organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[Chloro­(phen­yl)meth­yl]-6-methyl-1,2-benzoxazole

aDepartment of Physics, Kunthavai Naachiar Govt. Arts College(W)(Autonomous), Thanjavur 7, India, bCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 24, India, and cR & D Laboratories, Suven Life Sciences Limited, Hyderabad 55, Andhra Pradesh, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 2 October 2011; accepted 13 October 2011; online 22 October 2011)

The title compound, C15H12ClNO, is a functionalized 1,2-benzoxazole with a chloro­(phen­yl)methyl substituent. The mol­ecule is V-shaped, the dihedral angle between the mean plane of the 1,2-benzoxazole system [maximum deviation = 0.023 (3) Å for the N atom] and the phenyl ring being 70.33 (14)°. There are no hydrogen-bonding inter­actions in the crystal structure, which is stabilized by van der Waals inter­actions only.

Related literature

For the synthesis of the title compound, see: Veerareddy et al. (2011[Veerareddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. D. (2011). Indian J. Chem. Sect. B, 50, 119-125.]). For related structures, see: Atovmyan & Aliev (1994[Atovmyan, I. L. & Aliev, Z. G. (1994). Russ. Chem. Bull. 43, 806-808.]); Hu et al. (2009[Hu, D.-J., Liu, M., Huang, T.-H., Tu, H.-Y. & Zhang, A. (2009). Acta Cryst. E65, o1593.]); Korlyukov et al. (2003[Korlyukov, A. A., Starosotnikov, A. M., Lyssenko, K. A., Shevelev, S. A. & Antipin, M. Yu. (2003). Russ. Chem. Bull. 52, 2095-2099.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO

  • Mr = 257.71

  • Monoclinic, P 21 /c

  • a = 13.2075 (8) Å

  • b = 6.5888 (4) Å

  • c = 15.1224 (8) Å

  • β = 103.738 (3)°

  • V = 1278.33 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.945

  • 10507 measured reflections

  • 2087 independent reflections

  • 1621 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.125

  • S = 1.06

  • 2087 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzisoxazole is an aromatic organic compound with a molecular formula C7H5NO containing a benzene-fused isoxazole ring structure. Benzisoxazole is primarily used in industry and research. Being a heterocyclic compound, benzisoxazole finds use in research as a starting material for the synthesis of larger, usually bioactive structures. Isoxazole and benzisoxazole are important classes of nitrogen-oxygen containing heterocycles. They have extensive applications as structural units of various biologically important molecules and as useful intermediates in medicinal chemistry. Among them, 3–substituted–1,2–benzisoxazole and their derivatives are emerging as potential antipsychotic compounds. For example, 1,2–benzisoxazole–3–methanesulfonamide, also known as zonisamide, is an efficient antiseizure agent. It has been reported that it blocks the repetitive firing of voltage–sensitive sodium channels and reduces voltage–sensitive T–type calcium currents (Veerareddy et al., 2011).

In molecular structure of the title functionalized 1,2-benzoxazole compound, (I), is illustrated in Fig. 1. The bond length and angles are in agreement with those found for closely related structures, for example, 6-tert-butyl-4,5-dichloro-3-ethyl-4,5-dihydro-2,1-benzoisoxazole (II) [Atovmyan & Aliev, 1994], 3-(1,3-dioxolan-2-yl)-4,6-dinitrobenzo[d]isoxazole (III) [Korlyukov et al., 2003], and N-Phenyl-4-(8-phenyl-4,5-dihydro-1,2-benzoxazolo- [4,5-d]thiazol-2-yl)-piperidine-1-carboxamide (IV) [Hu et al., 2009]. The widening of the exocyclic angle C10—C9—C3 [113.4 (2)°] from the normal value of 109° may be due to repulsion between neighbouring H atoms [H9··· H11 = 2.2495 (1) Å]. The exocyclic angles C9—C3—C3a [132.1 (2)°] and C3—C3a—C4 [138.2 (2)°] deviate significantly from the normal value of 120° and this may be due to the intramolecular non-bonded interactions between the chlorine atom and H-atom H4 at C10 [Cl··· H4 = 3.1169 (7) Å]. The isoxazole ring (O1,N2,C3,C3a,C7a) is planar [max. deviation 0.007 (3) Å], with the chloro(phenyl)methyl substituent being nearly normal to the plane of the five membered ring [N2-C3-C9-C10 = 100.1 (3)°], similar to the situation in compound (II) (Atovmyan & Aliev, 1994). The dihedral angle between the mean plane of the 1,2-benzoxazole [max. deviation 0.023 (3) Å] and the phenyl ring (C10-C15) is 70.33 (14)°.

Crystal packing of compound (I) is illustrated in Fig. 2. There are no significant non-bonded interactions present and the crystal structure is stabilized by van der Waals interactions only.

Related literature top

For the synthesis of the title compound, see: Veerareddy et al. (2011). For related structures, see: Atovmyan & Aliev (1994); Hu et al. (2009); Korlyukov et al. (2003).

Experimental top

The compound was synthesized following the published procedure (Veerareddy et al., 2011).

Refinement top

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93Å (aromatic), 0.98Å (methine) and 0.96Å (methyl), and refined using a riding model with Uiso(H )= 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the numbering sheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the crystal packing of compound (I).
3-[Chloro(phenyl)methyl]-6-methyl-1,2-benzoxazole top
Crystal data top
C15H12ClNOF(000) = 536
Mr = 257.71Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.2075 (8) Åθ = 20–30°
b = 6.5888 (4) ŵ = 0.29 mm1
c = 15.1224 (8) ÅT = 293 K
β = 103.738 (3)°Block, colourless
V = 1278.33 (13) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2087 independent reflections
Radiation source: fine-focus sealed tube1621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 24.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.919, Tmax = 0.945k = 57
10507 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.7285P]
where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H12ClNOV = 1278.33 (13) Å3
Mr = 257.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2075 (8) ŵ = 0.29 mm1
b = 6.5888 (4) ÅT = 293 K
c = 15.1224 (8) Å0.30 × 0.30 × 0.20 mm
β = 103.738 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1621 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.028
10507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2087 reflectionsΔρmin = 0.28 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.3858 (2)0.3538 (4)0.10340 (19)0.0625 (7)
H140.36630.48250.08030.075*
C150.33247 (19)0.2630 (4)0.16026 (17)0.0514 (6)
H150.27710.33030.17560.062*
C100.36083 (17)0.0718 (3)0.19482 (15)0.0426 (6)
C110.44364 (18)0.0247 (4)0.17192 (16)0.0512 (6)
H110.46390.15300.19530.061*
C120.4965 (2)0.0676 (5)0.11477 (18)0.0614 (7)
H120.55210.00120.09950.074*
C130.4678 (2)0.2562 (5)0.08037 (18)0.0637 (8)
H130.50350.31810.04160.076*
C90.30211 (18)0.0408 (4)0.25392 (16)0.0499 (6)
H90.34340.16050.27830.060*
C30.19728 (18)0.1135 (3)0.20317 (16)0.0453 (6)
C3A0.10029 (17)0.0106 (3)0.17045 (15)0.0407 (5)
C40.05889 (18)0.1827 (4)0.17530 (16)0.0474 (6)
H40.09980.28740.20600.057*
C50.04334 (19)0.2133 (4)0.13360 (17)0.0512 (6)
H50.07160.34170.13660.061*
C60.10804 (18)0.0600 (4)0.08627 (16)0.0486 (6)
C70.06762 (19)0.1303 (4)0.08068 (17)0.0526 (6)
H70.10820.23480.04940.063*
C7A0.03587 (19)0.1596 (3)0.12364 (17)0.0476 (6)
C80.2204 (2)0.1048 (5)0.0429 (2)0.0708 (8)
H8A0.23520.24410.05360.106*
H8B0.26420.01810.06870.106*
H8C0.23360.08090.02150.106*
N20.19137 (18)0.3037 (3)0.17984 (18)0.0657 (6)
O10.08903 (15)0.3377 (3)0.12767 (15)0.0693 (6)
Cl0.28938 (6)0.11252 (13)0.34931 (5)0.0704 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0699 (18)0.0508 (17)0.0611 (16)0.0066 (14)0.0044 (14)0.0094 (13)
C150.0511 (14)0.0432 (15)0.0587 (15)0.0055 (11)0.0106 (11)0.0002 (12)
C100.0392 (12)0.0423 (14)0.0416 (12)0.0019 (10)0.0006 (9)0.0024 (10)
C110.0486 (14)0.0475 (15)0.0531 (14)0.0081 (12)0.0031 (11)0.0021 (12)
C120.0488 (15)0.079 (2)0.0567 (16)0.0005 (14)0.0144 (12)0.0122 (15)
C130.0619 (17)0.078 (2)0.0519 (15)0.0193 (15)0.0139 (13)0.0000 (15)
C90.0551 (15)0.0430 (14)0.0513 (14)0.0105 (11)0.0120 (11)0.0057 (11)
C30.0534 (14)0.0350 (13)0.0504 (13)0.0023 (10)0.0179 (11)0.0070 (10)
C3A0.0484 (13)0.0326 (12)0.0441 (12)0.0027 (10)0.0169 (10)0.0027 (10)
C40.0526 (14)0.0376 (14)0.0511 (14)0.0020 (11)0.0103 (11)0.0060 (11)
C50.0556 (15)0.0424 (15)0.0569 (14)0.0056 (12)0.0158 (12)0.0026 (12)
C60.0458 (13)0.0564 (17)0.0450 (13)0.0035 (12)0.0137 (10)0.0013 (11)
C70.0540 (15)0.0498 (16)0.0560 (15)0.0153 (12)0.0173 (12)0.0054 (12)
C7A0.0579 (15)0.0313 (13)0.0572 (14)0.0044 (11)0.0207 (12)0.0029 (11)
C80.0540 (16)0.080 (2)0.0760 (19)0.0010 (14)0.0105 (14)0.0066 (16)
N20.0642 (15)0.0356 (13)0.0970 (18)0.0053 (10)0.0186 (13)0.0041 (12)
O10.0672 (12)0.0324 (10)0.1063 (16)0.0036 (9)0.0168 (11)0.0070 (10)
Cl0.0770 (5)0.0849 (6)0.0506 (4)0.0038 (4)0.0177 (3)0.0093 (3)
Geometric parameters (Å, º) top
C14—C151.371 (4)C3—C3A1.430 (3)
C14—C131.374 (4)C3A—C7A1.380 (3)
C14—H140.9300C3A—C41.395 (3)
C15—C101.381 (3)C4—C51.363 (3)
C15—H150.9300C4—H40.9300
C10—C111.378 (3)C5—C61.404 (4)
C10—C91.510 (3)C5—H50.9300
C11—C121.375 (4)C6—C71.374 (4)
C11—H110.9300C6—C81.502 (4)
C12—C131.365 (4)C7—C7A1.380 (3)
C12—H120.9300C7—H70.9300
C13—H130.9300C7A—O11.361 (3)
C9—C31.494 (3)C8—H8A0.9600
C9—Cl1.801 (2)C8—H8B0.9600
C9—H90.9800C8—H8C0.9600
C3—N21.299 (3)N2—O11.412 (3)
C15—C14—C13120.5 (3)C7A—C3A—C4118.4 (2)
C15—C14—H14119.7C7A—C3A—C3103.5 (2)
C13—C14—H14119.7C4—C3A—C3138.2 (2)
C14—C15—C10120.1 (2)C5—C4—C3A118.0 (2)
C14—C15—H15119.9C5—C4—H4121.0
C10—C15—H15119.9C3A—C4—H4121.0
C11—C10—C15119.1 (2)C4—C5—C6123.0 (2)
C11—C10—C9118.2 (2)C4—C5—H5118.5
C15—C10—C9122.7 (2)C6—C5—H5118.5
C12—C11—C10120.3 (3)C7—C6—C5119.3 (2)
C12—C11—H11119.8C7—C6—C8120.7 (2)
C10—C11—H11119.8C5—C6—C8120.0 (2)
C13—C12—C11120.4 (2)C6—C7—C7A117.0 (2)
C13—C12—H12119.8C6—C7—H7121.5
C11—C12—H12119.8C7A—C7—H7121.5
C12—C13—C14119.6 (3)O1—C7A—C3A110.0 (2)
C12—C13—H13120.2O1—C7A—C7125.8 (2)
C14—C13—H13120.2C3A—C7A—C7124.3 (2)
C3—C9—C10113.4 (2)C6—C8—H8A109.5
C3—C9—Cl109.88 (16)C6—C8—H8B109.5
C10—C9—Cl110.95 (17)H8A—C8—H8B109.5
C3—C9—H9107.5C6—C8—H8C109.5
C10—C9—H9107.5H8A—C8—H8C109.5
Cl—C9—H9107.5H8B—C8—H8C109.5
N2—C3—C3A111.9 (2)C3—N2—O1107.0 (2)
N2—C3—C9116.0 (2)C7A—O1—N2107.68 (18)
C3A—C3—C9132.1 (2)
C13—C14—C15—C100.1 (4)C9—C3—C3A—C45.6 (5)
C14—C15—C10—C110.5 (4)C7A—C3A—C4—C50.2 (3)
C14—C15—C10—C9176.9 (2)C3—C3A—C4—C5178.3 (2)
C15—C10—C11—C120.6 (3)C3A—C4—C5—C60.1 (4)
C9—C10—C11—C12176.9 (2)C4—C5—C6—C70.3 (4)
C10—C11—C12—C130.3 (4)C4—C5—C6—C8179.3 (2)
C11—C12—C13—C140.2 (4)C5—C6—C7—C7A0.6 (3)
C15—C14—C13—C120.3 (4)C8—C6—C7—C7A179.0 (2)
C11—C10—C9—C3106.5 (2)C4—C3A—C7A—O1178.9 (2)
C15—C10—C9—C371.0 (3)C3—C3A—C7A—O10.1 (3)
C11—C10—C9—Cl129.31 (19)C4—C3A—C7A—C70.2 (4)
C15—C10—C9—Cl53.2 (3)C3—C3A—C7A—C7179.1 (2)
C10—C9—C3—N2100.1 (3)C6—C7—C7A—O1178.3 (2)
Cl—C9—C3—N2135.1 (2)C6—C7—C7A—C3A0.6 (4)
C10—C9—C3—C3A76.4 (3)C3A—C3—N2—O11.3 (3)
Cl—C9—C3—C3A48.4 (3)C9—C3—N2—O1175.9 (2)
N2—C3—C3A—C7A0.9 (3)C3A—C7A—O1—N20.7 (3)
C9—C3—C3A—C7A175.7 (2)C7—C7A—O1—N2178.4 (2)
N2—C3—C3A—C4177.7 (3)C3—N2—O1—C7A1.2 (3)

Experimental details

Crystal data
Chemical formulaC15H12ClNO
Mr257.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.2075 (8), 6.5888 (4), 15.1224 (8)
β (°) 103.738 (3)
V3)1278.33 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10507, 2087, 1621
Rint0.028
(sin θ/λ)max1)0.581
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.125, 1.06
No. of reflections2087
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.28

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

 

Acknowledgements

VG thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2011) and also thanks the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the X-ray data collection.

References

First citationAtovmyan, I. L. & Aliev, Z. G. (1994). Russ. Chem. Bull. 43, 806–808.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHu, D.-J., Liu, M., Huang, T.-H., Tu, H.-Y. & Zhang, A. (2009). Acta Cryst. E65, o1593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorlyukov, A. A., Starosotnikov, A. M., Lyssenko, K. A., Shevelev, S. A. & Antipin, M. Yu. (2003). Russ. Chem. Bull. 52, 2095–2099.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVeerareddy, A., Laxminarasimhulu, G., Uday, B. R. S. & Pramod, K. D. (2011). Indian J. Chem. Sect. B, 50, 119–125.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds