organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[1,3-Phenylenebis(methyl­ene)]di­benzene­sulfonamide

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 28 September 2011; accepted 3 October 2011; online 29 October 2011)

The complete mol­ecule of the title compound, C20H20N2O4S2, is generated by crystallographic twofold symmetry, with two C atoms lying on the rotation axis. The dihedral angle between the central benzene ring and the pendant ring is 68.42 (6)° and the dihedral angle between the pendant rings is 45.11 (5)°. The torsion angles for the C—S—N—C and S—N—C—C fragments are −73.22 (15) and −150.45 (13)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating corrugated (001) sheets. Aromatic ππ stacking [centroid–centroid separation = 3.8925 (12) and 3.9777 (12) Å] and weak C—H⋯O inter­actions also occur.

Related literature

For a related structure, see: Khan et al. (2011[Khan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O4S2

  • Mr = 416.50

  • Monoclinic, C 2/c

  • a = 16.4319 (6) Å

  • b = 7.8024 (3) Å

  • c = 16.1217 (6) Å

  • β = 111.543 (2)°

  • V = 1922.54 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 8653 measured reflections

  • 2346 independent reflections

  • 1841 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.07

  • 2346 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.81 (2) 2.16 (2) 2.960 (2) 166 (2)
C5—H5⋯O1ii 0.93 2.55 3.461 (2) 166
C10—H10⋯O1iii 0.93 2.57 3.379 (3) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of sulfonamides (Khan et al., 2011), the synthesis and structure of the title compound are described herein.

The complete molecule of the title compound is generated by crystallographic twofold symmetry (Fig. 1), with atoms C9 and C11 lying on the rotation axis. The diehdral angle between the central benzene ring and the pendant ring is 68.42 (6)°. The dihedral angle between the two pendant rings is 45.11 (5)°. The conformation of the C4—S1—N1—C7 fragment is approximately gauche [-73.22 (15)°] whereas the torsion angle for S1—N1—C8—C9 of -150.45 (13)° indicates a conformation between gauche and anti. The bond-angle sum for N1 of 350.6° seems to indicate a valence state close to sp2 hybridization.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1), to generate corrugated (010) sheets (Fig. 2). Weak aromatic π-π stacking [centroid-centroid separation = 3.8925 (12) and 3.9777 (12) Å] occurs between the layers and weak C—H···O interactions may help to consolidate the packing.

Related literature top

For a related structure, see: Khan et al. (2011).

Experimental top

The m-xylylenediamine (0.132 ml, 1.0 mmol) was mixed with 20 ml distilled water in a 50 ml round bottom flask. Benzene sulfonyl chloride (0.255 ml, 2.0 mmol) was added while maintaining the pH of the reaction mixture at ca. 9.0 using sodium carbonate solution (3%) and the mixture was stirred for five hours. The white precipitated product was filtered, washed, dried and crystallized from methanol to generate colourless blocks of the title compound.

Refinement top

The N-bound H atom was located in a difference map and its position was freely refined with the constraint Uiso(H) = 1.2Ueq(N). The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the numbering cheme and 50% displacement ellipsoids [Symmetry code: (i) 1–x, y, 1/2 - z].
N,N'-[1,3-Phenylenebis(methylene)]dibenzenesulfonamide top
Crystal data top
C20H20N2O4S2F(000) = 872
Mr = 416.50Dx = 1.439 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2346 reflections
a = 16.4319 (6) Åθ = 2.9–28.3°
b = 7.8024 (3) ŵ = 0.31 mm1
c = 16.1217 (6) ÅT = 296 K
β = 111.543 (2)°Block, colourless
V = 1922.54 (12) Å30.15 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1841 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 28.3°, θmin = 2.9°
ω scansh = 2121
8653 measured reflectionsk = 910
2346 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0466P)2 + 1.1784P]
where P = (Fo2 + 2Fc2)/3
2346 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H20N2O4S2V = 1922.54 (12) Å3
Mr = 416.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.4319 (6) ŵ = 0.31 mm1
b = 7.8024 (3) ÅT = 296 K
c = 16.1217 (6) Å0.15 × 0.11 × 0.08 mm
β = 111.543 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1841 reflections with I > 2σ(I)
8653 measured reflectionsRint = 0.024
2346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
2346 reflectionsΔρmin = 0.34 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23478 (13)0.4749 (3)0.57485 (13)0.0492 (5)
H1A0.21330.46160.62040.059*
C20.18163 (12)0.5397 (3)0.49388 (14)0.0493 (5)
H20.12390.56770.48460.059*
C30.21285 (11)0.5637 (3)0.42623 (12)0.0405 (4)
H30.17660.60690.37130.049*
C40.29908 (10)0.5225 (2)0.44139 (10)0.0313 (4)
C50.35276 (12)0.4531 (2)0.52240 (11)0.0396 (4)
H50.41020.42300.53180.048*
C60.31953 (13)0.4296 (3)0.58870 (12)0.0481 (5)
H60.35480.38280.64310.058*
C70.43547 (11)0.2757 (2)0.36899 (11)0.0378 (4)
H7A0.41620.19570.40410.045*
H7B0.48270.34390.40960.045*
C80.46828 (10)0.1780 (2)0.30692 (11)0.0332 (4)
C90.50000.2653 (3)0.25000.0320 (5)
H90.50000.38450.25000.038*
C100.46821 (12)0.0009 (3)0.30605 (13)0.0429 (4)
H100.44670.05930.34340.052*
C110.50000.0871 (4)0.25000.0504 (7)
H110.50000.20630.25000.061*
S10.34361 (3)0.56500 (6)0.35953 (3)0.03403 (15)
N10.36255 (9)0.3882 (2)0.31843 (10)0.0382 (4)
H10.3187 (13)0.339 (3)0.2865 (14)0.046*
O10.42667 (8)0.64544 (18)0.40359 (9)0.0459 (3)
O20.27803 (9)0.65172 (19)0.28749 (8)0.0502 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0510 (11)0.0624 (14)0.0390 (10)0.0120 (10)0.0223 (9)0.0015 (9)
C20.0371 (10)0.0647 (14)0.0507 (11)0.0021 (9)0.0213 (9)0.0029 (10)
C30.0355 (9)0.0490 (12)0.0342 (9)0.0017 (8)0.0097 (7)0.0017 (8)
C40.0330 (8)0.0318 (9)0.0282 (7)0.0021 (6)0.0101 (6)0.0021 (6)
C50.0362 (9)0.0459 (11)0.0343 (8)0.0004 (7)0.0101 (7)0.0019 (7)
C60.0526 (11)0.0575 (13)0.0307 (9)0.0038 (9)0.0110 (8)0.0074 (8)
C70.0364 (9)0.0416 (11)0.0367 (9)0.0013 (7)0.0151 (7)0.0044 (8)
C80.0264 (7)0.0335 (10)0.0379 (8)0.0002 (6)0.0098 (7)0.0026 (7)
C90.0316 (11)0.0233 (12)0.0409 (12)0.0000.0131 (10)0.000
C100.0406 (9)0.0337 (10)0.0530 (11)0.0052 (8)0.0155 (9)0.0091 (9)
C110.0536 (16)0.0234 (14)0.0696 (19)0.0000.0171 (15)0.000
S10.0348 (2)0.0367 (3)0.0307 (2)0.00170 (17)0.01223 (17)0.00359 (17)
N10.0313 (7)0.0452 (10)0.0358 (8)0.0011 (6)0.0095 (6)0.0079 (7)
O10.0439 (7)0.0438 (8)0.0516 (7)0.0117 (6)0.0195 (6)0.0002 (6)
O20.0544 (8)0.0605 (10)0.0357 (7)0.0195 (7)0.0165 (6)0.0149 (6)
Geometric parameters (Å, º) top
C1—C21.373 (3)C7—H7A0.9700
C1—C61.373 (3)C7—H7B0.9700
C1—H1A0.9300C8—C101.382 (3)
C2—C31.378 (3)C8—C91.389 (2)
C2—H20.9300C9—C8i1.389 (2)
C3—C41.385 (2)C9—H90.9300
C3—H30.9300C10—C111.381 (2)
C4—C51.390 (2)C10—H100.9300
C4—S11.7596 (17)C11—C10i1.381 (2)
C5—C61.379 (3)C11—H110.9300
C5—H50.9300S1—O21.4314 (12)
C6—H60.9300S1—O11.4315 (13)
C7—N11.467 (2)S1—N11.6092 (16)
C7—C81.506 (2)N1—H10.81 (2)
C2—C1—C6120.16 (18)H7A—C7—H7B108.1
C2—C1—H1A119.9C10—C8—C9118.86 (17)
C6—C1—H1A119.9C10—C8—C7120.91 (16)
C1—C2—C3120.73 (18)C9—C8—C7120.22 (17)
C1—C2—H2119.6C8i—C9—C8121.3 (2)
C3—C2—H2119.6C8i—C9—H9119.4
C2—C3—C4118.88 (16)C8—C9—H9119.4
C2—C3—H3120.6C11—C10—C8120.31 (19)
C4—C3—H3120.6C11—C10—H10119.8
C3—C4—C5120.78 (16)C8—C10—H10119.8
C3—C4—S1120.29 (13)C10—C11—C10i120.4 (3)
C5—C4—S1118.89 (13)C10—C11—H11119.8
C6—C5—C4119.00 (17)C10i—C11—H11119.8
C6—C5—H5120.5O2—S1—O1119.47 (9)
C4—C5—H5120.5O2—S1—N1105.84 (8)
C1—C6—C5120.41 (17)O1—S1—N1106.67 (8)
C1—C6—H6119.8O2—S1—C4107.53 (8)
C5—C6—H6119.8O1—S1—C4107.08 (8)
N1—C7—C8110.62 (13)N1—S1—C4110.10 (8)
N1—C7—H7A109.5C7—N1—S1121.73 (12)
C8—C7—H7A109.5C7—N1—H1114.8 (15)
N1—C7—H7B109.5S1—N1—H1114.1 (15)
C8—C7—H7B109.5
C6—C1—C2—C31.4 (3)C7—C8—C10—C11178.78 (13)
C1—C2—C3—C40.4 (3)C8—C10—C11—C10i0.31 (11)
C2—C3—C4—C51.9 (3)C3—C4—S1—O23.65 (17)
C2—C3—C4—S1175.61 (15)C5—C4—S1—O2173.94 (14)
C3—C4—C5—C61.6 (3)C3—C4—S1—O1133.19 (15)
S1—C4—C5—C6175.99 (15)C5—C4—S1—O144.39 (17)
C2—C1—C6—C51.8 (3)C3—C4—S1—N1111.21 (15)
C4—C5—C6—C10.3 (3)C5—C4—S1—N171.20 (16)
N1—C7—C8—C10121.05 (17)C8—C7—N1—S1150.45 (13)
N1—C7—C8—C959.57 (18)O2—S1—N1—C7170.85 (14)
C10—C8—C9—C8i0.30 (11)O1—S1—N1—C742.63 (16)
C7—C8—C9—C8i179.09 (15)C4—S1—N1—C773.22 (15)
C9—C8—C10—C110.6 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.81 (2)2.16 (2)2.960 (2)166 (2)
C5—H5···O1iii0.932.553.461 (2)166
C10—H10···O1iv0.932.573.379 (3)146
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H20N2O4S2
Mr416.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)16.4319 (6), 7.8024 (3), 16.1217 (6)
β (°) 111.543 (2)
V3)1922.54 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8653, 2346, 1841
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.07
No. of reflections2346
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.81 (2)2.16 (2)2.960 (2)166 (2)
C5—H5···O1ii0.932.553.461 (2)166
C10—H10···O1iii0.932.573.379 (3)146
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y1, z.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Sheikh, T. A., Ejaz & Harrison, W. T. A. (2011). Acta Cryst. E67, o2371.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds