metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[lead(II)-μ-(2-oxidobenz­aldehyde isonicotinoylhydrazonato)] methanol monosolvate]

aDepartment of Chemistry, Faculty of Science, Tabriz Branch, Islamic Azad University, PO Box 1655, Tabriz, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and dDepartment of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, PO Box 5166616471, Tabriz, Iran
*Correspondence e-mail: shahverdizadeh@iaut.ac.ir, edward.tiekink@gmail.com

(Received 11 October 2011; accepted 17 October 2011; online 22 October 2011)

The Pb atom in the polymeric title compound, {[Pb(C13H9N3O2)]·CH3OH}n, is five-coordinated within an N2O2 donor set and a lone pair of electrons, as the N-isonicotinamido­salicylaldiminate ligand coordinates the PbII atom via the O,N,O′-donors and simultaneously bridges a neighbouring Pb atom via the pyridine N atom; the coordination geometry is based on a trigonal bipyramid with the O atoms in axial positions. The resulting supra­molecular chain is a 31 helix along the c axis. These chains are linked via inter­molecular Pb⋯O,N inter­actions, as well as O—H⋯O hydrogen bonds.

Related literature

For crystal engineering studies of metal complexes containing isonicotinylhydrazonate ligands, see: Yuan et al. (2007[Yuan, Y.-Z., Zhou, J., Liu, X., Liu, L.-H. & Yu, K.-B. (2007). Inorg. Chem. Commun. 10, 475-478.]); Vrdoljak et al. (2010[Vrdoljak, V., Prugovečki, B., Matković-Čalogović, D. R., Dreos, R., Siega, P. & Tavagnacco, C. (2010). Cryst. Growth Des. 10, 1373-1382.], 2011[Vrdoljak, V., Prugovečki, B., Matković-Calogović, D. & Pisk, P. (2011). CrystEngComm, 13, 4382-4390.]). For specialized crystallization techniques, see: Harrowfield et al. (1996[Harrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165-1169.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C13H9N3O2)]·CH4O

  • Mr = 478.46

  • Hexagonal, [R \overline 3]

  • a = 28.6702 (5) Å

  • c = 9.0146 (2) Å

  • V = 6417.1 (3) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 11.84 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.349, Tmax = 1.000

  • 17626 measured reflections

  • 2958 independent reflections

  • 2816 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.032

  • S = 1.11

  • 2958 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O1 0.84 1.82 2.659 (3) 172

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Oxide-3-benzaldehyde isonicotinylhydrazonato ligands related to that in the title complex, (I), are attracting interest in the context of crystal engineering endeavours (Vrdoljak et al., 2010, 2011). Thus far, the only lead(II) complex reported with this class of ligand is a binuclear complex where the pyridine-N atom does not participate in coordination (Yuan et al., 2007).

The asymmetric unit of compound (I) comprises a PbII atom, a N-isonicotinamidosalicylaldiminato ligand and a methanol molecule of solvation, Fig. 1. The PbII atom is coordinated by the O,N,O atoms of the ligand and the pyridine-N atom bridges to a symmetry related PbII atom. The resultant N2O2 donor set plus the lone pair of electrons is based on a trigonal bipyramid with the O atoms in axial positions [O1—Pb—O2 = 137.27 (6)°] and the N atoms [N1—Pb—N3i = 90.94 (7)°] and lone pair in equatorial positions; symmetry operation: (i) 1/3 - x + y, 4/3 - x, -2/3 + z.

The µ2-bridging mode of the tetradentate N-isonicotinamidosalicylaldiminato ligand leads to a 31 helical chain along the c axis, Fig. 2. The considerable distortions from the ideal geometry arises from the acute chelate angles (O2—Pb—N1 = 66.59 (7)° and O1—Pb—N1 = 73.59 (7)°) as well as the close approach of other donor atoms. Examples of the latter are a methanol-O3 atom [2.959 (3) Å; symmetry operation: 1/3 - x, 5/3 - y, 5/3 - z] and a hydrazine-N2 atom [2.881 (2) Å; symmetry operation: 1/3 - x, 5/3 - y, 8/3 - z]. These interactions along with hydrogen bonding contacts between the methanol molecule of solvation and atom O1 lead to linear chains along the c axis (Fig. 3 and Table 1), i.e. providing links between the 31 chains mediated by Pb···N interactions, Fig. 4.

Related literature top

For crystal engineering studies of metal complexes containing isonicotinylhydrazonate ligands, see: Yuan et al. (2007); Vrdoljak et al. (2010, 2011). For specialized crystallization techniques, see: Harrowfield et al. (1996).

Experimental top

A methanol solution (25 ml) of salicylaldehyde (10 mmol) was added drop wise to a methanol solution (15 ml) of 4-pyridinecarboxylic acid hydrazide (10 mmol) and the mixture was stirred for 3 h. The white precipitate was removed by filtration and recrystallized from methanol solution. Then a mixture of the ligand (0.5 mmol) and lead(II) acetate (0.5 mmol) in methanol (35 ml) was stirred at rt for 45 min to give a yellow precipitate which was filtered off and dried. Crystals were obtained by using the branched tube method (Harrowfield et al., 1996). Thus, the complex (0.3 mmol) was placed in the arm to be heated. Methanol was added to fill both arms, and then the arm to be heated was placed in a water bath at 333 K. After 3 days, yellow crystals were deposited in the cooler arm. They were filtered off, washed with water and air dried. Yield: 68%; M.pt. 560 K.

Refinement top

C-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation: O—H = 0.84 Å, C—H = 0.95 and 0.98 Å, for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3H atoms, and k = 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the 31 chain in compound (I), sustained by Pb···N bonds.
[Figure 3] Fig. 3. A view of the linear supramolecular chain in compound (I) sustained by Pb···O,N bonds (dashed lines), and O—H···O hydrogen bonds (orange dashed lines).
[Figure 4] Fig. 4. A view in projection down the c axis of the crystal packing in compound (I).
catena-Poly[[lead(II)-µ-(2-oxidobenzaldehyde isonicotinoylhydrazonato)] methanol monosolvate] top
Crystal data top
[Pb(C13H9N3O2)]·CH4ODx = 2.229 Mg m3
Mr = 478.46Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 12065 reflections
Hall symbol: -R 3θ = 2.4–29.3°
a = 28.6702 (5) ŵ = 11.84 mm1
c = 9.0146 (2) ÅT = 100 K
V = 6417.1 (3) Å3Prism, colourless
Z = 180.20 × 0.15 × 0.10 mm
F(000) = 4032
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2958 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2816 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4041 pixels mm-1θmax = 26.5°, θmin = 2.4°
ω scansh = 3535
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 3535
Tmin = 0.349, Tmax = 1.000l = 1111
17626 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.032H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0114P)2 + 19.9099P]
where P = (Fo2 + 2Fc2)/3
2958 reflections(Δ/σ)max = 0.005
193 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Pb(C13H9N3O2)]·CH4OZ = 18
Mr = 478.46Mo Kα radiation
Hexagonal, R3µ = 11.84 mm1
a = 28.6702 (5) ÅT = 100 K
c = 9.0146 (2) Å0.20 × 0.15 × 0.10 mm
V = 6417.1 (3) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2958 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2816 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 1.000Rint = 0.026
17626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.032H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0114P)2 + 19.9099P]
where P = (Fo2 + 2Fc2)/3
2958 reflectionsΔρmax = 0.95 e Å3
193 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.172066 (4)0.851864 (4)1.061072 (10)0.01156 (4)
O10.09837 (8)0.86813 (8)1.0476 (2)0.0186 (4)
O20.25307 (7)0.88497 (8)1.19856 (19)0.0147 (4)
O30.08109 (8)0.83045 (11)0.7716 (2)0.0318 (6)
H3o0.08540.84440.85610.051 (12)*
N10.17051 (9)0.89277 (9)1.2955 (2)0.0119 (4)
N20.21170 (9)0.90223 (9)1.3966 (2)0.0118 (5)
N30.39001 (9)0.94432 (9)1.6044 (2)0.0152 (5)
C10.07467 (11)0.88735 (11)1.1315 (3)0.0144 (6)
C20.03012 (11)0.89079 (11)1.0785 (3)0.0189 (6)
H20.01770.87920.98030.023*
C30.00415 (12)0.91040 (12)1.1650 (3)0.0227 (6)
H30.02520.91291.12480.027*
C40.02038 (12)0.92671 (13)1.3109 (3)0.0242 (7)
H40.00250.94031.37020.029*
C50.06267 (12)0.92271 (12)1.3669 (3)0.0207 (6)
H50.07330.93301.46690.025*
C60.09089 (11)0.90384 (11)1.2809 (3)0.0145 (6)
C70.13591 (11)0.90432 (11)1.3515 (3)0.0141 (5)
H70.14110.91451.45310.017*
C80.25097 (10)0.89833 (10)1.3328 (3)0.0119 (5)
C90.38059 (11)0.91341 (11)1.4841 (3)0.0146 (5)
H90.40570.90221.45920.017*
C100.33565 (10)0.89697 (10)1.3940 (3)0.0130 (5)
H100.33060.87561.30840.016*
C110.29821 (10)0.91231 (10)1.4312 (3)0.0116 (5)
C120.30750 (11)0.94353 (11)1.5581 (3)0.0170 (6)
H120.28220.95391.58840.020*
C130.35383 (12)0.95919 (12)1.6392 (3)0.0197 (6)
H130.36040.98151.72350.024*
C140.02725 (13)0.81018 (16)0.7254 (4)0.0360 (9)
H14A0.00340.79740.81200.054*
H14B0.01710.78020.65620.054*
H14C0.02390.83880.67590.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01132 (6)0.01153 (6)0.00909 (5)0.00365 (4)0.00016 (3)0.00041 (4)
O10.0158 (10)0.0239 (11)0.0158 (9)0.0096 (9)0.0023 (8)0.0010 (8)
O20.0146 (10)0.0187 (10)0.0091 (9)0.0071 (8)0.0009 (7)0.0003 (7)
O30.0130 (11)0.0577 (16)0.0209 (11)0.0150 (11)0.0056 (9)0.0155 (11)
N10.0111 (11)0.0087 (11)0.0128 (10)0.0027 (9)0.0013 (9)0.0011 (9)
N20.0111 (11)0.0123 (11)0.0116 (10)0.0055 (9)0.0026 (9)0.0009 (9)
N30.0129 (12)0.0180 (12)0.0151 (11)0.0081 (10)0.0039 (9)0.0016 (9)
C10.0109 (13)0.0098 (13)0.0179 (13)0.0018 (11)0.0025 (11)0.0044 (11)
C20.0162 (15)0.0184 (15)0.0186 (14)0.0061 (12)0.0030 (11)0.0027 (12)
C30.0137 (15)0.0267 (17)0.0297 (16)0.0117 (13)0.0030 (12)0.0052 (13)
C40.0209 (16)0.0286 (17)0.0282 (16)0.0162 (14)0.0019 (13)0.0006 (13)
C50.0188 (15)0.0235 (16)0.0198 (14)0.0106 (13)0.0000 (12)0.0007 (12)
C60.0116 (13)0.0110 (13)0.0180 (13)0.0035 (11)0.0003 (11)0.0029 (11)
C70.0160 (14)0.0129 (13)0.0113 (12)0.0057 (12)0.0009 (11)0.0011 (10)
C80.0129 (13)0.0069 (12)0.0137 (12)0.0033 (11)0.0006 (10)0.0022 (10)
C90.0130 (14)0.0148 (14)0.0169 (13)0.0077 (12)0.0015 (11)0.0020 (11)
C100.0129 (13)0.0112 (13)0.0124 (12)0.0040 (11)0.0009 (10)0.0001 (10)
C110.0111 (13)0.0087 (12)0.0132 (12)0.0035 (11)0.0002 (10)0.0010 (10)
C120.0146 (14)0.0212 (15)0.0183 (14)0.0113 (12)0.0012 (11)0.0049 (11)
C130.0197 (15)0.0262 (16)0.0175 (14)0.0147 (13)0.0043 (12)0.0086 (12)
C140.0178 (16)0.061 (3)0.0259 (17)0.0175 (17)0.0050 (13)0.0137 (16)
Geometric parameters (Å, º) top
Pb—O12.3837 (19)C3—H30.9500
Pb—O22.3721 (18)C4—C51.370 (4)
Pb—N12.428 (2)C4—H40.9500
Pb—N3i2.530 (2)C5—C61.410 (4)
O1—C11.308 (3)C5—H50.9500
O2—C81.280 (3)C6—C71.433 (4)
O3—C141.413 (4)C7—H70.9500
O3—H3o0.8400C8—C111.497 (4)
N1—C71.295 (3)C9—C101.391 (4)
N1—N21.406 (3)C9—H90.9500
N2—C81.318 (3)C10—C111.389 (4)
N3—C91.340 (3)C10—H100.9500
N3—C131.341 (4)C11—C121.393 (4)
N3—Pbii2.530 (2)C12—C131.380 (4)
C1—C21.412 (4)C12—H120.9500
C1—C61.426 (4)C13—H130.9500
C2—C31.377 (4)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.395 (4)C14—H14C0.9800
O2—Pb—O1137.27 (6)C5—C6—C1119.5 (3)
O2—Pb—N166.59 (7)C5—C6—C7116.0 (2)
O1—Pb—N173.59 (7)C1—C6—C7124.5 (2)
O2—Pb—N3i83.72 (7)N1—C7—C6128.7 (2)
O1—Pb—N3i82.01 (7)N1—C7—H7115.6
N1—Pb—N3i90.94 (7)C6—C7—H7115.6
C1—O1—Pb138.69 (17)O2—C8—N2127.5 (2)
C8—O2—Pb115.50 (16)O2—C8—C11118.0 (2)
C14—O3—H3o109.5N2—C8—C11114.6 (2)
C7—N1—N2112.0 (2)N3—C9—C10122.9 (3)
C7—N1—Pb131.62 (18)N3—C9—H9118.6
N2—N1—Pb116.13 (15)C10—C9—H9118.6
C8—N2—N1111.8 (2)C11—C10—C9118.9 (2)
C9—N3—C13117.9 (2)C11—C10—H10120.6
C9—N3—Pbii119.49 (17)C9—C10—H10120.6
C13—N3—Pbii121.59 (18)C10—C11—C12118.2 (2)
O1—C1—C2120.8 (2)C10—C11—C8120.7 (2)
O1—C1—C6122.2 (2)C12—C11—C8121.0 (2)
C2—C1—C6116.9 (2)C13—C12—C11119.2 (3)
C3—C2—C1122.0 (3)C13—C12—H12120.4
C3—C2—H2119.0C11—C12—H12120.4
C1—C2—H2119.0N3—C13—C12123.0 (3)
C2—C3—C4120.8 (3)N3—C13—H13118.5
C2—C3—H3119.6C12—C13—H13118.5
C4—C3—H3119.6O3—C14—H14A109.5
C5—C4—C3118.7 (3)O3—C14—H14B109.5
C5—C4—H4120.6H14A—C14—H14B109.5
C3—C4—H4120.6O3—C14—H14C109.5
C4—C5—C6122.1 (3)H14A—C14—H14C109.5
C4—C5—H5119.0H14B—C14—H14C109.5
C6—C5—H5119.0
O2—Pb—O1—C123.4 (3)O1—C1—C6—C73.9 (4)
N1—Pb—O1—C11.6 (3)C2—C1—C6—C7178.4 (3)
N3i—Pb—O1—C195.0 (3)N2—N1—C7—C6175.1 (3)
O1—Pb—O2—C834.3 (2)Pb—N1—C7—C610.7 (4)
N1—Pb—O2—C811.55 (17)C5—C6—C7—N1174.9 (3)
N3i—Pb—O2—C8105.32 (18)C1—C6—C7—N13.1 (5)
O2—Pb—N1—C7172.3 (3)Pb—O2—C8—N29.3 (3)
O1—Pb—N1—C78.1 (2)Pb—O2—C8—C11171.80 (17)
N3i—Pb—N1—C789.5 (2)N1—N2—C8—O23.6 (4)
O2—Pb—N1—N213.71 (15)N1—N2—C8—C11175.3 (2)
O1—Pb—N1—N2177.83 (18)C13—N3—C9—C100.9 (4)
N3i—Pb—N1—N296.45 (17)Pbii—N3—C9—C10167.6 (2)
C7—N1—N2—C8170.4 (2)N3—C9—C10—C111.2 (4)
Pb—N1—N2—C814.4 (3)C9—C10—C11—C120.1 (4)
Pb—O1—C1—C2179.32 (19)C9—C10—C11—C8176.4 (2)
Pb—O1—C1—C63.1 (4)O2—C8—C11—C1017.9 (4)
O1—C1—C2—C3179.4 (3)N2—C8—C11—C10163.1 (2)
C6—C1—C2—C31.7 (4)O2—C8—C11—C12158.5 (2)
C1—C2—C3—C41.4 (5)N2—C8—C11—C1220.5 (4)
C2—C3—C4—C50.2 (5)C10—C11—C12—C131.7 (4)
C3—C4—C5—C61.5 (5)C8—C11—C12—C13174.8 (3)
C4—C5—C6—C11.2 (4)C9—N3—C13—C120.9 (4)
C4—C5—C6—C7177.0 (3)Pbii—N3—C13—C12169.1 (2)
O1—C1—C6—C5178.1 (3)C11—C12—C13—N32.2 (5)
C2—C1—C6—C50.4 (4)
Symmetry codes: (i) x+y1/3, x+4/3, z2/3; (ii) y+4/3, xy+5/3, z+2/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O10.841.822.659 (3)172

Experimental details

Crystal data
Chemical formula[Pb(C13H9N3O2)]·CH4O
Mr478.46
Crystal system, space groupHexagonal, R3
Temperature (K)100
a, c (Å)28.6702 (5), 9.0146 (2)
V3)6417.1 (3)
Z18
Radiation typeMo Kα
µ (mm1)11.84
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.349, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17626, 2958, 2816
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.032, 1.11
No. of reflections2958
No. of parameters193
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0114P)2 + 19.9099P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.95, 0.60

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O10.841.822.659 (3)172
 

Acknowledgements

The authors thank Islamic Azad University and the University of Malaya for support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Skelton, B. W., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1165–1169.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVrdoljak, V., Prugovečki, B., Matković-Čalogović, D. R., Dreos, R., Siega, P. & Tavagnacco, C. (2010). Cryst. Growth Des. 10, 1373–1382.  Web of Science CrossRef CAS Google Scholar
First citationVrdoljak, V., Prugovečki, B., Matković-Calogović, D. & Pisk, P. (2011). CrystEngComm, 13, 4382–4390.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y.-Z., Zhou, J., Liu, X., Liu, L.-H. & Yu, K.-B. (2007). Inorg. Chem. Commun. 10, 475–478.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds