metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1603-m1604

trans-Bis(thio­cyanato-κN)tetra­kis­(3,4,5-tri­methyl-1H-pyrazole-κN2)nickel(II)–3,4,5-tri­methyl-1H-pyrazole (1/1)

aDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and bDepartment of Chemistry, University of Akron, Akron, Ohio 44325, USA
*Correspondence e-mail: sadr@azaruniv.edu

(Received 29 September 2011; accepted 7 October 2011; online 29 October 2011)

In the title compound, [Ni(NCS)2(C6H10N2)4]·C6H10N2, the asymmetric unit comprises a NiII complex and a co-crystallised mol­ecule of 3,4,5-trimethyl-1H-pyrazole (PzMe3). The NiII atom is coordinated by four PzMe3 mol­ecules and two thio­cyanate anions to define a trans N4S2 distorted octa­hedral geometry. A number of intra­molecular N—H⋯N, N—H⋯S and C—H⋯N inter­actions contribute to the stability of the complex. The crystal structure is stabilized by inter­molecular N—H⋯S inter­actions, which link neighbouring mol­ecules into chains along the a axis.

Related literature

For some background to imidazole in coordination chemistry, see: Hossaini Sadr et al. (2004[Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.], 2006[Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285-3288.], 2008[Hossaini Sadr, M., Soltani, B., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, m109.]); Wriedt et al. (2010[Wriedt, M., Jess, I. & Näther, C. (2010). Acta Cryst. E66, m781.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C6H10N2)4]·C6H10N2

  • Mr = 725.67

  • Triclinic, [P \overline 1]

  • a = 8.640 (8) Å

  • b = 12.561 (11) Å

  • c = 19.30 (2) Å

  • α = 101.815 (15)°

  • β = 98.817 (16)°

  • γ = 107.895 (11)°

  • V = 1898 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.879, Tmax = 0.981

  • 13255 measured reflections

  • 6625 independent reflections

  • 4497 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.240

  • S = 1.02

  • 6625 reflections

  • 439 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.071 (5)
Ni1—N2 2.065 (5)
Ni1—N3 2.128 (5)
Ni1—N6 2.111 (5)
Ni1—N8 2.120 (5)
Ni1—N10 2.108 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N11 0.86 2.15 2.970 (8) 159
N7—H7⋯S2i 0.86 2.66 3.441 (6) 152
N9—H9⋯S1ii 0.86 2.59 3.348 (6) 148
N12—H12⋯S1 0.86 2.49 3.292 (7) 156
C3—H3A⋯N2 0.98 2.57 3.338 (9) 135
C14—H14A⋯N1 0.98 2.50 3.324 (9) 141
C20—H20A⋯N1 0.98 2.49 3.371 (8) 150
C21—H21A⋯N2 0.98 2.48 3.326 (8) 145
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Complexes of pyrazole-based ligands are a frequent subject of chemical investigations and are used to better understand the relationship between structure and activity in the active sites of metalloproteins (Wriedt et al., 2010). Currently, there is interest in designing various pyrazole-derived ligands with specific structural properties to fulfill the specific stereochemical requirements of a particular metal-binding site. In our systematic studies on transition metal complexes with pyrazole derivatives (Hossaini Sadr et al., 2004; Hossaini Sadr et al., 2008; Hossaini Sadr et al., 2006), the title compound was prepared and its X-ray crystal structure was determined.

The asymmetric unit of the title complex, Fig. 1 and Table 1, comprises one molecule of the complex and a co-crystallized pyrazole ligand. The geometry around Ni is that of distorted octahedron and is coordinated by four 3,4,5-trimethyl-3H-pyrazole molecules and two thiocyanate anions. A number of intramolecular N—H···N, N—H···S and C—H···N interactions contribute to the stability of the complex. The crystal structure is stabilized by intermolecular N—H···S interactions which link neighbouring molecules into chains along the a axis (Fig. 2 and Table 2).

Related literature top

For some background to imidazole in coordination chemistry, see: Hossaini Sadr et al. (2004, 2006, 2008); Wriedt et al. (2010).

Experimental top

To a mixture of NiCl2.6H2O (0.1 g, 1 mmol) and Pz(Me)3 (0.185 g, 4 mmol) in acetone (30 ml), KSCN (0.08 g, 2 mmol) was added and the mixture was stirred for 12 h. The resultant solution was then filtered. The filtered solution was then stored for three days at 269 K after which blue plates formed.

Refinement top

All C-bound H atoms were positioned geometrically with C—H = 0.98 Å and included in a riding model approximation with Uiso (H) = 1.5 Ueq(C). The N-bound H atoms were located from the difference Fourier map but were fixed with N—H = 0.86 Å, and refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit in the title compound showing 40% probability displacement ellipsoids and the atomic numbering. H atoms have been removed for reasons of clarity.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed down the b axis showing an extended chain along the a axis through N—H···S interactions (dashed lines). Only the H atoms involved the H-bonding are shown.
trans-Bis(thiocyanato-κN)tetrakis(3,4,5-trimethyl-1H- pyrazole-κN2)nickel(II)–3,4,5-trimethyl-1H-pyrazole (1/1) top
Crystal data top
[Ni(NCS)2(C6H10N2)4]·C6H10N2Z = 2
Mr = 725.67F(000) = 772
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.640 (8) ÅCell parameters from 2348 reflections
b = 12.561 (11) Åθ = 2.2–23.6°
c = 19.30 (2) ŵ = 0.66 mm1
α = 101.815 (15)°T = 100 K
β = 98.817 (16)°Plate, blue
γ = 107.895 (11)°0.20 × 0.20 × 0.03 mm
V = 1898 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6625 independent reflections
Radiation source: fine-focus sealed tube4497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.879, Tmax = 0.981k = 1414
13255 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1309P)2]
where P = (Fo2 + 2Fc2)/3
6625 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 1.31 e Å3
Crystal data top
[Ni(NCS)2(C6H10N2)4]·C6H10N2γ = 107.895 (11)°
Mr = 725.67V = 1898 (3) Å3
Triclinic, P1Z = 2
a = 8.640 (8) ÅMo Kα radiation
b = 12.561 (11) ŵ = 0.66 mm1
c = 19.30 (2) ÅT = 100 K
α = 101.815 (15)°0.20 × 0.20 × 0.03 mm
β = 98.817 (16)°
Data collection top
Bruker APEXII CCD
diffractometer
6625 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4497 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.981Rint = 0.072
13255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.240H-atom parameters constrained
S = 1.02Δρmax = 0.78 e Å3
6625 reflectionsΔρmin = 1.31 e Å3
439 parameters
Special details top

Experimental. Estimated minimum and maximum transmission: 0.5159 0.7457

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82210 (8)0.80401 (6)0.72446 (4)0.0256 (2)
S10.23581 (18)0.61334 (13)0.71314 (9)0.0378 (4)
S21.41564 (18)0.96437 (13)0.82925 (8)0.0377 (4)
N11.0794 (6)0.8855 (4)0.7525 (2)0.0309 (11)
N20.5670 (6)0.7197 (4)0.7044 (2)0.0314 (11)
N30.8625 (6)0.6637 (4)0.7608 (2)0.0270 (10)
N40.9828 (6)0.6877 (4)0.8216 (2)0.0305 (11)
H41.03760.75670.84910.037*
N50.7197 (6)0.8244 (4)0.8696 (2)0.0285 (10)
H50.66830.75050.85560.034*
N60.8146 (6)0.8857 (4)0.8304 (2)0.0310 (11)
N70.6340 (6)0.9627 (4)0.6944 (2)0.0314 (11)
H70.57380.93640.72290.038*
N80.7747 (6)0.9386 (4)0.6841 (2)0.0305 (11)
N90.9785 (5)0.7043 (4)0.6119 (2)0.0282 (10)
H91.05440.70990.64830.034*
N100.8375 (6)0.7269 (4)0.6191 (2)0.0302 (11)
C10.4274 (7)0.6768 (4)0.7076 (3)0.0251 (12)
C21.2198 (7)0.9184 (4)0.7837 (3)0.0270 (12)
C30.6728 (7)0.4835 (5)0.6679 (3)0.0352 (14)
H3A0.63230.53870.64840.053*
H3B0.58020.42720.67930.053*
H3C0.71740.44270.63150.053*
C40.8071 (7)0.5473 (5)0.7351 (3)0.0291 (12)
C50.8928 (7)0.4983 (5)0.7804 (3)0.0299 (13)
C60.8723 (8)0.3719 (5)0.7691 (4)0.0442 (16)
H6A0.94320.36250.81050.066*
H6B0.90530.34460.72430.066*
H6C0.75510.32630.76510.066*
C71.0077 (7)0.5912 (5)0.8347 (3)0.0310 (13)
C81.1416 (8)0.5985 (5)0.8954 (3)0.0411 (15)
H8A1.25100.63590.88600.062*
H8B1.13110.52020.89930.062*
H8C1.13140.64430.94100.062*
C90.6137 (8)0.8441 (5)0.9821 (3)0.0413 (15)
H9A0.57070.75900.96560.062*
H9B0.51990.87240.98180.062*
H9C0.68380.86941.03160.062*
C100.7156 (7)0.8919 (5)0.9321 (3)0.0294 (12)
C110.8115 (7)1.0035 (5)0.9359 (3)0.0306 (13)
C120.8445 (8)1.1103 (5)0.9962 (3)0.0405 (15)
H12A0.76801.09201.02820.061*
H12B0.82681.17170.97550.061*
H12C0.96031.13671.02440.061*
C130.8712 (7)0.9970 (5)0.8722 (3)0.0315 (13)
C140.9780 (8)1.0950 (5)0.8486 (3)0.0424 (16)
H14A1.02401.06400.80900.064*
H14B1.06971.14670.88980.064*
H14C0.91031.13850.83160.064*
C150.4515 (9)1.0713 (6)0.6552 (4)0.0557 (19)
H15A0.34981.00730.62650.084*
H15B0.46711.13760.63430.084*
H15C0.44111.09420.70550.084*
C160.6022 (8)1.0320 (5)0.6543 (3)0.0362 (14)
C170.7260 (8)1.0574 (5)0.6166 (3)0.0367 (14)
C180.7413 (10)1.1311 (7)0.5647 (4)0.060 (2)
H18A0.65391.09030.52000.090*
H18B0.85141.14690.55320.090*
H18C0.72861.20450.58690.090*
C190.8315 (7)0.9969 (5)0.6371 (3)0.0325 (13)
C200.9860 (7)0.9949 (5)0.6126 (3)0.0382 (14)
H20A1.05000.96520.64530.057*
H20B1.05411.07380.61350.057*
H20C0.95560.94450.56300.057*
C210.5872 (8)0.7215 (6)0.5339 (3)0.0446 (16)
H21A0.55190.74190.57920.067*
H21B0.50450.64850.50210.067*
H21C0.59610.78340.50930.067*
C220.7537 (7)0.7075 (5)0.5509 (3)0.0320 (13)
C230.8465 (8)0.6761 (5)0.5009 (3)0.0365 (14)
C240.8004 (9)0.6557 (7)0.4202 (3)0.057 (2)
H24A0.89270.64450.39940.086*
H24B0.77850.72310.40880.086*
H24C0.69980.58630.39930.086*
C250.9900 (7)0.6730 (5)0.5424 (3)0.0306 (13)
C261.1374 (8)0.6458 (6)0.5223 (3)0.0391 (15)
H26A1.23560.71730.53680.059*
H26B1.11280.61240.46960.059*
H26C1.16000.59000.54750.059*
N110.5554 (6)0.5762 (4)0.8632 (3)0.0380 (12)
N120.4330 (6)0.4886 (4)0.8116 (3)0.0346 (12)
H120.36770.49940.77750.042*
C270.2961 (9)0.2742 (5)0.7681 (4)0.0502 (17)
H27A0.18420.27460.77140.075*
H27B0.31110.20610.78140.075*
H27C0.30860.27100.71820.075*
C280.4246 (8)0.3820 (5)0.8189 (3)0.0343 (13)
C290.5492 (7)0.4002 (5)0.8791 (3)0.0348 (14)
C300.6010 (10)0.3130 (6)0.9091 (4)0.058 (2)
H30A0.52580.23470.88150.088*
H30B0.59550.32520.96030.088*
H30C0.71570.32170.90520.088*
C310.6268 (8)0.5218 (5)0.9051 (3)0.0401 (15)
C320.7669 (8)0.5892 (6)0.9702 (4)0.0469 (17)
H32A0.81390.66970.96780.070*
H32B0.85390.55430.97090.070*
H32C0.72480.58801.01450.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0254 (4)0.0281 (4)0.0206 (4)0.0071 (3)0.0026 (3)0.0065 (3)
S10.0277 (8)0.0426 (9)0.0462 (10)0.0088 (7)0.0072 (7)0.0246 (7)
S20.0279 (8)0.0463 (9)0.0267 (8)0.0077 (7)0.0017 (6)0.0020 (6)
N10.033 (3)0.028 (2)0.025 (3)0.006 (2)0.000 (2)0.005 (2)
N20.032 (3)0.032 (3)0.021 (2)0.005 (2)0.003 (2)0.003 (2)
N30.029 (2)0.029 (2)0.018 (2)0.006 (2)0.0010 (19)0.0046 (18)
N40.035 (3)0.027 (2)0.022 (2)0.009 (2)0.004 (2)0.0030 (19)
N50.031 (3)0.025 (2)0.024 (2)0.004 (2)0.004 (2)0.0057 (19)
N60.040 (3)0.026 (2)0.022 (2)0.005 (2)0.003 (2)0.0064 (19)
N70.028 (3)0.044 (3)0.033 (3)0.018 (2)0.016 (2)0.017 (2)
N80.032 (3)0.031 (3)0.028 (3)0.010 (2)0.006 (2)0.010 (2)
N90.021 (2)0.039 (3)0.029 (3)0.013 (2)0.007 (2)0.014 (2)
N100.032 (3)0.040 (3)0.021 (2)0.014 (2)0.005 (2)0.011 (2)
C10.027 (3)0.026 (3)0.024 (3)0.013 (2)0.003 (2)0.010 (2)
C20.040 (3)0.025 (3)0.017 (3)0.010 (2)0.010 (2)0.006 (2)
C30.036 (3)0.031 (3)0.030 (3)0.007 (3)0.001 (3)0.001 (2)
C40.030 (3)0.030 (3)0.022 (3)0.005 (2)0.006 (2)0.007 (2)
C50.035 (3)0.029 (3)0.028 (3)0.011 (3)0.012 (3)0.008 (2)
C60.051 (4)0.034 (3)0.043 (4)0.011 (3)0.009 (3)0.009 (3)
C70.038 (3)0.034 (3)0.022 (3)0.014 (3)0.007 (2)0.008 (2)
C80.056 (4)0.044 (4)0.025 (3)0.023 (3)0.001 (3)0.010 (3)
C90.044 (4)0.049 (4)0.023 (3)0.008 (3)0.009 (3)0.004 (3)
C100.025 (3)0.040 (3)0.018 (3)0.010 (2)0.000 (2)0.002 (2)
C110.031 (3)0.034 (3)0.022 (3)0.013 (3)0.001 (2)0.000 (2)
C120.040 (4)0.036 (3)0.034 (3)0.008 (3)0.003 (3)0.003 (3)
C130.032 (3)0.030 (3)0.029 (3)0.008 (2)0.003 (2)0.007 (2)
C140.049 (4)0.024 (3)0.041 (4)0.001 (3)0.007 (3)0.004 (3)
C150.055 (4)0.068 (5)0.068 (5)0.038 (4)0.030 (4)0.033 (4)
C160.036 (3)0.036 (3)0.042 (4)0.017 (3)0.010 (3)0.015 (3)
C170.044 (4)0.042 (3)0.033 (3)0.019 (3)0.010 (3)0.019 (3)
C180.070 (5)0.067 (5)0.061 (5)0.030 (4)0.027 (4)0.038 (4)
C190.037 (3)0.032 (3)0.026 (3)0.009 (3)0.006 (3)0.009 (2)
C200.036 (3)0.049 (4)0.037 (4)0.018 (3)0.016 (3)0.018 (3)
C210.037 (3)0.071 (5)0.021 (3)0.018 (3)0.001 (3)0.007 (3)
C220.032 (3)0.042 (3)0.024 (3)0.015 (3)0.005 (2)0.012 (2)
C230.043 (4)0.045 (4)0.023 (3)0.017 (3)0.008 (3)0.008 (3)
C240.060 (5)0.085 (6)0.030 (4)0.035 (4)0.009 (3)0.009 (4)
C250.038 (3)0.034 (3)0.027 (3)0.018 (3)0.011 (3)0.013 (2)
C260.040 (4)0.052 (4)0.034 (3)0.024 (3)0.014 (3)0.014 (3)
N110.039 (3)0.037 (3)0.032 (3)0.005 (2)0.006 (2)0.011 (2)
N120.037 (3)0.035 (3)0.028 (3)0.008 (2)0.001 (2)0.013 (2)
C270.057 (4)0.041 (4)0.046 (4)0.011 (3)0.008 (3)0.010 (3)
C280.039 (3)0.034 (3)0.030 (3)0.010 (3)0.012 (3)0.011 (3)
C290.035 (3)0.040 (3)0.037 (3)0.012 (3)0.014 (3)0.022 (3)
C300.069 (5)0.057 (5)0.063 (5)0.027 (4)0.020 (4)0.037 (4)
C310.045 (4)0.040 (3)0.032 (3)0.008 (3)0.004 (3)0.017 (3)
C320.037 (4)0.051 (4)0.043 (4)0.005 (3)0.000 (3)0.017 (3)
Geometric parameters (Å, º) top
Ni1—N12.071 (5)C13—C141.495 (8)
Ni1—N22.065 (5)C14—H14A0.9800
Ni1—N32.128 (5)C14—H14B0.9800
Ni1—N62.111 (5)C14—H14C0.9800
Ni1—N82.120 (5)C15—C161.529 (9)
Ni1—N102.108 (5)C15—H15A0.9800
S1—C11.632 (6)C15—H15B0.9800
S2—C21.645 (6)C15—H15C0.9800
N1—C21.171 (7)C16—C171.378 (8)
N2—C11.177 (7)C17—C191.415 (8)
N3—C41.347 (7)C17—C181.491 (8)
N3—N41.354 (6)C18—H18A0.9800
N4—C71.360 (7)C18—H18B0.9800
N4—H40.8599C18—H18C0.9800
N5—C101.337 (7)C19—C201.488 (8)
N5—N61.371 (6)C20—H20A0.9800
N5—H50.8597C20—H20B0.9800
N6—C131.358 (7)C20—H20C0.9800
N7—C161.337 (7)C21—C221.498 (8)
N7—N81.372 (6)C21—H21A0.9800
N7—H70.8595C21—H21B0.9800
N8—C191.339 (7)C21—H21C0.9800
N9—C251.347 (7)C22—C231.416 (8)
N9—N101.354 (6)C23—C251.384 (8)
N9—H90.8595C23—C241.496 (8)
N10—C221.336 (7)C24—H24A0.9800
C3—C41.489 (7)C24—H24B0.9800
C3—H3A0.9800C24—H24C0.9800
C3—H3B0.9800C25—C261.501 (8)
C3—H3C0.9800C26—H26A0.9800
C4—C51.411 (8)C26—H26B0.9800
C5—C71.383 (8)C26—H26C0.9800
C5—C61.509 (8)N11—C311.353 (7)
C6—H6A0.9800N11—N121.355 (6)
C6—H6B0.9800N12—C281.356 (7)
C6—H6C0.9800N12—H120.8600
C7—C81.482 (8)C27—C281.492 (8)
C8—H8A0.9800C27—H27A0.9800
C8—H8B0.9800C27—H27B0.9800
C8—H8C0.9800C27—H27C0.9800
C9—C101.496 (8)C28—C291.385 (8)
C9—H9A0.9800C29—C311.411 (8)
C9—H9B0.9800C29—C301.488 (8)
C9—H9C0.9800C30—H30A0.9800
C10—C111.372 (8)C30—H30B0.9800
C11—C131.401 (8)C30—H30C0.9800
C11—C121.504 (7)C31—C321.492 (8)
C12—H12A0.9800C32—H32A0.9800
C12—H12B0.9800C32—H32B0.9800
C12—H12C0.9800C32—H32C0.9800
N2—Ni1—N1175.40 (18)C13—C14—H14A109.5
N2—Ni1—N1093.84 (18)C13—C14—H14B109.5
N1—Ni1—N1089.50 (18)H14A—C14—H14B109.5
N2—Ni1—N688.00 (19)C13—C14—H14C109.5
N1—Ni1—N688.70 (19)H14A—C14—H14C109.5
N10—Ni1—N6178.05 (18)H14B—C14—H14C109.5
N2—Ni1—N888.65 (19)C16—C15—H15A109.5
N1—Ni1—N894.61 (18)C16—C15—H15B109.5
N10—Ni1—N888.24 (18)H15A—C15—H15B109.5
N6—Ni1—N891.15 (19)C16—C15—H15C109.5
N2—Ni1—N389.78 (18)H15A—C15—H15C109.5
N1—Ni1—N387.06 (18)H15B—C15—H15C109.5
N10—Ni1—N389.98 (18)N7—C16—C17107.8 (5)
N6—Ni1—N390.68 (18)N7—C16—C15122.1 (6)
N8—Ni1—N3177.55 (16)C17—C16—C15130.1 (6)
C2—N1—Ni1161.9 (4)C16—C17—C19105.0 (5)
C1—N2—Ni1166.9 (4)C16—C17—C18126.8 (6)
C4—N3—N4104.6 (4)C19—C17—C18128.2 (6)
C4—N3—Ni1136.2 (4)C17—C18—H18A109.5
N4—N3—Ni1118.8 (3)C17—C18—H18B109.5
N3—N4—C7113.0 (4)H18A—C18—H18B109.5
N3—N4—H4123.6C17—C18—H18C109.5
C7—N4—H4123.4H18A—C18—H18C109.5
C10—N5—N6112.7 (4)H18B—C18—H18C109.5
C10—N5—H5123.5N8—C19—C17110.5 (5)
N6—N5—H5123.7N8—C19—C20122.0 (5)
C13—N6—N5103.8 (4)C17—C19—C20127.5 (5)
C13—N6—Ni1135.0 (4)C19—C20—H20A109.5
N5—N6—Ni1120.8 (3)C19—C20—H20B109.5
C16—N7—N8111.5 (5)H20A—C20—H20B109.5
C16—N7—H7124.3C19—C20—H20C109.5
N8—N7—H7124.2H20A—C20—H20C109.5
C19—N8—N7105.2 (4)H20B—C20—H20C109.5
C19—N8—Ni1135.2 (4)C22—C21—H21A109.5
N7—N8—Ni1118.2 (3)C22—C21—H21B109.5
C25—N9—N10113.9 (4)H21A—C21—H21B109.5
C25—N9—H9122.9C22—C21—H21C109.5
N10—N9—H9123.3H21A—C21—H21C109.5
C22—N10—N9104.6 (4)H21B—C21—H21C109.5
C22—N10—Ni1136.7 (4)N10—C22—C23110.4 (5)
N9—N10—Ni1117.8 (3)N10—C22—C21122.2 (5)
N2—C1—S1177.8 (5)C23—C22—C21127.4 (5)
N1—C2—S2178.7 (5)C25—C23—C22106.0 (5)
C4—C3—H3A109.5C25—C23—C24127.6 (6)
C4—C3—H3B109.5C22—C23—C24126.4 (6)
H3A—C3—H3B109.5C23—C24—H24A109.5
C4—C3—H3C109.5C23—C24—H24B109.5
H3A—C3—H3C109.5H24A—C24—H24B109.5
H3B—C3—H3C109.5C23—C24—H24C109.5
N3—C4—C5110.8 (5)H24A—C24—H24C109.5
N3—C4—C3122.5 (5)H24B—C24—H24C109.5
C5—C4—C3126.7 (5)N9—C25—C23105.2 (5)
C7—C5—C4105.7 (5)N9—C25—C26122.5 (5)
C7—C5—C6127.0 (5)C23—C25—C26132.3 (5)
C4—C5—C6127.2 (5)C25—C26—H26A109.5
C5—C6—H6A109.5C25—C26—H26B109.5
C5—C6—H6B109.5H26A—C26—H26B109.5
H6A—C6—H6B109.5C25—C26—H26C109.5
C5—C6—H6C109.5H26A—C26—H26C109.5
H6A—C6—H6C109.5H26B—C26—H26C109.5
H6B—C6—H6C109.5C31—N11—N12104.3 (5)
N4—C7—C5105.9 (5)N11—N12—C28113.0 (5)
N4—C7—C8121.8 (5)N11—N12—H12123.6
C5—C7—C8132.2 (5)C28—N12—H12123.4
C7—C8—H8A109.5C28—C27—H27A109.5
C7—C8—H8B109.5C28—C27—H27B109.5
H8A—C8—H8B109.5H27A—C27—H27B109.5
C7—C8—H8C109.5C28—C27—H27C109.5
H8A—C8—H8C109.5H27A—C27—H27C109.5
H8B—C8—H8C109.5H27B—C27—H27C109.5
C10—C9—H9A109.5N12—C28—C29106.4 (5)
C10—C9—H9B109.5N12—C28—C27121.3 (5)
H9A—C9—H9B109.5C29—C28—C27132.2 (6)
C10—C9—H9C109.5C28—C29—C31105.2 (5)
H9A—C9—H9C109.5C28—C29—C30128.9 (6)
H9B—C9—H9C109.5C31—C29—C30125.8 (6)
N5—C10—C11107.0 (5)C29—C30—H30A109.5
N5—C10—C9121.9 (5)C29—C30—H30B109.5
C11—C10—C9131.1 (5)H30A—C30—H30B109.5
C10—C11—C13105.9 (5)C29—C30—H30C109.5
C10—C11—C12126.7 (5)H30A—C30—H30C109.5
C13—C11—C12127.4 (6)H30B—C30—H30C109.5
C11—C12—H12A109.5N11—C31—C29111.0 (5)
C11—C12—H12B109.5N11—C31—C32121.1 (6)
H12A—C12—H12B109.5C29—C31—C32127.8 (6)
C11—C12—H12C109.5C31—C32—H32A109.5
H12A—C12—H12C109.5C31—C32—H32B109.5
H12B—C12—H12C109.5H32A—C32—H32B109.5
N6—C13—C11110.6 (5)C31—C32—H32C109.5
N6—C13—C14121.8 (5)H32A—C32—H32C109.5
C11—C13—C14127.5 (5)H32B—C32—H32C109.5
N10—Ni1—N1—C2128.8 (14)C6—C5—C7—N4178.0 (6)
N6—Ni1—N1—C252.0 (14)C4—C5—C7—C8175.2 (6)
N8—Ni1—N1—C2143.1 (14)C6—C5—C7—C80.8 (11)
N3—Ni1—N1—C238.7 (14)N6—N5—C10—C110.2 (6)
N10—Ni1—N2—C1160 (2)N6—N5—C10—C9177.4 (5)
N6—Ni1—N2—C121 (2)N5—C10—C11—C130.1 (6)
N8—Ni1—N2—C1112 (2)C9—C10—C11—C13177.2 (6)
N3—Ni1—N2—C170 (2)N5—C10—C11—C12179.9 (5)
N2—Ni1—N3—C450.6 (5)C9—C10—C11—C122.6 (10)
N1—Ni1—N3—C4132.7 (5)N5—N6—C13—C110.1 (6)
N10—Ni1—N3—C443.2 (6)Ni1—N6—C13—C11172.1 (4)
N6—Ni1—N3—C4138.6 (6)N5—N6—C13—C14178.4 (5)
N2—Ni1—N3—N4136.9 (4)Ni1—N6—C13—C146.2 (9)
N1—Ni1—N3—N439.7 (4)C10—C11—C13—N60.0 (7)
N10—Ni1—N3—N4129.2 (4)C12—C11—C13—N6179.8 (5)
N6—Ni1—N3—N448.9 (4)C10—C11—C13—C14178.2 (6)
C4—N3—N4—C71.0 (6)C12—C11—C13—C141.7 (10)
Ni1—N3—N4—C7173.6 (4)N8—N7—C16—C171.0 (7)
C10—N5—N6—C130.2 (6)N8—N7—C16—C15179.5 (6)
C10—N5—N6—Ni1173.4 (3)N7—C16—C17—C190.6 (7)
N2—Ni1—N6—C13129.0 (6)C15—C16—C17—C19180.0 (6)
N1—Ni1—N6—C1354.2 (6)N7—C16—C17—C18179.5 (6)
N8—Ni1—N6—C1340.4 (6)C15—C16—C17—C181.0 (12)
N3—Ni1—N6—C13141.2 (6)N7—N8—C19—C170.6 (6)
N2—Ni1—N6—N542.2 (4)Ni1—N8—C19—C17165.1 (4)
N1—Ni1—N6—N5134.6 (4)N7—N8—C19—C20178.9 (5)
N8—Ni1—N6—N5130.8 (4)Ni1—N8—C19—C2015.4 (9)
N3—Ni1—N6—N547.6 (4)C16—C17—C19—N80.0 (7)
C16—N7—N8—C191.0 (6)C18—C17—C19—N8178.9 (6)
C16—N7—N8—Ni1167.6 (4)C16—C17—C19—C20179.5 (6)
N2—Ni1—N8—C19132.4 (5)C18—C17—C19—C201.6 (11)
N1—Ni1—N8—C1950.8 (6)N9—N10—C22—C231.9 (6)
N10—Ni1—N8—C1938.6 (5)Ni1—N10—C22—C23166.1 (4)
N6—Ni1—N8—C19139.6 (5)N9—N10—C22—C21179.5 (5)
N2—Ni1—N8—N731.9 (4)Ni1—N10—C22—C2112.6 (9)
N1—Ni1—N8—N7144.9 (4)N10—C22—C23—C252.2 (7)
N10—Ni1—N8—N7125.7 (4)C21—C22—C23—C25179.2 (6)
N6—Ni1—N8—N756.1 (4)N10—C22—C23—C24175.4 (6)
C25—N9—N10—C220.9 (6)C21—C22—C23—C243.2 (11)
C25—N9—N10—Ni1169.8 (4)N10—N9—C25—C230.5 (6)
N2—Ni1—N10—C2246.3 (6)N10—N9—C25—C26179.1 (5)
N1—Ni1—N10—C22136.8 (6)C22—C23—C25—N91.6 (6)
N8—Ni1—N10—C2242.2 (6)C24—C23—C25—N9176.0 (6)
N3—Ni1—N10—C22136.1 (6)C22—C23—C25—C26180.0 (6)
N2—Ni1—N10—N9146.9 (4)C24—C23—C25—C262.4 (11)
N1—Ni1—N10—N929.9 (4)C31—N11—N12—C280.2 (7)
N8—Ni1—N10—N9124.6 (4)N11—N12—C28—C290.0 (7)
N3—Ni1—N10—N957.1 (4)N11—N12—C28—C27178.9 (5)
N4—N3—C4—C50.4 (6)N12—C28—C29—C310.3 (7)
Ni1—N3—C4—C5173.5 (4)C27—C28—C29—C31178.5 (7)
N4—N3—C4—C3179.8 (5)N12—C28—C29—C30176.4 (6)
Ni1—N3—C4—C36.7 (9)C27—C28—C29—C304.8 (12)
N3—C4—C5—C71.5 (6)N12—N11—C31—C290.4 (7)
C3—C4—C5—C7178.7 (6)N12—N11—C31—C32178.6 (6)
N3—C4—C5—C6177.5 (5)C28—C29—C31—N110.4 (7)
C3—C4—C5—C62.7 (10)C30—C29—C31—N11176.4 (6)
N3—N4—C7—C51.9 (6)C28—C29—C31—C32178.5 (7)
N3—N4—C7—C8175.6 (5)C30—C29—C31—C324.7 (11)
C4—C5—C7—N42.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N110.862.152.970 (8)159
N7—H7···S2i0.862.663.441 (6)152
N9—H9···S1ii0.862.593.348 (6)148
N12—H12···S10.862.493.292 (7)156
C3—H3A···N20.982.573.338 (9)135
C14—H14A···N10.982.503.324 (9)141
C20—H20A···N10.982.493.371 (8)150
C21—H21A···N20.982.483.326 (8)145
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C6H10N2)4]·C6H10N2
Mr725.67
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.640 (8), 12.561 (11), 19.30 (2)
α, β, γ (°)101.815 (15), 98.817 (16), 107.895 (11)
V3)1898 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.20 × 0.20 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.879, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
13255, 6625, 4497
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.240, 1.02
No. of reflections6625
No. of parameters439
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 1.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—N12.071 (5)Ni1—N62.111 (5)
Ni1—N22.065 (5)Ni1—N82.120 (5)
Ni1—N32.128 (5)Ni1—N102.108 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N110.862.152.970 (8)159
N7—H7···S2i0.862.663.441 (6)152
N9—H9···S1ii0.862.593.348 (6)148
N12—H12···S10.862.493.292 (7)156
C3—H3A···N20.982.573.338 (9)135
C14—H14A···N10.982.503.324 (9)141
C20—H20A···N10.982.493.371 (8)150
C21—H21A···N20.982.483.326 (8)145
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This research was supported by Research Fund Number 403/313 from the Aza­rbaijan University of Tarbiat Moallem.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationHossaini Sadr, M., Soltani, B., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, m109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2010). Acta Cryst. E66, m781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1603-m1604
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds