8879 (18) | N8A—C7A | 1.376 (3) |
O1—C1 | 1.287 (3) | N4A—H4A | 0.8600 |
O2—C1 | 1.215 (3) | N7A—H72A | 0.8600 |
O3—C2 | 1.224 (3) | N7A—H71A | 0.8600 |
O4—C2 | 1.283 (3) | C1—C2 | 1.548 (3) |
O1W—H11W | 0.8600 | C5A—C6A | 1.352 (4) |
O1W—H12W | 0.8600 | C6A—C7A | 1.408 (4) |
N1A—C2A | 1.311 (3) | C2A—H2A | 0.9300 |
N1A—N8A | 1.374 (3) | C5A—H5A | 0.9300 |
N3A—C3A | 1.318 (3) | C6A—H6A | 0.9300 |
O1—Cu1—O4 | 85.10 (7) | C3A—N4A—H4A | 121.00 |
O1—Cu1—O1i | 96.74 (6) | C5A—N4A—H4A | 121.00 |
O1—Cu1—O1ii | 180.00 | H71A—N7A—H72A | 120.00 |
O1—Cu1—O4ii | 94.90 (7) | C7A—N7A—H72A | 120.00 |
O1—Cu1—O1iii | 83.26 (6) | C7A—N7A—H71A | 120.00 |
O1i—Cu1—O4 | 84.58 (6) | O1—C1—O2 | 126.0 (2) |
O1ii—Cu1—O4 | 94.90 (7) | O2—C1—C2 | 119.9 (2) |
O4—Cu1—O4ii | 180.00 | O1—C1—C2 | 114.1 (2) |
O1iii—Cu1—O4 | 95.43 (6) | O3—C2—C1 | 120.4 (2) |
O1i—Cu1—O1ii | 83.26 (6) | O4—C2—C1 | 114.8 (2) |
O1i—Cu1—O4ii | 95.43 (6) | O3—C2—O4 | 124.8 (2) |
O1i—Cu1—O1iii | 180.00 | N1A—C2A—N3A | 117.0 (2) |
O1ii—Cu1—O4ii | 85.10 (7) | N3A—C3A—N4A | 130.6 (2) |
O1ii—Cu1—O1iii | 96.74 (6) | N4A—C3A—N8A | 119.0 (2) |
O1iii—Cu1—O4ii | 84.58 (6) | N3A—C3A—N8A | 110.4 (2) |
Cu1—O1—C1 | 112.79 (15) | N4A—C5A—C6A | 122.9 (2) |
Cu1—O1—Cu1iv | 96.74 (7) | C5A—C6A—C7A | 120.5 (2) |
Cu1iv—O1—C1 | 98.07 (15) | N8A—C7A—C6A | 114.3 (2) |
Cu1—O4—C2 | 112.90 (15) | N7A—C7A—C6A | 127.0 (2) |
H11W—O1W—H12W | 102.00 | N7A—C7A—N8A | 118.7 (2) |
N8A—N1A—C2A | 101.3 (2) | N3A—C2A—H2A | 121.00 |
C2A—N3A—C3A | 101.8 (2) | N1A—C2A—H2A | 121.00 |
C3A—N4A—C5A | 118.9 (2) | N4A—C5A—H5A | 119.00 |
C3A—N8A—C7A | 124.5 (2) | C6A—C5A—H5A | 119.00 |
N1A—N8A—C3A | 109.5 (2) | C5A—C6A—H6A | 120.00 |
N1A—N8A—C7A | 126.0 (2) | C7A—C6A—H6A | 120.00 |
O4—Cu1—O1—C1 | 5.64 (17) | C2A—N3A—C3A—N8A | −0.3 (3) |
O4—Cu1—O1—Cu1iv | −96.07 (7) | C5A—N4A—C3A—N3A | 178.9 (3) |
O1i—Cu1—O1—C1 | −78.29 (17) | C3A—N4A—C5A—C6A | 0.5 (4) |
O4ii—Cu1—O1—C1 | −174.36 (17) | C5A—N4A—C3A—N8A | −0.8 (4) |
O1iii—Cu1—O1—C1 | 101.71 (17) | C7A—N8A—C3A—N4A | 1.2 (4) |
O1—Cu1—O4—C2 | −3.55 (18) | C3A—N8A—C7A—C6A | −1.1 (4) |
O1i—Cu1—O4—C2 | 93.71 (18) | C7A—N8A—C3A—N3A | −178.6 (2) |
O1ii—Cu1—O4—C2 | 176.45 (18) | N1A—N8A—C3A—N3A | 0.3 (3) |
O1iii—Cu1—O4—C2 | −86.29 (18) | N1A—N8A—C3A—N4A | 180.0 (2) |
Cu1—O1—C1—O2 | 175.4 (2) | N1A—N8A—C7A—C6A | −179.7 (2) |
Cu1—O1—C1—C2 | −6.3 (3) | N1A—N8A—C7A—N7A | −0.3 (4) |
Cu1iv—O1—C1—O2 | −83.8 (3) | C3A—N8A—C7A—N7A | 178.4 (3) |
Cu1iv—O1—C1—C2 | 94.6 (2) | O2—C1—C2—O4 | −178.0 (2) |
Cu1—O4—C2—O3 | 180.0 (2) | O2—C1—C2—O3 | 3.1 (4) |
Cu1—O4—C2—C1 | 1.1 (3) | O1—C1—C2—O3 | −175.4 (2) |
N8A—N1A—C2A—N3A | −0.2 (3) | O1—C1—C2—O4 | 3.6 (3) |
C2A—N1A—N8A—C3A | 0.0 (3) | N4A—C5A—C6A—C7A | −0.5 (4) |
C2A—N1A—N8A—C7A | 178.8 (2) | C5A—C6A—C7A—N7A | −178.7 (3) |
C3A—N3A—C2A—N1A | 0.4 (3) | C5A—C6A—C7A—N8A | 0.8 (4) |
C2A—N3A—C3A—N4A | 180.0 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+2, −y, −z+2; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4A—H4A···O3v | 0.86 | 1.85 | 2.685 (3) | 165 |
O1W—H11W···N1Avi | 0.86 | 2.38 | 3.197 (4) | 157 |
O1W—H12W···O1iii | 0.86 | 2.15 | 2.985 (4) | 163 |
N7A—H71A···O4iv | 0.86 | 2.00 | 2.856 (3) | 170 |
N7A—H72A···O1W | 0.86 | 2.01 | 2.793 (4) | 151 |
N7A—H72A···N1A | 0.86 | 2.48 | 2.806 (3) | 103 |
C2A—H2A···O2vii | 0.93 | 2.46 | 3.320 (3) | 154 |
C5A—H5A···O2v | 0.93 | 2.45 | 3.126 (3) | 129 |
C6A—H6A···O3iv | 0.93 | 2.39 | 3.246 (3) | 153 |
Symmetry codes: (iii) −x+2, −y, −z+2; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) −x+2, −y, −z+1; (vii) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | (C5H6N5)2[Cu(C2O4)2]·2H2O |
Mr | 547.91 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 3.6599 (2), 24.1977 (10), 11.1963 (5) |
β (°) | 92.344 (4) |
V (Å3) | 990.73 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.19 |
Crystal size (mm) | 0.59 × 0.07 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.675, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8945, 2170, 1476 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 0.91 |
No. of reflections | 2170 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.42 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N4A—H4A···O3i | 0.86 | 1.85 | 2.685 (3) | 165 |
O1W—H11W···N1Aii | 0.86 | 2.38 | 3.197 (4) | 157 |
O1W—H12W···O1iii | 0.86 | 2.15 | 2.985 (4) | 163 |
N7A—H71A···O4iv | 0.86 | 2.00 | 2.856 (3) | 170 |
N7A—H72A···O1W | 0.86 | 2.01 | 2.793 (4) | 151 |
C2A—H2A···O2v | 0.93 | 2.46 | 3.320 (3) | 154 |
C5A—H5A···O2i | 0.93 | 2.45 | 3.126 (3) | 129 |
C6A—H6A···O3iv | 0.93 | 2.39 | 3.246 (3) | 153 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y, −z+2; (iv) x+1, y, z; (v) x−1, y, z−1. |
Acknowledgements
Financial support from the Junta de Andalucía (FQM-3705 and FQM-4228) and the Spanish Ministry of Education (FPU fellowship to ABC) is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Caballero, A. B., Maclaren, J. K., Rodríguez-Diéguez, A., Vidal, I., Dobado, J., Salas, J. M. & Janiak, C. (2011). Dalton Trans. 40, doi:10/1039/c1dt10603a. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hannon, M. J. (2007). Chem. Soc. Rev. 36, 280–295. Web of Science CrossRef PubMed CAS Google Scholar
Legraverend, M. & Grierson, D. S. (2006). Bioorg. Med. Chem. 14, 3987–4006. Web of Science CrossRef PubMed CAS Google Scholar
Maldonado, C. R., Quirós, M. & Salas, J. M. (2008). J. Mol. Struct. 882, 30–34. Web of Science CSD CrossRef CAS Google Scholar
Maldonado, C. R., Quirós, M., Salas, J. M. & Sánchez, M. P. (2005). Acta Cryst. E61, m1721–m1723. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Salas, J. M., Romero, M. A., Sánchez, M. P. & Quirós, M. (1999). Coord. Chem. Rev. 193–195, 1119–1142. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szlyk, E., Pazderski, L., Lakomska, I., Surdykowski, A., Glowiak, T., Sitkowski, J. & Kozerski, L. (2002). Polyhedron, 21, 343–348. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the recent years, the rational design and synthesis of biomimetic systems based on the interaction of biologically relevant molecules with inorganic species has aroused a remarkable research interest. The study of these systems not only stems from the desire to better understand the complex interactions often present in different molecular biorecognition processes (Hannon, 2007), but also to afford a powerful tool for the improvement of pharmaceutical agents (Legraverend & Grierson, 2006). 1,2,4-triazolo[1,5-a]pyrimidines may be used as purine analogs to obtain new biomimetic systems with interesting physical and biological properties, which might differ from those of purine-based systems due to their slightly different atomic arrangement. Previous studies revealed that the coordination chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives displays great versatility, binding metal ions in several different ways, either in a monodentate (usually through the N atom in position 3), or in a bidentate fashion, bridging metal atoms and leading to binuclear or polynuclear species with interesting metal-metal interactions (Salas et al., 1999; Caballero et al., 2011). However, few examples containing a protonated form of the triazolopyrimidine have been reported, most of them bearing the 5,7-dimethylated derivative (Szlyk et al., 2002; Maldonado et al., 2005; Maldonado et al., 2008). To the best of our knowledge, the copper(II) complex reported herein is the only one obtained with the protonated form of the 7-amino derivative, 7-amino-1,2,4-triazolo[1,5-a]pyrimidine (7atp).
The molecular structure of the title compound is illustrated in Fig. 1. It consists of an dianionic copper(II) oxalate complex, showing a square planar geometry, two monoprotonated 7atp cations and two crystallization water molecules. The copper(II) ion is coordinated to two oxalate anions, which display a bidentate \k2O,O' mode and are related by an inversion centre. The protonation of 7atp occured through the N atom in position 4, N4, in a neutral-slightly basic media. This may be favoured by the formation of a stable two-dimensional network built from N-H···O, O-H···N and O-H···O hydrogen bonds involving the crystallization water molecules, the oxalate O atoms and the amine group (Table 1 and Fig. 2). These nets are further connected via C-H···O interactions (Table 1).