organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-N1,N4-Bis(2,6-di­fluoro­benzyl­­idene)butane-1,4-di­amine

aDepartment of Chemistry, Faculty of Science, Islamic Azad University, Shahrekord Branch, Box 166, Tehran, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cSchool of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: khaledi1974@yahoo.com

(Received 24 October 2011; accepted 26 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, C18H16F4N2, comprises two half crystallographically independent potentially bidentate Schiff base ligands, with an inversion centre located at the mid-point of the central C—C bond. The crystal packing is stabilized by inter­molecular C—H⋯F and ππ inter­actions [centroid–centroid distance = 3.8283 (11) Å].

Related literature

For background to the synthesis and structural variations of Schiff base ligands and their complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16F4N2

  • Mr = 336.33

  • Triclinic, [P \overline 1]

  • a = 6.4672 (8) Å

  • b = 8.9296 (12) Å

  • c = 14.4939 (19) Å

  • α = 104.956 (2)°

  • β = 94.474 (2)°

  • γ = 93.679 (2)°

  • V = 803.10 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.977

  • 5828 measured reflections

  • 2819 independent reflections

  • 2394 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.11

  • 2819 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F3i 0.95 2.43 3.137 (2) 131
C7—H7⋯F1ii 0.95 2.54 3.378 (2) 148
C12—H12⋯F2 0.95 2.42 3.192 (2) 138
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek,2009[Spek, A. L. (2009). Acta. Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base ligands are among the most prevalent ligands in the field of coordination chemistry. Metal derivatives of Schiff bases have been studied extensively, and NiII and CuII complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Granovski et al., 1993).

The asymmetric unit of the title compound comprises two half crystallographically independent Schiff base molecules; A (including N1) and B (including N2), see Fig. 1. Each molecule lies about an inversion centre, which is located in the middle of the central C—C bond (Fig. 1). In both molecules the aromatic ring and the imine segment (C—NC) are approximately coplanar [dihedral angle 14.9 (2)° for molecule A and 3.4 (2)° for molecule B]. These two essentially planar units are linked by a step formed by the four CH2 groups, so that they are strictly parallel by inversion symmetry but not coplanar.

The crystal packing is stabilized by intermolecular C—H···F interactions (Fig. 2 and Table 1), and by ring stacking of the benzene rings of the two independent molecules [centroid···centroid distance 3.8283 (11) Å, dihedral angle 2.33 (8)°].

Related literature top

For background to the synthesis and structural variations of Schiff base ligands and their complexes, see: Granovski et al. (1993); Elmali et al. (2000).

Experimental top

The title compound was synthesized by mixing 2,4-difluorobenzaldehyde (4 mmol) and butylenediamine (2 mmol) in chloroform (20 ml). After stirring for 2 h, the solution was filtered and the resulting yellow solid was crystallized from ethanol, giving single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to ride on the parent atoms: C-H = 0.95 and 0.99 %A for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek,2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two indpendent molecules of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [Symmetry codes for suffix A: -x, -y + 1, -z + 1 for molecule A, and -x, -y, -z + 2 for molecule B].
[Figure 2] Fig. 2. The crystal packing, viewed down the a axis, showing the intermolecular C—H···F hydrogen bonds (dashed lines), which link the molecules to form a three-dimensional network.
(E,E)-N1,N4-Bis(2,6- difluorobenzylidene)butane-1,4-diamine top
Crystal data top
C18H16F4N2Z = 2
Mr = 336.33F(000) = 348
Triclinic, P1Dx = 1.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4672 (8) ÅCell parameters from 4637 reflections
b = 8.9296 (12) Åθ = 2.9–28.3°
c = 14.4939 (19) ŵ = 0.12 mm1
α = 104.956 (2)°T = 150 K
β = 94.474 (2)°Block, colourless
γ = 93.679 (2)°0.34 × 0.30 × 0.20 mm
V = 803.10 (18) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2819 independent reflections
Radiation source: fine-focus sealed tube2394 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.962, Tmax = 0.977l = 1617
5828 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2616P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2819 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (19)
Crystal data top
C18H16F4N2γ = 93.679 (2)°
Mr = 336.33V = 803.10 (18) Å3
Triclinic, P1Z = 2
a = 6.4672 (8) ÅMo Kα radiation
b = 8.9296 (12) ŵ = 0.12 mm1
c = 14.4939 (19) ÅT = 150 K
α = 104.956 (2)°0.34 × 0.30 × 0.20 mm
β = 94.474 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2819 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2394 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.019
5828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
2819 reflectionsΔρmin = 0.17 e Å3
218 parameters
Special details top

Experimental. The low-temperature data were collected with the Oxford Cyrosystems Cryostream low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1808 (2)0.73556 (16)0.64201 (10)0.0304 (3)
N20.1964 (2)0.08666 (15)0.86448 (9)0.0280 (3)
F10.19530 (16)1.11574 (12)0.54522 (8)0.0423 (3)
F20.57474 (16)0.85519 (11)0.73666 (7)0.0392 (3)
F30.14208 (16)0.33304 (13)0.78309 (9)0.0486 (3)
F40.76402 (16)0.30222 (12)0.96638 (8)0.0424 (3)
C10.3727 (2)1.10083 (19)0.59734 (11)0.0274 (4)
C20.5378 (3)1.21002 (19)0.60645 (12)0.0327 (4)
H20.52841.29240.57640.039*
C30.7184 (3)1.1967 (2)0.66064 (12)0.0323 (4)
H30.83481.27070.66770.039*
C40.7309 (2)1.07689 (19)0.70447 (12)0.0290 (4)
H40.85391.06860.74250.035*
C50.5610 (2)0.96960 (18)0.69179 (11)0.0260 (4)
C60.3742 (2)0.97517 (17)0.63782 (10)0.0236 (3)
C70.1858 (2)0.86668 (18)0.62385 (11)0.0262 (4)
H70.05930.89750.59950.031*
C80.0223 (3)0.6452 (2)0.62406 (12)0.0353 (4)
H8A0.12860.70570.60110.042*
H8B0.06270.62570.68470.042*
C90.0163 (3)0.49050 (19)0.54960 (12)0.0324 (4)
H9A0.09780.43430.57060.039*
H9B0.14880.42630.54590.039*
C100.3370 (2)0.38982 (19)0.82192 (12)0.0285 (4)
C110.4160 (3)0.52544 (19)0.80426 (12)0.0335 (4)
H110.33510.57680.76640.040*
C120.6160 (3)0.58532 (19)0.84294 (12)0.0336 (4)
H120.67280.67900.83160.040*
C130.7339 (3)0.51022 (19)0.89783 (12)0.0331 (4)
H130.87120.55090.92450.040*
C140.6470 (3)0.37536 (18)0.91265 (12)0.0275 (4)
C150.4472 (2)0.30737 (17)0.87626 (11)0.0245 (3)
C160.3732 (2)0.15886 (18)0.89413 (11)0.0261 (4)
H160.46620.11370.93100.031*
C170.1558 (3)0.06100 (18)0.88829 (12)0.0298 (4)
H17A0.28250.08460.92290.036*
H17B0.12250.14540.82840.036*
C180.0243 (2)0.05570 (17)0.95036 (11)0.0248 (3)
H18A0.14740.02380.91760.030*
H18B0.06050.16150.95710.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0337 (8)0.0262 (7)0.0285 (7)0.0040 (6)0.0007 (6)0.0044 (6)
N20.0307 (8)0.0286 (7)0.0266 (7)0.0016 (6)0.0052 (6)0.0109 (6)
F10.0344 (6)0.0431 (6)0.0530 (7)0.0030 (5)0.0134 (5)0.0260 (5)
F20.0374 (6)0.0374 (6)0.0489 (6)0.0016 (4)0.0052 (5)0.0257 (5)
F30.0304 (6)0.0456 (6)0.0743 (8)0.0077 (5)0.0171 (5)0.0333 (6)
F40.0352 (6)0.0387 (6)0.0568 (7)0.0022 (4)0.0143 (5)0.0255 (5)
C10.0260 (8)0.0301 (8)0.0258 (8)0.0033 (7)0.0027 (6)0.0084 (7)
C20.0371 (10)0.0287 (9)0.0350 (9)0.0022 (7)0.0009 (7)0.0155 (7)
C30.0289 (9)0.0348 (9)0.0318 (9)0.0058 (7)0.0035 (7)0.0081 (7)
C40.0230 (8)0.0350 (9)0.0283 (8)0.0023 (7)0.0009 (7)0.0075 (7)
C50.0308 (9)0.0254 (8)0.0241 (8)0.0054 (7)0.0048 (7)0.0092 (6)
C60.0265 (8)0.0231 (8)0.0200 (7)0.0018 (6)0.0043 (6)0.0029 (6)
C70.0260 (8)0.0274 (8)0.0242 (8)0.0016 (6)0.0019 (6)0.0053 (6)
C80.0376 (10)0.0330 (9)0.0333 (9)0.0093 (8)0.0081 (8)0.0069 (7)
C90.0382 (10)0.0260 (8)0.0323 (9)0.0096 (7)0.0027 (7)0.0098 (7)
C100.0240 (8)0.0277 (8)0.0334 (9)0.0004 (7)0.0009 (7)0.0088 (7)
C110.0392 (10)0.0287 (9)0.0349 (9)0.0038 (7)0.0034 (8)0.0142 (7)
C120.0421 (10)0.0228 (8)0.0365 (9)0.0041 (7)0.0004 (8)0.0116 (7)
C130.0301 (9)0.0285 (9)0.0382 (10)0.0053 (7)0.0045 (7)0.0087 (7)
C140.0278 (9)0.0261 (8)0.0297 (8)0.0048 (7)0.0007 (7)0.0100 (7)
C150.0262 (8)0.0229 (8)0.0250 (8)0.0031 (6)0.0055 (6)0.0062 (6)
C160.0271 (9)0.0269 (8)0.0269 (8)0.0058 (7)0.0049 (7)0.0101 (7)
C170.0370 (9)0.0243 (8)0.0284 (9)0.0009 (7)0.0064 (7)0.0076 (7)
C180.0281 (8)0.0212 (7)0.0246 (8)0.0053 (6)0.0003 (6)0.0080 (6)
Geometric parameters (Å, º) top
N1—C71.264 (2)C8—H8B0.990
N1—C81.465 (2)C9—C9i1.520 (3)
N2—C161.262 (2)C9—H9A0.990
N2—C171.460 (2)C9—H9B0.990
F1—C11.3568 (18)C10—C111.376 (2)
F2—C51.3492 (18)C10—C151.396 (2)
F3—C101.3504 (19)C11—C121.384 (2)
F4—C141.3562 (18)C11—H110.950
C1—C21.373 (2)C12—C131.382 (2)
C1—C61.394 (2)C12—H120.950
C2—C31.385 (2)C13—C141.370 (2)
C2—H20.950C13—H130.950
C3—C41.382 (2)C14—C151.394 (2)
C3—H30.950C15—C161.473 (2)
C4—C51.379 (2)C16—H160.950
C4—H40.950C17—C181.522 (2)
C5—C61.398 (2)C17—H17A0.990
C6—C71.474 (2)C17—H17B0.990
C7—H70.950C18—C18ii1.520 (3)
C8—C91.523 (2)C18—H18A0.990
C8—H8A0.990C18—H18B0.990
C7—N1—C8116.31 (15)H9A—C9—H9B107.8
C16—N2—C17116.69 (14)F3—C10—C11117.55 (14)
F1—C1—C2117.90 (14)F3—C10—C15118.52 (14)
F1—C1—C6117.45 (14)C11—C10—C15123.92 (15)
C2—C1—C6124.65 (15)C10—C11—C12118.54 (15)
C1—C2—C3118.21 (15)C10—C11—H11120.7
C1—C2—H2120.9C12—C11—H11120.7
C3—C2—H2120.9C13—C12—C11120.70 (15)
C4—C3—C2120.62 (16)C13—C12—H12119.7
C4—C3—H3119.7C11—C12—H12119.7
C2—C3—H3119.7C14—C13—C12118.07 (16)
C5—C4—C3118.57 (15)C14—C13—H13121.0
C5—C4—H4120.7C12—C13—H13121.0
C3—C4—H4120.7F4—C14—C13117.68 (15)
F2—C5—C4117.69 (14)F4—C14—C15117.52 (14)
F2—C5—C6118.30 (14)C13—C14—C15124.80 (15)
C4—C5—C6123.98 (15)C14—C15—C10113.96 (14)
C1—C6—C5113.95 (14)C14—C15—C16119.93 (14)
C1—C6—C7119.55 (14)C10—C15—C16126.07 (15)
C5—C6—C7126.46 (14)N2—C16—C15125.39 (15)
N1—C7—C6124.53 (15)N2—C16—H16117.3
N1—C7—H7117.7C15—C16—H16117.3
C6—C7—H7117.7N2—C17—C18111.32 (13)
N1—C8—C9111.07 (14)N2—C17—H17A109.4
N1—C8—H8A109.4C18—C17—H17A109.4
C9—C8—H8A109.4N2—C17—H17B109.4
N1—C8—H8B109.4C18—C17—H17B109.4
C9—C8—H8B109.4H17A—C17—H17B108.0
H8A—C8—H8B108.0C18ii—C18—C17113.13 (16)
C9i—C9—C8112.91 (17)C18ii—C18—H18A109.0
C9i—C9—H9A109.0C17—C18—H18A109.0
C8—C9—H9A109.0C18ii—C18—H18B109.0
C9i—C9—H9B109.0C17—C18—H18B109.0
C8—C9—H9B109.0H18A—C18—H18B107.8
F1—C1—C2—C3179.14 (15)F3—C10—C11—C12179.66 (15)
C6—C1—C2—C30.9 (3)C15—C10—C11—C120.5 (3)
C1—C2—C3—C40.2 (3)C10—C11—C12—C130.2 (3)
C2—C3—C4—C51.0 (2)C11—C12—C13—C140.0 (3)
C3—C4—C5—F2178.75 (14)C12—C13—C14—F4179.83 (15)
C3—C4—C5—C60.8 (2)C12—C13—C14—C150.1 (3)
F1—C1—C6—C5178.90 (13)F4—C14—C15—C10179.92 (14)
C2—C1—C6—C51.2 (2)C13—C14—C15—C100.3 (2)
F1—C1—C6—C70.8 (2)F4—C14—C15—C162.0 (2)
C2—C1—C6—C7179.26 (15)C13—C14—C15—C16177.79 (16)
F2—C5—C6—C1177.68 (13)F3—C10—C15—C14179.69 (14)
C4—C5—C6—C10.3 (2)C11—C10—C15—C140.5 (2)
F2—C5—C6—C70.2 (2)F3—C10—C15—C161.7 (2)
C4—C5—C6—C7178.22 (15)C11—C10—C15—C16177.44 (16)
C8—N1—C7—C6179.47 (14)C17—N2—C16—C15178.58 (14)
C1—C6—C7—N1166.67 (15)C14—C15—C16—N2179.69 (15)
C5—C6—C7—N115.5 (2)C10—C15—C16—N21.8 (3)
C7—N1—C8—C9119.39 (16)C16—N2—C17—C18118.07 (16)
N1—C8—C9—C9i66.7 (2)N2—C17—C18—C18ii66.8 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3iii0.952.433.137 (2)131
C7—H7···F1iv0.952.543.378 (2)148
C12—H12···F20.952.423.192 (2)138
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H16F4N2
Mr336.33
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.4672 (8), 8.9296 (12), 14.4939 (19)
α, β, γ (°)104.956 (2), 94.474 (2), 93.679 (2)
V3)803.10 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
5828, 2819, 2394
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.11
No. of reflections2819
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek,2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F3i0.952.433.137 (2)131
C7—H7···F1ii0.952.543.378 (2)148
C12—H12···F20.952.423.192 (2)138
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z+1.
 

Acknowledgements

MK thanks the Islamic Azad University, Shahrkord Branch, for the support of this work. WC and RWH thank the EPSRC (UK) for equipment funding.

References

First citationBruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta. Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds