organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl­phenyl 4-bromo­benzoate

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física, IFSC, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 29 September 2011; accepted 30 September 2011; online 8 October 2011)

In the title compound, C14H11BrO2, an ester formed from the reaction of 4-methyl­phenol with 4-bromo­benzoyl­chloride, the dihedral angle between the benzene rings is 54.43 (7)°, indicating a twist in the mol­ecule. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into supra­molecular layers in the bc plane, and these are connected along the a axis by Br⋯Br contacts [3.6328 (5) Å].

Related literature

For industrial applications of ester systems, see: Gowda et al. (2007a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o4286.]); Brüning et al. (2009[Brüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468-o2469.]). For related structures, see: Gowda et al. (2007b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.], 2008[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For halogen inter­actions, see: Ritter (2009[Ritter, S. K. (2009). Sci. Technol. 87, 39-42.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrO2

  • Mr = 291.13

  • Monoclinic, P 21 /c

  • a = 15.0219 (9) Å

  • b = 11.3585 (8) Å

  • c = 7.5077 (4) Å

  • β = 99.730 (4)°

  • V = 1262.58 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 293 K

  • 0.47 × 0.18 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.472, Tmax = 0.698

  • 9090 measured reflections

  • 2829 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.01

  • 2829 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.67 3.483 (4) 147
C13—H13⋯O1ii 0.93 2.77 3.422 (4) 128
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

This work is part of the study of the effect of substituents on the ester system. Similar work, involving ester systems with an emphasis on industrial applications has been published (Gowda et al., 2007a; Brüning et al., 2009). The molecular structure of the title compound (I) is similar to that of 4-bromophenyl benzoate (4BPB) (Gowda et al., 2008) and 4-methylphenyl 4-methylbenzoate (4MPB) (Gowda et al., 2007b). Compound (I) shows a dihedral angle of 54.43 (7)° between the mean planes of the benzene rings (Fig. 1). This dihedral angle is close to the values presented in the 4BPB and 4MPB molecules [58.43 (17) and 60.17 (7)°, respectively].

The crystal packing is stabilized by C—H···O interactions (Nardelli, 1995); Table 1. These weak interactions link the molecules into supramolecular layers in the bc plane. The layers are connected by Br···Br interactions (Ritter, 2009).

Related literature top

For industrial applications of ester systems, see: Gowda et al. (2007a); Brüning et al. (2009). For related structures, see: Gowda et al. (2007b, 2008). For hydrogen bonding, see: Nardelli (1995). For halogen interactions, see: Ritter (2009).

Experimental top

A solution containing equimolar quantities (3.4 mmol) of 4-bromobenzoyl chloride and 4-methylphenol in acetonitrile (60 ml) was gradually heated to reflux for 2 h and then allowed to cool. At room temperature, triethylamine was added to get a solid which was poured in cold water. The solid was recrystallized from its dichlorometane solution to yield colourless crystals; M.pt. 385 (1) K.

Refinement top

The H-atoms were positioned geometrically [C—H = 0.93–0.96 Å, and with Uiso(H) =1.2–1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
4-Methylphenyl 4-bromobenzoate top
Crystal data top
C14H11BrO2F(000) = 584
Mr = 291.13Dx = 1.532 Mg m3
Monoclinic, P21/cMelting point: 385(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.0219 (9) ÅCell parameters from 9005 reflections
b = 11.3585 (8) Åθ = 2.9–27.5°
c = 7.5077 (4) ŵ = 3.24 mm1
β = 99.730 (4)°T = 293 K
V = 1262.58 (14) Å3Prism, colourless
Z = 40.47 × 0.18 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2829 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.7°
CCD scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1410
Tmin = 0.472, Tmax = 0.698l = 99
9090 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3548P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2829 reflectionsΔρmax = 0.31 e Å3
156 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C14H11BrO2V = 1262.58 (14) Å3
Mr = 291.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0219 (9) ŵ = 3.24 mm1
b = 11.3585 (8) ÅT = 293 K
c = 7.5077 (4) Å0.47 × 0.18 × 0.10 mm
β = 99.730 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2829 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1811 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.698Rint = 0.052
9090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
2829 reflectionsΔρmin = 0.36 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61020 (2)0.93326 (4)0.00395 (6)0.0970 (2)
C141.4444 (2)0.8443 (4)0.4571 (6)0.1050 (13)
H14A1.46850.89020.56150.158*
H14B1.47180.86870.35640.158*
H14C1.45720.76250.48170.158*
O21.06435 (14)0.91018 (16)0.2775 (3)0.0640 (5)
O11.02822 (15)0.7422 (2)0.4071 (3)0.0864 (7)
C50.8438 (2)0.7772 (2)0.2633 (4)0.0615 (7)
H50.85940.70790.32700.074*
C10.7324 (2)0.9019 (3)0.0998 (4)0.0631 (7)
C30.8867 (2)0.9613 (2)0.1444 (4)0.0590 (6)
H30.93091.01560.12750.071*
C20.7978 (2)0.9834 (3)0.0749 (4)0.0619 (7)
H20.78151.05260.01160.074*
C81.15716 (19)0.8889 (2)0.3280 (3)0.0558 (6)
C71.0054 (2)0.8281 (3)0.3177 (4)0.0617 (7)
C40.91105 (18)0.8576 (2)0.2403 (3)0.0545 (6)
C60.7555 (2)0.7987 (3)0.1938 (4)0.0663 (7)
H60.71110.74440.20950.080*
C111.3432 (2)0.8623 (3)0.4124 (4)0.0723 (8)
C131.1971 (2)0.7893 (2)0.2718 (4)0.0641 (7)
H131.16240.73130.20560.077*
C91.2087 (2)0.9753 (3)0.4252 (4)0.0636 (7)
H91.18141.04220.46300.076*
C121.2891 (2)0.7777 (3)0.3156 (4)0.0710 (8)
H121.31610.71030.27890.085*
C101.3008 (2)0.9615 (3)0.4656 (4)0.0720 (8)
H101.33551.02020.53020.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0691 (3)0.1091 (4)0.1086 (4)0.00332 (19)0.00328 (19)0.0103 (2)
C140.067 (2)0.107 (3)0.140 (3)0.002 (2)0.014 (2)0.004 (3)
O20.0677 (12)0.0511 (11)0.0726 (11)0.0013 (9)0.0099 (9)0.0076 (9)
O10.0789 (14)0.0797 (15)0.0998 (15)0.0048 (12)0.0129 (11)0.0395 (13)
C50.0802 (19)0.0442 (14)0.0603 (14)0.0036 (13)0.0130 (13)0.0073 (11)
C10.0668 (16)0.0635 (17)0.0598 (15)0.0025 (14)0.0127 (12)0.0013 (13)
C30.0727 (17)0.0450 (14)0.0630 (14)0.0011 (12)0.0221 (13)0.0035 (11)
C20.0724 (17)0.0500 (15)0.0656 (15)0.0088 (14)0.0187 (13)0.0065 (13)
C80.0665 (16)0.0492 (14)0.0530 (13)0.0001 (12)0.0137 (11)0.0047 (11)
C70.0760 (18)0.0527 (15)0.0577 (14)0.0008 (14)0.0145 (12)0.0066 (13)
C40.0695 (16)0.0446 (14)0.0507 (13)0.0012 (12)0.0141 (11)0.0017 (10)
C60.0751 (18)0.0569 (17)0.0677 (15)0.0106 (14)0.0144 (13)0.0014 (13)
C110.0743 (18)0.066 (2)0.0790 (18)0.0034 (15)0.0196 (15)0.0049 (15)
C130.0816 (19)0.0510 (15)0.0596 (14)0.0004 (14)0.0118 (13)0.0032 (12)
C90.0733 (18)0.0506 (15)0.0700 (16)0.0020 (14)0.0212 (13)0.0066 (13)
C120.086 (2)0.0580 (17)0.0729 (17)0.0097 (16)0.0240 (15)0.0012 (14)
C100.078 (2)0.0616 (18)0.0766 (18)0.0107 (15)0.0145 (15)0.0076 (14)
Geometric parameters (Å, º) top
Br1—C11.889 (3)C3—H30.9300
C14—C111.515 (5)C2—H20.9300
C14—H14A0.9600C8—C91.380 (4)
C14—H14B0.9600C8—C131.380 (4)
C14—H14C0.9600C7—C41.477 (4)
O2—C71.355 (3)C6—H60.9300
O2—C81.402 (3)C11—C101.386 (5)
O1—C71.200 (3)C11—C121.383 (5)
C5—C61.363 (4)C13—C121.372 (4)
C5—C41.394 (4)C13—H130.9300
C5—H50.9300C9—C101.375 (4)
C1—C61.382 (4)C9—H90.9300
C1—C21.384 (4)C12—H120.9300
C3—C21.373 (4)C10—H100.9300
C3—C41.397 (4)
C11—C14—H14A109.5O1—C7—C4124.7 (3)
C11—C14—H14B109.5O2—C7—C4112.1 (2)
H14A—C14—H14B109.5C5—C4—C3119.0 (3)
C11—C14—H14C109.5C5—C4—C7118.0 (2)
H14A—C14—H14C109.5C3—C4—C7123.0 (2)
H14B—C14—H14C109.5C5—C6—C1119.4 (3)
C7—O2—C8118.6 (2)C5—C6—H6120.3
C6—C5—C4120.9 (3)C1—C6—H6120.3
C6—C5—H5119.6C10—C11—C12117.3 (3)
C4—C5—H5119.6C10—C11—C14122.6 (3)
C6—C1—C2120.9 (3)C12—C11—C14120.1 (3)
C6—C1—Br1119.9 (2)C12—C13—C8118.5 (3)
C2—C1—Br1119.2 (2)C12—C13—H13120.7
C2—C3—C4120.2 (3)C8—C13—H13120.7
C2—C3—H3119.9C10—C9—C8119.3 (3)
C4—C3—H3119.9C10—C9—H9120.3
C3—C2—C1119.6 (3)C8—C9—H9120.3
C3—C2—H2120.2C13—C12—C11122.6 (3)
C1—C2—H2120.2C13—C12—H12118.7
C9—C8—C13120.7 (3)C11—C12—H12118.7
C9—C8—O2117.6 (2)C9—C10—C11121.6 (3)
C13—C8—O2121.5 (3)C9—C10—H10119.2
O1—C7—O2123.3 (3)C11—C10—H10119.2
C4—C3—C2—C10.3 (4)O2—C7—C4—C32.8 (4)
C6—C1—C2—C30.1 (4)C4—C5—C6—C10.2 (4)
Br1—C1—C2—C3179.9 (2)C2—C1—C6—C50.2 (4)
C7—O2—C8—C9128.0 (3)Br1—C1—C6—C5179.6 (2)
C7—O2—C8—C1356.6 (3)C9—C8—C13—C120.4 (4)
C8—O2—C7—O16.1 (4)O2—C8—C13—C12175.6 (2)
C8—O2—C7—C4174.3 (2)C13—C8—C9—C100.2 (4)
C6—C5—C4—C30.0 (4)O2—C8—C9—C10175.2 (2)
C6—C5—C4—C7179.4 (2)C8—C13—C12—C110.6 (4)
C2—C3—C4—C50.3 (4)C10—C11—C12—C130.2 (5)
C2—C3—C4—C7179.7 (2)C14—C11—C12—C13179.8 (3)
O1—C7—C4—C53.8 (4)C8—C9—C10—C110.6 (5)
O2—C7—C4—C5176.6 (2)C12—C11—C10—C90.4 (5)
O1—C7—C4—C3176.7 (3)C14—C11—C10—C9179.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.673.483 (4)147
C13—H13···O1ii0.932.773.422 (4)128
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrO2
Mr291.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)15.0219 (9), 11.3585 (8), 7.5077 (4)
β (°) 99.730 (4)
V3)1262.58 (14)
Z4
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.47 × 0.18 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.472, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
9090, 2829, 1811
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.01
No. of reflections2829
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.673.483 (4)146.5
C13—H13···O1ii0.932.773.422 (4)128.4
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also thank the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468–o2469.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRitter, S. K. (2009). Sci. Technol. 87, 39–42.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds