metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl­pyridinium bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato)nickelate(III)

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: duanhaibao4660@163.com

(Received 5 October 2011; accepted 12 October 2011; online 22 October 2011)

The NiIII atom in the anion of the title complex, (C9H14N)[Ni(C4N2S2)2], is coordinated by four S atoms of two maleonitrile­dithiol­ate ligands, and exhibits a square-planar coordination geometry.

Related literature

For background to designed functional materials, see: Nishijo et al. (2000[Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). Solid State Commun. 116, 661-664.]); Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]). For related structures, see: Ni et al. (2004[Ni, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353-358.]); Ren et al. (2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569-2576.], 2008[Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009-8014.]); Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]). For the synthesis of disodium maleonitrile­dithiol­ate and 1-butane-pyridinium bromide, see: Davison & Holm (1967[Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.]); Yao et al. (2008[Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833-2844.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H14N)[Ni(C4N2S2)2]

  • Mr = 475.30

  • Triclinic, [P \overline 1]

  • a = 9.2764 (11) Å

  • b = 9.9863 (11) Å

  • c = 12.7115 (15) Å

  • α = 81.695 (9)°

  • β = 75.882 (10)°

  • γ = 64.480 (11)°

  • V = 1029.5 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.25 mm−1

  • T = 293 K

  • 0.3 × 0.1 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002)[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.] Tmin = 0.559, Tmax = 0.591

  • 7461 measured reflections

  • 3196 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.109

  • S = 1.04

  • 3196 reflections

  • 245 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—S1 2.1501 (8)
Ni1—S2 2.1436 (8)
Ni1—S3 2.1458 (8)
Ni1—S4 2.1461 (8)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular chemistry and molecular crystal engineering, which is the planning and utilization of crystal-oriented syntheses for the bottom-up construction of functional molecular solids from molecules and ions, are powerful tools for the assembly of designed functional materials (Robertson & Cronin, 2002). Bis-1,2-dithiolene complexes of transition metals have been widely studied due to their novel properties and applications in the areas of near-infrared (near-IR) dyes, conducting, magnetic and non-linear optical materials (Nishijo et al., 2000; Ni et al., 2005). These applications arise due to a combination of functional properties, specific geometries and intermolecular interactions. Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. and selected bond distances are given in Table 1. The asymmmetric units comprises one [Ni(mnt)2]- monoanion and one 1-butyl-pyridinium cation. The Ni ion in the [Ni(mnt)2]- anion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. The bond lengths in the anion are in good agreement with those found in other [Ni(mnt)2]- compounds (Ni et al., 2004; Ren et al., 2004; Duan et al., 2010; Ren et al., 2008).

Related literature top

For background to designed functional materials, see: Nishijo et al. (2000); Robertson & Cronin (2002); Ni et al. (2005). For related structures, see: Ni et al. (2004); Ren et al. (2004, 2008); Duan et al. (2010). For the synthesis of disodium maleonitriledithiolate and 1-butane-pyridinium bromide, see: Davison & Holm (1967); Yao et al. (2008).

Experimental top

All reagents and chemicals were purchased from commerical sources and used without further purification. The starting materials disodium maleonitriledithiolate (Davison et al., 1967) and 1-butyl-pyridinium bromide (Yao et al., 2008) were synthesized following the literature procedures. Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-butyl-pyridinium bromide (1.5 mmol) in methanol (10 ml) was added to the mixture. The red precipitate that was immediately formed was filtered off and washed with methanol. Then, a methanol solution of I2 (205 mg, 0.8 mmol) was added slowly. After stirring for 40 minutes, the mixture was allowed to stand overnight. The microcrystals formed were recrystallized from acetone to give black blocks.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the ionic components of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
1-Butylpyridinium bis(1,2-dicyanoethene-1,2-dithiolato)nicklate(III) top
Crystal data top
(C9H14N)[Ni(C4N2S2)2]V = 1029.5 (2) Å3
Mr = 475.30Z = 2
Triclinic, P1F(000) = 486
Hall symbol: -P 1Dx = 1.533 Mg m3
a = 9.2764 (11) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.9863 (11) ŵ = 5.25 mm1
c = 12.7115 (15) ÅT = 293 K
α = 81.695 (9)°Block, black
β = 75.882 (10)°0.3 × 0.1 × 0.1 mm
γ = 64.480 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3196 independent reflections
Radiation source: fine-focus sealed tube2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 62.6°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 109
Tmin = 0.559, Tmax = 0.591k = 1111
7461 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0752P)2]
where P = (Fo2 + 2Fc2)/3
3196 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
(C9H14N)[Ni(C4N2S2)2]γ = 64.480 (11)°
Mr = 475.30V = 1029.5 (2) Å3
Triclinic, P1Z = 2
a = 9.2764 (11) ÅCu Kα radiation
b = 9.9863 (11) ŵ = 5.25 mm1
c = 12.7115 (15) ÅT = 293 K
α = 81.695 (9)°0.3 × 0.1 × 0.1 mm
β = 75.882 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2499 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.591Rint = 0.018
7461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
3196 reflectionsΔρmin = 0.33 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.17351 (5)0.21297 (4)0.32522 (3)0.05459 (18)
S10.01043 (8)0.19088 (7)0.45807 (6)0.0601 (2)
S20.04693 (8)0.45024 (7)0.31675 (6)0.0634 (2)
S30.34944 (8)0.23715 (8)0.18766 (6)0.0646 (2)
S40.30030 (9)0.02462 (7)0.33157 (6)0.0681 (2)
N10.3268 (3)0.7577 (3)0.4479 (2)0.0791 (7)
N20.4145 (3)0.4193 (3)0.6218 (2)0.0862 (8)
N30.6747 (3)0.3235 (3)0.1797 (2)0.0886 (8)
N40.7294 (3)0.0134 (3)0.0023 (2)0.0882 (8)
N50.1415 (3)0.7746 (2)0.81191 (17)0.0575 (5)
C10.2966 (3)0.3967 (3)0.5591 (2)0.0611 (7)
C20.1507 (3)0.3709 (3)0.4772 (2)0.0531 (6)
C30.2387 (3)0.6364 (3)0.4331 (2)0.0599 (7)
C40.1257 (3)0.4844 (3)0.4169 (2)0.0550 (6)
C50.6208 (3)0.0325 (3)0.0733 (2)0.0652 (7)
C60.4856 (3)0.0568 (3)0.1630 (2)0.0565 (6)
C70.4645 (3)0.0567 (3)0.2251 (2)0.0569 (6)
C80.5794 (3)0.2072 (3)0.2023 (2)0.0659 (7)
C90.2814 (3)0.6993 (3)0.7434 (2)0.0650 (7)
H90.32980.59610.74970.078*
C100.3530 (4)0.7722 (3)0.6651 (2)0.0731 (8)
H100.44970.71860.61820.088*
C110.2837 (4)0.9231 (4)0.6549 (2)0.0777 (9)
H110.33310.97340.60200.093*
C120.1386 (4)1.0006 (3)0.7248 (3)0.0782 (9)
H120.08841.10370.71900.094*
C130.0705 (4)0.9233 (3)0.8022 (2)0.0686 (8)
H130.02720.97480.84910.082*
C140.0666 (4)0.6954 (3)0.8999 (2)0.0675 (7)
H14A0.11080.59150.88370.081*
H14B0.05020.73740.90380.081*
C150.0995 (4)0.7078 (4)1.0100 (2)0.0785 (9)
H15A0.06420.81191.02220.094*
H15B0.03400.66971.06680.094*
C160.2730 (4)0.6270 (4)1.0199 (3)0.0827 (9)
H16A0.33990.66280.96250.099*
H16B0.30820.52201.01080.099*
C170.2978 (4)0.6479 (4)1.1299 (3)0.0867 (10)
H17A0.26740.75131.13770.130*
H17B0.41040.59241.13410.130*
H17C0.23110.61311.18680.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0448 (3)0.0471 (3)0.0603 (3)0.0124 (2)0.0012 (2)0.0050 (2)
S10.0525 (4)0.0452 (4)0.0670 (4)0.0135 (3)0.0015 (3)0.0008 (3)
S20.0567 (4)0.0489 (4)0.0689 (4)0.0174 (3)0.0060 (3)0.0021 (3)
S30.0525 (4)0.0501 (4)0.0736 (4)0.0146 (3)0.0055 (3)0.0022 (3)
S40.0579 (4)0.0488 (4)0.0742 (5)0.0127 (3)0.0096 (4)0.0021 (3)
N10.0769 (17)0.0505 (15)0.0934 (19)0.0155 (13)0.0048 (14)0.0097 (13)
N20.0728 (18)0.0701 (17)0.0859 (18)0.0194 (14)0.0192 (15)0.0071 (14)
N30.0788 (18)0.0535 (16)0.103 (2)0.0110 (14)0.0082 (15)0.0122 (14)
N40.0702 (18)0.0761 (18)0.0905 (19)0.0213 (14)0.0174 (16)0.0071 (15)
N50.0505 (12)0.0568 (13)0.0561 (12)0.0137 (10)0.0055 (10)0.0116 (10)
C10.0588 (17)0.0468 (14)0.0640 (16)0.0144 (12)0.0012 (14)0.0049 (12)
C20.0487 (14)0.0487 (14)0.0529 (13)0.0139 (11)0.0031 (12)0.0079 (11)
C30.0610 (17)0.0499 (17)0.0608 (15)0.0200 (13)0.0031 (13)0.0034 (12)
C40.0512 (15)0.0477 (14)0.0581 (14)0.0143 (11)0.0040 (12)0.0104 (12)
C50.0555 (17)0.0548 (16)0.0709 (18)0.0164 (13)0.0016 (15)0.0049 (13)
C60.0425 (14)0.0557 (15)0.0617 (15)0.0135 (11)0.0023 (12)0.0097 (12)
C70.0469 (14)0.0512 (15)0.0615 (15)0.0125 (12)0.0024 (12)0.0091 (12)
C80.0583 (17)0.0542 (17)0.0709 (17)0.0181 (14)0.0033 (14)0.0048 (14)
C90.0559 (17)0.0590 (16)0.0660 (17)0.0105 (13)0.0073 (14)0.0122 (14)
C100.0630 (18)0.075 (2)0.0645 (17)0.0190 (16)0.0043 (15)0.0130 (15)
C110.086 (2)0.081 (2)0.0653 (17)0.0384 (18)0.0079 (17)0.0008 (16)
C120.090 (2)0.0564 (17)0.0769 (19)0.0210 (16)0.0151 (18)0.0030 (15)
C130.0653 (18)0.0539 (16)0.0689 (17)0.0092 (14)0.0057 (15)0.0130 (14)
C140.0621 (18)0.0705 (18)0.0689 (17)0.0297 (15)0.0060 (14)0.0053 (14)
C150.072 (2)0.078 (2)0.0735 (18)0.0302 (16)0.0003 (16)0.0052 (16)
C160.083 (2)0.071 (2)0.082 (2)0.0255 (17)0.0114 (18)0.0043 (16)
C170.096 (2)0.093 (2)0.079 (2)0.046 (2)0.0262 (19)0.0118 (18)
Geometric parameters (Å, º) top
Ni1—S12.1501 (8)C9—C101.359 (4)
Ni1—S22.1436 (8)C9—H90.9300
Ni1—S32.1458 (8)C10—C111.361 (4)
Ni1—S42.1461 (8)C10—H100.9300
S1—C21.715 (2)C11—C121.384 (4)
S2—C41.721 (3)C11—H110.9300
S3—C61.717 (3)C12—C131.364 (4)
S4—C71.719 (3)C12—H120.9300
N1—C31.145 (3)C13—H130.9300
N2—C11.139 (4)C14—C151.536 (4)
N3—C81.141 (4)C14—H14A0.9700
N4—C51.143 (3)C14—H14B0.9700
N5—C131.341 (4)C15—C161.485 (4)
N5—C91.344 (3)C15—H15A0.9700
N5—C141.483 (3)C15—H15B0.9700
C1—C21.439 (4)C16—C171.527 (5)
C2—C41.348 (4)C16—H16A0.9700
C3—C41.435 (4)C16—H16B0.9700
C5—C61.432 (4)C17—H17A0.9600
C6—C71.343 (4)C17—H17B0.9600
C7—C81.440 (4)C17—H17C0.9600
S2—Ni1—S386.97 (3)C11—C10—H10119.8
S2—Ni1—S4179.28 (3)C10—C11—C12118.9 (3)
S3—Ni1—S492.59 (3)C10—C11—H11120.6
S2—Ni1—S192.34 (3)C12—C11—H11120.6
S3—Ni1—S1177.33 (3)C13—C12—C11119.0 (3)
S4—Ni1—S188.08 (3)C13—C12—H12120.5
C2—S1—Ni1103.03 (9)C11—C12—H12120.5
C4—S2—Ni1103.36 (9)N5—C13—C12121.3 (3)
C6—S3—Ni1102.87 (10)N5—C13—H13119.3
C7—S4—Ni1102.92 (9)C12—C13—H13119.3
C13—N5—C9119.7 (3)N5—C14—C15111.1 (2)
C13—N5—C14119.5 (2)N5—C14—H14A109.4
C9—N5—C14120.7 (2)C15—C14—H14A109.4
N2—C1—C2178.1 (3)N5—C14—H14B109.4
C4—C2—C1121.1 (2)C15—C14—H14B109.4
C4—C2—S1121.02 (19)H14A—C14—H14B108.0
C1—C2—S1117.88 (19)C16—C15—C14114.5 (3)
N1—C3—C4178.3 (3)C16—C15—H15A108.6
C2—C4—C3122.3 (2)C14—C15—H15A108.6
C2—C4—S2120.21 (19)C16—C15—H15B108.6
C3—C4—S2117.5 (2)C14—C15—H15B108.6
N4—C5—C6179.3 (3)H15A—C15—H15B107.6
C7—C6—C5121.6 (2)C15—C16—C17111.7 (3)
C7—C6—S3120.9 (2)C15—C16—H16A109.3
C5—C6—S3117.5 (2)C17—C16—H16A109.3
C6—C7—C8120.0 (2)C15—C16—H16B109.3
C6—C7—S4120.7 (2)C17—C16—H16B109.3
C8—C7—S4119.3 (2)H16A—C16—H16B107.9
N3—C8—C7176.4 (3)C16—C17—H17A109.5
N5—C9—C10120.7 (3)C16—C17—H17B109.5
N5—C9—H9119.6H17A—C17—H17B109.5
C10—C9—H9119.6C16—C17—H17C109.5
C9—C10—C11120.3 (3)H17A—C17—H17C109.5
C9—C10—H10119.8H17B—C17—H17C109.5

Experimental details

Crystal data
Chemical formula(C9H14N)[Ni(C4N2S2)2]
Mr475.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2764 (11), 9.9863 (11), 12.7115 (15)
α, β, γ (°)81.695 (9), 75.882 (10), 64.480 (11)
V3)1029.5 (2)
Z2
Radiation typeCu Kα
µ (mm1)5.25
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.559, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
7461, 3196, 2499
Rint0.018
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.04
No. of reflections3196
No. of parameters245
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—S12.1501 (8)Ni1—S32.1458 (8)
Ni1—S22.1436 (8)Ni1—S42.1461 (8)
 

Acknowledgements

The author thanks the Nanjing Xiaozhuang College of Jiangsu Province, P. R. China, for financial support (grant No. 2010KYQN28).

References

First citationBruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26.  CrossRef CAS Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationNi, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds