organic compounds
4-Methylphenyl 4-bromobenzoate
aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física, IFSC, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title compound, C14H11BrO2, an ester formed from the reaction of 4-methylphenol with 4-bromobenzoylchloride, the dihedral angle between the benzene rings is 54.43 (7)°, indicating a twist in the molecule. In the crystal, weak C—H⋯O interactions link the molecules into supramolecular layers in the bc plane, and these are connected along the a axis by Br⋯Br contacts [3.6328 (5) Å].
Related literature
For industrial applications of ester systems, see: Gowda et al. (2007a); Brüning et al. (2009). For related structures, see: Gowda et al. (2007b, 2008). For hydrogen bonding, see: Nardelli (1995). For halogen interactions, see: Ritter (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
Supporting information
10.1107/S1600536811040426/tk2795sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811040426/tk2795Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811040426/tk2795Isup3.cml
A solution containing equimolar quantities (3.4 mmol) of 4-bromobenzoyl chloride and 4-methylphenol in acetonitrile (60 ml) was gradually heated to reflux for 2 h and then allowed to cool. At room temperature, triethylamine was added to get a solid which was poured in cold water. The solid was recrystallized from its dichlorometane solution to yield colourless crystals; M.pt. 385 (1) K.
The H-atoms were positioned geometrically [C—H = 0.93–0.96 Å, and with Uiso(H) =1.2–1.5Ueq(C).
Data collection: COLLECT (Nonius, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. |
C14H11BrO2 | F(000) = 584 |
Mr = 291.13 | Dx = 1.532 Mg m−3 |
Monoclinic, P21/c | Melting point: 385(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.0219 (9) Å | Cell parameters from 9005 reflections |
b = 11.3585 (8) Å | θ = 2.9–27.5° |
c = 7.5077 (4) Å | µ = 3.24 mm−1 |
β = 99.730 (4)° | T = 293 K |
V = 1262.58 (14) Å3 | Prism, colourless |
Z = 4 | 0.47 × 0.18 × 0.10 mm |
Bruker–Nonius KappaCCD diffractometer | 2829 independent reflections |
Radiation source: fine-focus sealed tube | 1811 reflections with I > 2σ(I) |
Horizonally mounted graphite crystal monochromator | Rint = 0.052 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.7° |
CCD scans | h = −19→19 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −14→10 |
Tmin = 0.472, Tmax = 0.698 | l = −9→9 |
9090 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3548P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2829 reflections | Δρmax = 0.31 e Å−3 |
156 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.020 (3) |
C14H11BrO2 | V = 1262.58 (14) Å3 |
Mr = 291.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.0219 (9) Å | µ = 3.24 mm−1 |
b = 11.3585 (8) Å | T = 293 K |
c = 7.5077 (4) Å | 0.47 × 0.18 × 0.10 mm |
β = 99.730 (4)° |
Bruker–Nonius KappaCCD diffractometer | 2829 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1811 reflections with I > 2σ(I) |
Tmin = 0.472, Tmax = 0.698 | Rint = 0.052 |
9090 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.31 e Å−3 |
2829 reflections | Δρmin = −0.36 e Å−3 |
156 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.61020 (2) | 0.93326 (4) | 0.00395 (6) | 0.0970 (2) | |
C14 | 1.4444 (2) | 0.8443 (4) | 0.4571 (6) | 0.1050 (13) | |
H14A | 1.4685 | 0.8902 | 0.5615 | 0.158* | |
H14B | 1.4718 | 0.8687 | 0.3564 | 0.158* | |
H14C | 1.4572 | 0.7625 | 0.4817 | 0.158* | |
O2 | 1.06435 (14) | 0.91018 (16) | 0.2775 (3) | 0.0640 (5) | |
O1 | 1.02822 (15) | 0.7422 (2) | 0.4071 (3) | 0.0864 (7) | |
C5 | 0.8438 (2) | 0.7772 (2) | 0.2633 (4) | 0.0615 (7) | |
H5 | 0.8594 | 0.7079 | 0.3270 | 0.074* | |
C1 | 0.7324 (2) | 0.9019 (3) | 0.0998 (4) | 0.0631 (7) | |
C3 | 0.8867 (2) | 0.9613 (2) | 0.1444 (4) | 0.0590 (6) | |
H3 | 0.9309 | 1.0156 | 0.1275 | 0.071* | |
C2 | 0.7978 (2) | 0.9834 (3) | 0.0749 (4) | 0.0619 (7) | |
H2 | 0.7815 | 1.0526 | 0.0116 | 0.074* | |
C8 | 1.15716 (19) | 0.8889 (2) | 0.3280 (3) | 0.0558 (6) | |
C7 | 1.0054 (2) | 0.8281 (3) | 0.3177 (4) | 0.0617 (7) | |
C4 | 0.91105 (18) | 0.8576 (2) | 0.2403 (3) | 0.0545 (6) | |
C6 | 0.7555 (2) | 0.7987 (3) | 0.1938 (4) | 0.0663 (7) | |
H6 | 0.7111 | 0.7444 | 0.2095 | 0.080* | |
C11 | 1.3432 (2) | 0.8623 (3) | 0.4124 (4) | 0.0723 (8) | |
C13 | 1.1971 (2) | 0.7893 (2) | 0.2718 (4) | 0.0641 (7) | |
H13 | 1.1624 | 0.7313 | 0.2056 | 0.077* | |
C9 | 1.2087 (2) | 0.9753 (3) | 0.4252 (4) | 0.0636 (7) | |
H9 | 1.1814 | 1.0422 | 0.4630 | 0.076* | |
C12 | 1.2891 (2) | 0.7777 (3) | 0.3156 (4) | 0.0710 (8) | |
H12 | 1.3161 | 0.7103 | 0.2789 | 0.085* | |
C10 | 1.3008 (2) | 0.9615 (3) | 0.4656 (4) | 0.0720 (8) | |
H10 | 1.3355 | 1.0202 | 0.5302 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0691 (3) | 0.1091 (4) | 0.1086 (4) | 0.00332 (19) | 0.00328 (19) | 0.0103 (2) |
C14 | 0.067 (2) | 0.107 (3) | 0.140 (3) | 0.002 (2) | 0.014 (2) | 0.004 (3) |
O2 | 0.0677 (12) | 0.0511 (11) | 0.0726 (11) | 0.0013 (9) | 0.0099 (9) | 0.0076 (9) |
O1 | 0.0789 (14) | 0.0797 (15) | 0.0998 (15) | 0.0048 (12) | 0.0129 (11) | 0.0395 (13) |
C5 | 0.0802 (19) | 0.0442 (14) | 0.0603 (14) | −0.0036 (13) | 0.0130 (13) | 0.0073 (11) |
C1 | 0.0668 (16) | 0.0635 (17) | 0.0598 (15) | 0.0025 (14) | 0.0127 (12) | −0.0013 (13) |
C3 | 0.0727 (17) | 0.0450 (14) | 0.0630 (14) | −0.0011 (12) | 0.0221 (13) | 0.0035 (11) |
C2 | 0.0724 (17) | 0.0500 (15) | 0.0656 (15) | 0.0088 (14) | 0.0187 (13) | 0.0065 (13) |
C8 | 0.0665 (16) | 0.0492 (14) | 0.0530 (13) | 0.0001 (12) | 0.0137 (11) | 0.0047 (11) |
C7 | 0.0760 (18) | 0.0527 (15) | 0.0577 (14) | −0.0008 (14) | 0.0145 (12) | 0.0066 (13) |
C4 | 0.0695 (16) | 0.0446 (14) | 0.0507 (13) | 0.0012 (12) | 0.0141 (11) | 0.0017 (10) |
C6 | 0.0751 (18) | 0.0569 (17) | 0.0677 (15) | −0.0106 (14) | 0.0144 (13) | 0.0014 (13) |
C11 | 0.0743 (18) | 0.066 (2) | 0.0790 (18) | 0.0034 (15) | 0.0196 (15) | 0.0049 (15) |
C13 | 0.0816 (19) | 0.0510 (15) | 0.0596 (14) | 0.0004 (14) | 0.0118 (13) | −0.0032 (12) |
C9 | 0.0733 (18) | 0.0506 (15) | 0.0700 (16) | −0.0020 (14) | 0.0212 (13) | −0.0066 (13) |
C12 | 0.086 (2) | 0.0580 (17) | 0.0729 (17) | 0.0097 (16) | 0.0240 (15) | −0.0012 (14) |
C10 | 0.078 (2) | 0.0616 (18) | 0.0766 (18) | −0.0107 (15) | 0.0145 (15) | −0.0076 (14) |
Br1—C1 | 1.889 (3) | C3—H3 | 0.9300 |
C14—C11 | 1.515 (5) | C2—H2 | 0.9300 |
C14—H14A | 0.9600 | C8—C9 | 1.380 (4) |
C14—H14B | 0.9600 | C8—C13 | 1.380 (4) |
C14—H14C | 0.9600 | C7—C4 | 1.477 (4) |
O2—C7 | 1.355 (3) | C6—H6 | 0.9300 |
O2—C8 | 1.402 (3) | C11—C10 | 1.386 (5) |
O1—C7 | 1.200 (3) | C11—C12 | 1.383 (5) |
C5—C6 | 1.363 (4) | C13—C12 | 1.372 (4) |
C5—C4 | 1.394 (4) | C13—H13 | 0.9300 |
C5—H5 | 0.9300 | C9—C10 | 1.375 (4) |
C1—C6 | 1.382 (4) | C9—H9 | 0.9300 |
C1—C2 | 1.384 (4) | C12—H12 | 0.9300 |
C3—C2 | 1.373 (4) | C10—H10 | 0.9300 |
C3—C4 | 1.397 (4) | ||
C11—C14—H14A | 109.5 | O1—C7—C4 | 124.7 (3) |
C11—C14—H14B | 109.5 | O2—C7—C4 | 112.1 (2) |
H14A—C14—H14B | 109.5 | C5—C4—C3 | 119.0 (3) |
C11—C14—H14C | 109.5 | C5—C4—C7 | 118.0 (2) |
H14A—C14—H14C | 109.5 | C3—C4—C7 | 123.0 (2) |
H14B—C14—H14C | 109.5 | C5—C6—C1 | 119.4 (3) |
C7—O2—C8 | 118.6 (2) | C5—C6—H6 | 120.3 |
C6—C5—C4 | 120.9 (3) | C1—C6—H6 | 120.3 |
C6—C5—H5 | 119.6 | C10—C11—C12 | 117.3 (3) |
C4—C5—H5 | 119.6 | C10—C11—C14 | 122.6 (3) |
C6—C1—C2 | 120.9 (3) | C12—C11—C14 | 120.1 (3) |
C6—C1—Br1 | 119.9 (2) | C12—C13—C8 | 118.5 (3) |
C2—C1—Br1 | 119.2 (2) | C12—C13—H13 | 120.7 |
C2—C3—C4 | 120.2 (3) | C8—C13—H13 | 120.7 |
C2—C3—H3 | 119.9 | C10—C9—C8 | 119.3 (3) |
C4—C3—H3 | 119.9 | C10—C9—H9 | 120.3 |
C3—C2—C1 | 119.6 (3) | C8—C9—H9 | 120.3 |
C3—C2—H2 | 120.2 | C13—C12—C11 | 122.6 (3) |
C1—C2—H2 | 120.2 | C13—C12—H12 | 118.7 |
C9—C8—C13 | 120.7 (3) | C11—C12—H12 | 118.7 |
C9—C8—O2 | 117.6 (2) | C9—C10—C11 | 121.6 (3) |
C13—C8—O2 | 121.5 (3) | C9—C10—H10 | 119.2 |
O1—C7—O2 | 123.3 (3) | C11—C10—H10 | 119.2 |
C4—C3—C2—C1 | −0.3 (4) | O2—C7—C4—C3 | −2.8 (4) |
C6—C1—C2—C3 | 0.1 (4) | C4—C5—C6—C1 | −0.2 (4) |
Br1—C1—C2—C3 | 179.9 (2) | C2—C1—C6—C5 | 0.2 (4) |
C7—O2—C8—C9 | −128.0 (3) | Br1—C1—C6—C5 | −179.6 (2) |
C7—O2—C8—C13 | 56.6 (3) | C9—C8—C13—C12 | 0.4 (4) |
C8—O2—C7—O1 | 6.1 (4) | O2—C8—C13—C12 | 175.6 (2) |
C8—O2—C7—C4 | −174.3 (2) | C13—C8—C9—C10 | 0.2 (4) |
C6—C5—C4—C3 | 0.0 (4) | O2—C8—C9—C10 | −175.2 (2) |
C6—C5—C4—C7 | −179.4 (2) | C8—C13—C12—C11 | −0.6 (4) |
C2—C3—C4—C5 | 0.3 (4) | C10—C11—C12—C13 | 0.2 (5) |
C2—C3—C4—C7 | 179.7 (2) | C14—C11—C12—C13 | 179.8 (3) |
O1—C7—C4—C5 | −3.8 (4) | C8—C9—C10—C11 | −0.6 (5) |
O2—C7—C4—C5 | 176.6 (2) | C12—C11—C10—C9 | 0.4 (5) |
O1—C7—C4—C3 | 176.7 (3) | C14—C11—C10—C9 | −179.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.67 | 3.483 (4) | 147 |
C13—H13···O1ii | 0.93 | 2.77 | 3.422 (4) | 128 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H11BrO2 |
Mr | 291.13 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.0219 (9), 11.3585 (8), 7.5077 (4) |
β (°) | 99.730 (4) |
V (Å3) | 1262.58 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.24 |
Crystal size (mm) | 0.47 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.472, 0.698 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9090, 2829, 1811 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.125, 1.01 |
No. of reflections | 2829 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.36 |
Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1i | 0.93 | 2.67 | 3.483 (4) | 146.5 |
C13—H13···O1ii | 0.93 | 2.77 | 3.422 (4) | 128.4 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thank the Universidad del Valle, Colombia, for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brüning, J., Bats, J. W. & Schmidt, M. U. (2009). Acta Cryst. E65, o2468–o2469. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o4286. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3867. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o771. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ritter, S. K. (2009). Sci. Technol. 87, 39–42. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is part of the study of the effect of substituents on the ester system. Similar work, involving ester systems with an emphasis on industrial applications has been published (Gowda et al., 2007a; Brüning et al., 2009). The molecular structure of the title compound (I) is similar to that of 4-bromophenyl benzoate (4BPB) (Gowda et al., 2008) and 4-methylphenyl 4-methylbenzoate (4MPB) (Gowda et al., 2007b). Compound (I) shows a dihedral angle of 54.43 (7)° between the mean planes of the benzene rings (Fig. 1). This dihedral angle is close to the values presented in the 4BPB and 4MPB molecules [58.43 (17) and 60.17 (7)°, respectively].
The crystal packing is stabilized by C—H···O interactions (Nardelli, 1995); Table 1. These weak interactions link the molecules into supramolecular layers in the bc plane. The layers are connected by Br···Br interactions (Ritter, 2009).