organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2967-o2968

2,3-Di­chloro-1,4-hydro­quinone 2,3-di­chloro-1,4-benzo­quinone monohydrate: a quinhydrone-type 1:1 donor-acceptor [DA] charge-transfer complex

aDepartement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
*Correspondence e-mail: liu@iac.unibe.ch

(Received 27 September 2011; accepted 7 October 2011; online 12 October 2011)

In the crystal structure of the title compound (systematic name: 2,3-dichloro­benzene-1,4-diol 2,3-dichloro­cyclo­hexa-2,5-diene-1,4-dione monohydrate), C6H4Cl2O2·C6H2Cl2O2·H2O, the 2,3-dichloro-1,4-hydro­quinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) mol­ecules form alternating stacks along [100]. Their mol­ecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) Å (A)] are inclined to one another by 1.45 (3)° and are thus almost parallel. There are ππ inter­actions involving the D and A mol­ecules, with centroid–centroid distances of 3.5043 (9) and 3.9548 (9) Å. Inter­molecular O—H⋯O hydrogen bonds involving the water mol­ecule and the hy­droxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C—H⋯O inter­actions, forming a three-dimensional structure.

Related literature

For prototypical examples of similar organic redox systems, see: Yi et al. (2009a[Yi, C., Blum, C., Liu, S.-X., Keene, T. D., Frei, G., Neels, A. & Decurtins, S. (2009a). Org. Lett. 11, 2261-2264.],b[Yi, C., Liu, S.-X., Neels, A., Renaud, P. & Decurtins, S. (2009b). Org. Lett. 11, 5530-5533.]). For details concerning quinhydrone, a 1:1 hydro­quinone-quinone adduct, and a well known mol­ecular charge-transfer (CT) complex, see: Foster (1969[Foster, F. (1969). In Organic Charge-Transfer Complexes. Academic Press: New York.]). For structural studies of different polymorphs of quinhydrone, see: Matsuda et al. (1958[Matsuda, H., Osaki, K. & Nitta, I. (1958). Bull. Chem. Soc. Jpn, 31, 611-620.]); Sakurai (1965[Sakurai, T. (1965). Acta Cryst. 19, 320-330.],1968[Sakurai, T. (1968). Acta Cryst. B24, 403-412.]). For details concerning quinhydrone analogues, see: Bouvet et al. (2006[Bouvet, M., Malézieux, B. & Herson, P. (2006). Chem. Commun. pp. 1751-1753.],2007[Bouvet, M., Malézieux, B., Herson, P. & Villain, F. (2007). CrystEngComm, 9, 270-272.]); Patil et al. (1984[Patil, A. O., Curtin, D. Y. & Paul, I. C. (1984). J. Am. Chem. Soc. 106, 4010-4015.]); Yamamura et al. (2007[Yamamura, K., Yamane, J., Eda, K., Tajima, F., Yamada, Y. & Hashimoto, M. (2007). J. Mol. Struct. 842, 12-16.]). For a detailed computational study on the stacking energies and the electron density topology in quinhydrone, see: Gonzalez Moa et al. (2007[Gonzalez Moa, M. J., Mandado, M. & Mosquera, R. A. (2007). J. Phys. Chem. A, 111, 1998-2001.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4Cl2O2·C6H2Cl2O2·H2O

  • Mr = 373.98

  • Monoclinic, P 21 /c

  • a = 7.15329 (14) Å

  • b = 7.19541 (15) Å

  • c = 27.2811 (5) Å

  • β = 92.9738 (18)°

  • V = 1402.29 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 173 K

  • 0.3 × 0.2 × 0.07 mm

Data collection
  • Siemens SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.859, Tmax = 0.942

  • 19255 measured reflections

  • 3138 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.04

  • 3138 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O20 0.84 1.76 2.5947 (18) 173
O14—H14⋯O4i 0.84 2.03 2.8381 (18) 161
O20—H20A⋯O1ii 0.79 (3) 2.12 (3) 2.914 (2) 177 (3)
O20—H20B⋯O11iii 0.74 (3) 2.06 (3) 2.7899 (19) 169 (3)
C6—H6⋯O14iv 0.95 2.48 3.209 (2) 134
Symmetry codes: (i) x-1, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinones as electron acceptors (A) and their reduced forms, semiquinones and dihydroquinones as electron donors (D) represent prototypical examples of organice redox systems (Yi et al., 2009a,b). Furthermore, it is certainly true that interactions between aromatic π-systems have long been observed in crystal structures and rationales for the occurrence of π-π interactions have included explanations which are based on electron donor-acceptor [D—A] models. Such charge-transfer (CT) complexes may form when good electron donors and acceptors lie in close proximity, and this situation is typically associated with intense electronic CT transitions in the UV-vis spectral region. Basically, the filled donor molecular orbital (HOMO) and the vacant acceptor molecular orbital (LUMO) maximize their overlap. Quinhydrone, a 1:1 hydroquinone-quinone adduct, is a well known molecular CT complex (Foster, 1969) and its complex stabilization is based on the CT between the electron donor (hydroquinone) and the electron acceptor (quinone). Structural studies of different polymorphs of quinhydrone have been undertaken (Matsuda et al., 1958; Sakurai, 1965, 1968). Quinhydrone analogues have also been studied (Bouvet et al., 2006, 2007, Patil et al., 1984 and Yamamura et al., 2007). A detailed computational study on the stacking energies and the electron density topology in quinhydrone has recently been given (Gonzalez Moa et al., 2007). Additionally, hydrogen bonds contribute further stability, both in the solid state as well as in solution. We report herein on the crystal structure of the title quinhydrone analogue.

The molecular structure of the title compound is illustrated in Fig. 1. The 2,3-Dichloro-1,4-hydroquinone donor (D) and the 2,3-Dichloro-1,4-benzoquinone acceptor (A) molecules form alternate stacks along the [100] direction with their molecular planes [max. deviations for non-H atoms: (D) = 0.0133 (14)Å and (A) = 0.0763 (14)Å ] are tilted by ca. 22.8° and 23.1° about the [100] direction. Their molecular planes are inclined to one another by 1.45 (3)° and are thus almost parallel (Fig. 2). The ππ interactions involving the six-membered rings of the (D) [C11-C16] and (A) [C1-C6] molecules have centroid-centroid distances of 3.5043 (9) Å [D···Ai; symmetry code (i) x-1, y, z] and 3.9548 (9)Å [D···A].

Intermolecular O—H···O hydrogen bonds between water and the hydroxyl and ketone groups of adjacent stacks form a complex two-dimensional network lying parallel to (001) [Fig. 3]. Chlorine atoms, Cl2 and Cl3i, of (A) in adjacent stacks are in short contact with a distance of 3.3902 (7) Å [symmetry code: (i) = 2-x, 0.5+y, 0.5-z]. The two-dimensional networks are linked via C-H···O contacts to form a three-dimensional structure.

Related literature top

For prototypical examples of similar organic redox systems, see: Yi et al. (2009a,b). For details concerning quinhydrone, a 1:1 hydroquinone-quinone adduct, and a well known molecular charge-transfer (CT) complex, see: Foster (1969). For structural studies of different polymorphs of quinhydrone, see: Matsuda et al. (1958); Sakurai (1965,1968). For details concerning quinhydrone analogues, see: Bouvet et al. (2006,2007); Patil et al. (1984); Yamamura et al. (2007). For a detailed computational study on the stacking energies and the electron density topology in quinhydrone, see: Gonzalez Moa et al. (2007).

Experimental top

Deep-red coloured, elongated (up to 5 mm long) plate-shaped crystals of the 1:1 donor-acceptor adduct [D—A].H2O (D = 2,3-Dichloro-1,4-hydroquinone; A = 2,3-Dichloro-1,4-benzoquinone) were formed by slow sublimation of the single component (A) within a closed flask at room-temperature under aerobic conditions.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and refined with Uiso(H) = 1.5 times Ueq(O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the hydroxy C—O bond): O—H = 0.84 Å, C—H = 0.95 Å, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and displacement ellipsoids drawn at the 50% probability level [left donor (D); right acceptor (A)].
[Figure 2] Fig. 2. A view perpendicular to the molecular planes, of the stacking of the acceptor (A) and donor (D) molecules in the title compound.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed along the a axis. Stacks of donor (D) and acceptor (A) molecules are connected by O-H···O hydrogen bonds (dashed blue lines).
2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate top
Crystal data top
C6H4Cl2O2·C6H2Cl2O2·H2OF(000) = 752
Mr = 373.98Dx = 1.771 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7958 reflections
a = 7.15329 (14) Åθ = 2.8–27.5°
b = 7.19541 (15) ŵ = 0.86 mm1
c = 27.2811 (5) ÅT = 173 K
β = 92.9738 (18)°Plate, red
V = 1402.29 (5) Å30.3 × 0.2 × 0.07 mm
Z = 4
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
3138 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
rotation method scansθmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.859, Tmax = 0.942k = 99
19255 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.583P]
where P = (Fo2 + 2Fc2)/3
3138 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C6H4Cl2O2·C6H2Cl2O2·H2OV = 1402.29 (5) Å3
Mr = 373.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.15329 (14) ŵ = 0.86 mm1
b = 7.19541 (15) ÅT = 173 K
c = 27.2811 (5) Å0.3 × 0.2 × 0.07 mm
β = 92.9738 (18)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
3138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2653 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.942Rint = 0.026
19255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
3138 reflectionsΔρmin = 0.19 e Å3
198 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7866 (2)0.9165 (2)0.38598 (7)0.0220 (4)
O10.72734 (19)1.07053 (18)0.37504 (5)0.0299 (3)
C20.8432 (2)0.7822 (3)0.34779 (6)0.0216 (4)
Cl20.81893 (7)0.85660 (7)0.288391 (16)0.03021 (13)
C30.9107 (2)0.6140 (3)0.36016 (6)0.0220 (4)
Cl30.97542 (7)0.45526 (7)0.317735 (18)0.03252 (13)
C40.9362 (2)0.5565 (2)0.41269 (7)0.0229 (4)
O41.00840 (19)0.40868 (18)0.42426 (5)0.0305 (3)
C50.8731 (2)0.6879 (3)0.44963 (7)0.0252 (4)
H50.88080.65250.48320.030*
C60.8052 (3)0.8555 (3)0.43743 (7)0.0251 (4)
H60.76820.93700.46250.030*
C110.3767 (2)0.7229 (2)0.33596 (6)0.0194 (3)
O110.43186 (18)0.60154 (17)0.30131 (4)0.0245 (3)
H110.43040.65500.27390.037*
C120.3915 (2)0.6700 (2)0.38514 (6)0.0185 (3)
Cl120.47890 (6)0.45165 (6)0.399712 (15)0.02360 (11)
C130.3366 (2)0.7902 (2)0.42204 (6)0.0196 (3)
Cl130.35592 (7)0.72408 (6)0.482946 (16)0.02805 (12)
C140.2652 (2)0.9655 (2)0.40960 (6)0.0206 (4)
O140.2109 (2)1.07750 (18)0.44656 (5)0.0289 (3)
H140.16811.17750.43470.043*
C150.2513 (2)1.0172 (2)0.36060 (6)0.0220 (4)
H150.20351.13660.35190.026*
C160.3058 (2)0.8979 (2)0.32418 (6)0.0213 (4)
H160.29470.93610.29080.026*
O200.4387 (2)0.7413 (2)0.21375 (5)0.0325 (3)
H20A0.393 (3)0.691 (4)0.1903 (10)0.049*
H20B0.472 (4)0.834 (4)0.2061 (10)0.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (8)0.0230 (9)0.0224 (9)0.0010 (7)0.0011 (7)0.0017 (7)
O10.0371 (7)0.0239 (7)0.0283 (7)0.0054 (6)0.0032 (6)0.0030 (5)
C20.0203 (8)0.0282 (9)0.0160 (8)0.0027 (7)0.0002 (7)0.0021 (7)
Cl20.0329 (2)0.0399 (3)0.0178 (2)0.0027 (2)0.00070 (17)0.00536 (19)
C30.0190 (8)0.0246 (9)0.0226 (9)0.0017 (7)0.0023 (7)0.0043 (7)
Cl30.0360 (3)0.0321 (3)0.0298 (3)0.0031 (2)0.00496 (19)0.00926 (19)
C40.0195 (8)0.0235 (9)0.0254 (9)0.0020 (7)0.0005 (7)0.0027 (7)
O40.0315 (7)0.0243 (7)0.0356 (8)0.0055 (6)0.0008 (6)0.0056 (6)
C50.0266 (9)0.0297 (9)0.0193 (9)0.0005 (8)0.0012 (7)0.0028 (7)
C60.0267 (9)0.0281 (9)0.0206 (9)0.0021 (8)0.0022 (7)0.0022 (7)
C110.0206 (8)0.0185 (8)0.0190 (8)0.0021 (7)0.0013 (6)0.0019 (6)
O110.0373 (7)0.0196 (6)0.0169 (6)0.0037 (5)0.0047 (5)0.0002 (5)
C120.0188 (8)0.0144 (7)0.0223 (9)0.0003 (6)0.0001 (6)0.0023 (6)
Cl120.0305 (2)0.0166 (2)0.0236 (2)0.00314 (17)0.00040 (17)0.00279 (16)
C130.0214 (8)0.0210 (8)0.0163 (8)0.0018 (7)0.0002 (6)0.0022 (7)
Cl130.0374 (3)0.0288 (2)0.0179 (2)0.0034 (2)0.00093 (17)0.00261 (17)
C140.0219 (8)0.0178 (8)0.0221 (9)0.0007 (7)0.0021 (7)0.0025 (7)
O140.0412 (8)0.0213 (6)0.0245 (7)0.0081 (6)0.0043 (6)0.0023 (5)
C150.0241 (9)0.0161 (8)0.0257 (9)0.0005 (7)0.0009 (7)0.0034 (7)
C160.0232 (9)0.0220 (8)0.0186 (9)0.0001 (7)0.0004 (7)0.0041 (7)
O200.0539 (9)0.0238 (7)0.0192 (7)0.0103 (7)0.0027 (6)0.0009 (5)
Geometric parameters (Å, º) top
C1—O11.218 (2)C11—C121.393 (2)
C1—C61.470 (3)O11—H110.8400
C1—C21.493 (2)C12—C131.400 (2)
C2—C31.340 (3)C12—Cl121.7292 (16)
C2—Cl21.7070 (17)C13—C141.396 (2)
C3—C41.494 (2)C13—Cl131.7270 (17)
C3—Cl31.7069 (18)C14—O141.363 (2)
C4—O41.217 (2)C14—C151.386 (2)
C4—C51.470 (3)O14—H140.8400
C5—C61.335 (3)C15—C161.384 (2)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—H160.9500
C11—O111.360 (2)O20—H20A0.79 (3)
C11—C161.389 (2)O20—H20B0.74 (3)
O1—C1—C6121.26 (17)C16—C11—C12118.64 (16)
O1—C1—C2121.44 (16)C11—O11—H11109.5
C6—C1—C2117.30 (15)C11—C12—C13120.89 (15)
C3—C2—C1121.09 (15)C11—C12—Cl12118.58 (13)
C3—C2—Cl2122.70 (14)C13—C12—Cl12120.53 (13)
C1—C2—Cl2116.21 (13)C14—C13—C12119.78 (15)
C2—C3—C4121.08 (16)C14—C13—Cl13119.55 (13)
C2—C3—Cl3122.71 (14)C12—C13—Cl13120.68 (13)
C4—C3—Cl3116.20 (13)O14—C14—C15123.05 (15)
O4—C4—C5121.72 (17)O14—C14—C13117.98 (15)
O4—C4—C3121.32 (17)C15—C14—C13118.96 (16)
C5—C4—C3116.95 (15)C14—O14—H14109.5
C6—C5—C4122.04 (16)C16—C15—C14121.10 (16)
C6—C5—H5119.0C16—C15—H15119.4
C4—C5—H5119.0C14—C15—H15119.4
C5—C6—C1121.43 (17)C15—C16—C11120.63 (16)
C5—C6—H6119.3C15—C16—H16119.7
C1—C6—H6119.3C11—C16—H16119.7
O11—C11—C16122.47 (15)H20A—O20—H20B108 (3)
O11—C11—C12118.89 (15)
O1—C1—C2—C3179.07 (17)O11—C11—C12—C13179.97 (15)
C6—C1—C2—C30.9 (2)C16—C11—C12—C130.1 (3)
O1—C1—C2—Cl20.3 (2)O11—C11—C12—Cl120.2 (2)
C6—C1—C2—Cl2179.69 (13)C16—C11—C12—Cl12179.74 (13)
C1—C2—C3—C41.5 (3)C11—C12—C13—C140.2 (3)
Cl2—C2—C3—C4177.83 (13)Cl12—C12—C13—C14179.57 (13)
C1—C2—C3—Cl3179.46 (13)C11—C12—C13—Cl13179.82 (13)
Cl2—C2—C3—Cl31.2 (2)Cl12—C12—C13—Cl130.4 (2)
C2—C3—C4—O4175.28 (17)C12—C13—C14—O14179.13 (15)
Cl3—C3—C4—O43.8 (2)Cl13—C13—C14—O140.8 (2)
C2—C3—C4—C53.7 (2)C12—C13—C14—C150.4 (3)
Cl3—C3—C4—C5177.23 (13)Cl13—C13—C14—C15179.68 (13)
O4—C4—C5—C6175.42 (18)O14—C14—C15—C16179.12 (16)
C3—C4—C5—C63.5 (3)C13—C14—C15—C160.4 (3)
C4—C5—C6—C11.2 (3)C14—C15—C16—C110.2 (3)
O1—C1—C6—C5178.88 (17)O11—C11—C16—C15180.00 (16)
C2—C1—C6—C51.1 (3)C12—C11—C16—C150.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O200.841.762.5947 (18)173
O14—H14···O4i0.842.032.8381 (18)161
O20—H20A···O1ii0.79 (3)2.12 (3)2.914 (2)177 (3)
O20—H20B···O11iii0.74 (3)2.06 (3)2.7899 (19)169 (3)
C6—H6···O14iv0.952.483.209 (2)134
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC6H4Cl2O2·C6H2Cl2O2·H2O
Mr373.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.15329 (14), 7.19541 (15), 27.2811 (5)
β (°) 92.9738 (18)
V3)1402.29 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.3 × 0.2 × 0.07
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.859, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
19255, 3138, 2653
Rint0.026
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.04
No. of reflections3138
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O200.841.762.5947 (18)173
O14—H14···O4i0.842.032.8381 (18)161
O20—H20A···O1ii0.79 (3)2.12 (3)2.914 (2)177 (3)
O20—H20B···O11iii0.74 (3)2.06 (3)2.7899 (19)169 (3)
C6—H6···O14iv0.952.483.209 (2)134
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+2, z+1.
 

Acknowledgements

The X-ray diffraction analysis was possible thanks to the Swiss National Science Foundation (R'Equip project 206021–128724).

References

First citationBouvet, M., Malézieux, B. & Herson, P. (2006). Chem. Commun. pp. 1751–1753.  Web of Science CSD CrossRef Google Scholar
First citationBouvet, M., Malézieux, B., Herson, P. & Villain, F. (2007). CrystEngComm, 9, 270–272.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoster, F. (1969). In Organic Charge-Transfer Complexes. Academic Press: New York.  Google Scholar
First citationGonzalez Moa, M. J., Mandado, M. & Mosquera, R. A. (2007). J. Phys. Chem. A, 111, 1998–2001.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuda, H., Osaki, K. & Nitta, I. (1958). Bull. Chem. Soc. Jpn, 31, 611–620.  CrossRef CAS Web of Science Google Scholar
First citationPatil, A. O., Curtin, D. Y. & Paul, I. C. (1984). J. Am. Chem. Soc. 106, 4010–4015.  CSD CrossRef CAS Web of Science Google Scholar
First citationSakurai, T. (1965). Acta Cryst. 19, 320–330.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSakurai, T. (1968). Acta Cryst. B24, 403–412.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamura, K., Yamane, J., Eda, K., Tajima, F., Yamada, Y. & Hashimoto, M. (2007). J. Mol. Struct. 842, 12–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationYi, C., Blum, C., Liu, S.-X., Keene, T. D., Frei, G., Neels, A. & Decurtins, S. (2009a). Org. Lett. 11, 2261–2264.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYi, C., Liu, S.-X., Neels, A., Renaud, P. & Decurtins, S. (2009b). Org. Lett. 11, 5530–5533.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o2967-o2968
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds