organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3022-o3023

2-Amino-6-[(2,6-di­chloro­phen­yl)imino]-3-oxo­cyclo­hexa-1,4-dienecarbaldehyde

aDepartment of Chemistry, University of Aveiro, QOPNA, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 10 October 2011; accepted 14 October 2011; online 22 October 2011)

The title compound, C13H8Cl2N2O2, was obtained by the oxidation of diclofenac {systematic name: 2-[2-(2,6-dichloro­phenyl­amino)­phen­yl]acetic acid}, an anti-inflammatory drug, with hydrogen peroxide catalysed by chlorido[5,10,15,20-tetra­kis­(2,6-dichloro­phen­yl)porphyrinato]manganese(III), using ammonium acetate as co-catalyst. The asymmetric unit contains two crystallographically independent mol­ecules of the title compound (Z′ = 2). The close packing of individual mol­ecules is mediated by a series of strong and rather directional N—H⋯Cl and N—H⋯O hydrogen bonds, plus weak ππ [distance between the individual double bonds of symmetry-related imino­quinone rings = 3.7604 (13) Å] and Cl⋯O inter­actions [3.0287 (18) Å].

Related literature

For background to diclofenac oxidation reactions using metalloporphyrins as catalysts, see: Othman et al. (2000[Othman, S., Mouries, V. M., Bensoussan, C., Battioni, P. & Mansuy, D. (2000). Bioorg. Med. Chem. 3, 751-755.]). For oxidation of other drugs and other organic compounds by hydrogen peroxide catalysed by metalloporphyrins, see: Othman et al. (2000[Othman, S., Mouries, V. M., Bensoussan, C., Battioni, P. & Mansuy, D. (2000). Bioorg. Med. Chem. 3, 751-755.]); Bernadou & Meunier (2004[Bernadou, J. & Meunier, B. (2004). Adv. Synth. Catal. 346, 171-184.]); Mansuy (2007[Mansuy, D. (2007). C. R. Chimie, 10, 392-413.]); Neves et al. (2011[Neves, C. M. B., Simões, M. M. Q., Santos, I. C. M. S., Domingues, F. M. J., Neves, M. G. P. M. S., Paz, F. A. A., Silva, A. M. S. & Cavaleiro, J. A. S. (2011). Tetrahedron Lett. 52, 2898-2902.]); Simões et al. (2009[Simões, M. M. Q., De Paula, R., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2009). J. Porphyrins Phthalocyanines, 13, 589-596.]); Rebelo et al. (2004a[Rebelo, S. L. H., Simões, M. M. Q., Neves, M. G. P. M. S., Silva, A. M. S. & Cavaleiro, J. A. S. (2004a). Chem. Commun. pp. 608-609.],b[Rebelo, S. L. H., Simões, M. M. Q., Neves, M. G. P. M. S., Silva, A. M. S., Cavaleiro, J. A. S., Peixoto, A. F., Pereira, M. M., Silva, M. R., Paixão, J. A. & Beja, A. M. (2004b). Eur. J. Org. Chem. pp. 4778-4787.], 2005[Rebelo, S. L. H., Pereira, M. M., Simões, M. M. Q., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2005). J. Catal. 234, 76-87.]). For crystallographic studies from our research group of compounds with biological activity, see: Fernandes et al. (2010[Fernandes, J. A., Almeida Paz, F. A., Vilela, S. M. F., Tomé, J. C., Cavaleiro, J. A. S., Ribeiro-Claro, P. J. A. & Rocha, J. (2010). Acta Cryst. E66, o2271-o2272.], 2011[Fernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57-o59.]); Loughzail et al. (2011[Loughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075-o2076.]). For a description of the graph-set notation, see: Grell et al. (1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2N2O2

  • Mr = 295.11

  • Monoclinic, P 21 /c

  • a = 17.1738 (14) Å

  • b = 10.5718 (8) Å

  • c = 14.1457 (11) Å

  • β = 101.192 (5)°

  • V = 2519.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 150 K

  • 0.07 × 0.04 × 0.01 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.995

  • 24324 measured reflections

  • 4600 independent reflections

  • 3466 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.02

  • 4600 reflections

  • 355 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2X⋯Cl1i 0.92 (1) 2.60 (1) 3.4590 (18) 156 (2)
N2—H2Y⋯O1 0.92 (1) 2.08 (2) 2.722 (2) 126 (2)
N2—H2Y⋯O4i 0.92 (1) 2.26 (2) 2.933 (2) 130 (2)
N4—H4X⋯O1i 0.93 (1) 2.04 (1) 2.916 (2) 155 (2)
N4—H4Y⋯O3 0.92 (1) 2.01 (2) 2.666 (3) 127 (2)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The possibility of using synthetic metalloporphyrins as biomimetic catalysts, which are able to mimic cytochrome P450 enzymes, has attracted the interest of many research groups (Othman et al., 2000; Bernadou et al., 2004; Mansuy, 2007), including ours (Neves et al., 2011; Simões et al., 2009; Rebelo et al., 2004a, 2004b, 2005). In particular, our current research is focused on the preparation of putative metabolites by the in vitro oxidation of drugs. These studies will allow the production of metabolites in the amounts of milligrams, the isolation and identification of unstable intermediates and the understanding of the mechanism of action of drugs (Bernadou et al., 2004). The title compound, C13H8Cl2N2O2, was obtained by the oxidation of 2-(2-(2,6-dichlorophenylamino)phenyl)acetic acid (diclofenac), an anti-inflammatory drug, with hydrogen peroxide catalysed by chloro[5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato]manganese(III) using ammonium acetate as co-catalyst. Following our on-going interest on the structural features of compounds with biological activity (Fernandes et al., 2010, 2011; Loughzail et al. 2011) here we wish to report the crystal structure of the oxidation product of diclofenac.

The asymmetric unit of the title compound comprises two whole molecules of C13H8Cl2N2O2 (Fig. 1). A comparison between the geometrical features of the two molecules reveals that bond distances and angles involving equivalent atoms are very similar (deviations smaller than 0.012 Å and 1.6°, respectively). There are, however, some considerable differences concerning torsion angles, namely those subtended by the two six-membered rings in each molecule: 71.97 (10)° for molecule A and 75.89 (10)° for molecule B.

The crystal is rich in supramolecular interactions, namely ππ (involving the individual double bonds of the iminoquinone rings), Cl···O and hydrogen bonding interactions. The ππ interactions occur between pairs of molecules A involving the aromatic and the iminoquinone rings, or two iminoquinone rings [distance between centroids of 3.7604 (13) and 3.9595 (13) Å, respectively - purple dashed bonds in Figure 2]. A pair of B molecules also exhibits a short Cl···O interaction (Cl···O distance 3.0287 (18) Å, not shown].

The two crystallographically independent molecules have a different behaviour concerning the hydrogen bonding network in which they are involved (Figure 2 and Table 1 for geometric details). Molecule A is engaged in a bifurcated N—H···(O,O) hydrogen bond, which is shared by the aldehyde group (intramolecular) and the ketone group of a neighbouring B molecule. The remaining N—H moiety of molecule A donates the hydrogen atom to a Cl atom of a neighbouring A molecule. The NH2 group of molecule B participates in two N—H···Oaldehyde interactions, of which one is intramolecular and the other occurs with molecule A. The hydrogen bonds form discrete clusters (violet dashed lines in Fig. 2) which can be described as the merging of two rings with a graph set notations R11(6) and R22(11), respectively (Grell et al., 1999).

Unequivocally, the strongest connection among adjacent molecules corresponds to that of the latter graph set, which leads to the formation of dimers as depicted in Fig. 2. The crystal packing is, thus, promoted by the close packing of such dimers: firstly, and mediated by the aforementioned weak ππ contacts, dimers form columnar arrangements along the c-axis of the unit cell. Secondly, columns pack in the ab plane in a typical brick-wall-type fashion as depicted in Fig. 3.

Related literature top

For background to diclofenac oxidation reactions using metalloporphyrins as catalysts, see: Othman et al. (2000). For oxidation of other drugs and other organic compounds by hydrogen peroxide catalysed by metalloporphyrins, see: Othman et al. (2000); Bernadou & Meunier (2004); Mansuy (2007); Neves et al. (2011); Simões et al. (2009); Rebelo et al. (2004a,b, 2005). For crystallographic studies from our research group of compounds with biological activity, see: Fernandes et al. (2010, 2011); Loughzail et al. (2011). For a description of the graph-set notation, see: Grell et al. (1999).

Experimental top

All chemicals were purchased from commercial sources and were used as received without further purification.

The oxidation reactions were carried out using 0.1 mmol of diclofenac (sodium salt, Sigma-Aldrich), 1.33 µmol of chloro[5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato]manganese(III) ([Mn(TDCPP)Cl, as catalyst) and 15 mg of co-catalyst (ammonium acetate, Fluka) in CH3CN: H2O (10:1), in a total volume of 2.0 ml under normal atmosphere at 30 °C. The oxidant employed was aqueous hydrogen peroxide 30% (w/w) (Riedel-de Haën) diluted 1:5 in CH3CN. The oxidant (0.05 mmol) was added to the reaction mixture every 15 min. After 8 h of reaction, the mixture was extracted with dichloromethane and purified by preparative TLC using the same solvent as eluent. The product was dissolved in a minimum amount of dichloromethane and crystallized in hexane at around -16 °C to isolate crystals of the title compound.

Refinement top

Hydrogen atoms bound to carbon were placed at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å. The isotropic thermal displacement parameters for these hydrogen atoms were fixed at 1.2×Ueq of the respective parent carbon atom.

Hydrogen atoms bound to nitrogen were directly located from difference Fourier maps and included in the final structural model with the N—H and H···H distances restrained to 0.95 (1) and 1.55 (1) Å, respectively. The Uiso of these hydrogen atoms was fixed at 1.5×Ueq of the nitrogen atom to which they are attached.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing the two crystallographic independent molecular units coined A and B. Displacement ellipsoids are drawn at the 50% probability level and the atomic labeling is provided for all non-hydrogen atoms. Hydrogen atoms are represented as small spheres with arbitrary radius.
[Figure 2] Fig. 2. Supramolecular contacts interconnecting adjacent molecules A and B of the title compound. On the left the strong N—H···O and N—H···Cl hydrogen bonds can be grouped into two graph set motifs: R11(6) and R22(11). On the right, weak ππ contacts involving double bonds of the iminoquinone and aromatic rings further ensure supramolecular connections among A molecules. For geometric details on the represented hydrogen bonds see Table 1. Symmetry transformations used to generate equivalent atoms have been omitted for simplicity.
[Figure 3] Fig. 3. Crystal packing of the title compound viewed in perspective along the [001] direction of the unit cell. Supramolecular interactions have been omitted for clarity.
2-Amino-6-[(2,6-dichlorophenyl)imino]-3-oxocyclohexa-1,4-dienecarbaldehyde top
Crystal data top
C13H8Cl2N2O2F(000) = 1200
Mr = 295.11Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5810 reflections
a = 17.1738 (14) Åθ = 2.4–25.3°
b = 10.5718 (8) ŵ = 0.51 mm1
c = 14.1457 (11) ÅT = 150 K
β = 101.192 (5)°Plate, red
V = 2519.4 (3) Å30.07 × 0.04 × 0.01 mm
Z = 8
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
4600 independent reflections
Radiation source: fine-focus sealed tube3466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 25.4°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2020
Tmin = 0.965, Tmax = 0.995k = 1211
24324 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0396P)2 + 1.1952P]
where P = (Fo2 + 2Fc2)/3
4600 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.24 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H8Cl2N2O2V = 2519.4 (3) Å3
Mr = 295.11Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.1738 (14) ŵ = 0.51 mm1
b = 10.5718 (8) ÅT = 150 K
c = 14.1457 (11) Å0.07 × 0.04 × 0.01 mm
β = 101.192 (5)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
4600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3466 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.995Rint = 0.040
24324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
4600 reflectionsΔρmin = 0.24 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49916 (4)0.47039 (5)0.65986 (4)0.03327 (15)
Cl20.26299 (4)0.18196 (7)0.74680 (4)0.04150 (17)
Cl30.05691 (3)0.62367 (6)0.53847 (4)0.03368 (16)
Cl40.12169 (4)0.98217 (6)0.40871 (5)0.04362 (18)
O10.58372 (8)0.22644 (14)1.02574 (10)0.0271 (3)
O20.36779 (9)0.51109 (15)1.11813 (10)0.0308 (4)
O30.13914 (10)0.96716 (17)0.83068 (11)0.0381 (4)
O40.36096 (9)0.70522 (15)0.73428 (10)0.0317 (4)
N10.42445 (10)0.31116 (17)0.78706 (12)0.0254 (4)
N20.49446 (10)0.36348 (17)1.12812 (12)0.0234 (4)
H2X0.4811 (12)0.396 (2)1.1829 (11)0.035*
H2Y0.5399 (9)0.3149 (19)1.1359 (14)0.035*
N30.06269 (10)0.83177 (18)0.56257 (12)0.0282 (4)
N40.27682 (11)0.84936 (19)0.83330 (12)0.0294 (4)
H4X0.3282 (7)0.826 (2)0.8623 (15)0.044*
H4Y0.2502 (11)0.900 (2)0.8693 (14)0.044*
C10.37540 (13)0.3337 (2)0.69673 (14)0.0246 (5)
C20.40534 (13)0.4033 (2)0.62735 (15)0.0264 (5)
C30.36328 (15)0.4175 (2)0.53380 (15)0.0324 (6)
H30.38470.46570.48830.039*
C40.28988 (15)0.3606 (2)0.50764 (15)0.0351 (6)
H40.26040.37070.44390.042*
C50.25886 (14)0.2893 (2)0.57318 (16)0.0340 (6)
H50.20860.24960.55470.041*
C60.30200 (13)0.2760 (2)0.66665 (15)0.0293 (5)
C70.41077 (12)0.36167 (19)0.86545 (14)0.0208 (4)
C80.46514 (12)0.33341 (19)0.95584 (14)0.0189 (4)
C90.45032 (12)0.38251 (19)1.04179 (14)0.0205 (4)
C100.37993 (12)0.4683 (2)1.04199 (15)0.0234 (5)
C110.33030 (13)0.4983 (2)0.94897 (15)0.0266 (5)
H110.28690.55470.94640.032*
C120.34440 (12)0.4484 (2)0.86732 (15)0.0241 (5)
H120.31030.46990.80830.029*
C130.53477 (12)0.25818 (19)0.95380 (15)0.0223 (5)
H130.54360.23110.89270.027*
C140.03131 (12)0.7975 (2)0.46603 (14)0.0260 (5)
C150.02731 (13)0.7046 (2)0.44466 (14)0.0273 (5)
C160.06283 (14)0.6751 (2)0.35062 (15)0.0312 (5)
H160.10210.61070.33810.037*
C170.04074 (14)0.7399 (2)0.27537 (15)0.0340 (6)
H170.06510.72030.21090.041*
C180.01639 (14)0.8329 (2)0.29324 (15)0.0322 (6)
H180.03170.87720.24130.039*
C190.05143 (13)0.8613 (2)0.38746 (16)0.0295 (5)
C200.13475 (12)0.8026 (2)0.60230 (14)0.0228 (5)
C210.16673 (12)0.8469 (2)0.69960 (14)0.0224 (5)
C220.24313 (12)0.8152 (2)0.74440 (14)0.0228 (5)
C230.29463 (13)0.7359 (2)0.69351 (15)0.0253 (5)
C240.26042 (14)0.6948 (2)0.59531 (15)0.0317 (5)
H240.29190.64620.56050.038*
C250.18613 (13)0.7242 (2)0.55375 (15)0.0286 (5)
H250.16560.69360.49070.034*
C260.11859 (13)0.9265 (2)0.74825 (16)0.0299 (5)
H260.06730.94900.71400.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0426 (3)0.0302 (3)0.0295 (3)0.0019 (3)0.0133 (3)0.0011 (2)
Cl20.0421 (4)0.0542 (4)0.0276 (3)0.0097 (3)0.0050 (3)0.0044 (3)
Cl30.0358 (3)0.0457 (4)0.0196 (3)0.0011 (3)0.0053 (2)0.0034 (2)
Cl40.0342 (3)0.0497 (4)0.0439 (4)0.0070 (3)0.0002 (3)0.0110 (3)
O10.0270 (8)0.0292 (8)0.0224 (8)0.0023 (7)0.0018 (7)0.0026 (7)
O20.0319 (9)0.0377 (9)0.0247 (8)0.0008 (7)0.0101 (7)0.0064 (7)
O30.0365 (9)0.0512 (11)0.0256 (8)0.0079 (8)0.0039 (7)0.0143 (8)
O40.0248 (8)0.0420 (10)0.0261 (8)0.0089 (7)0.0003 (7)0.0023 (7)
N10.0298 (10)0.0297 (10)0.0165 (9)0.0040 (8)0.0036 (8)0.0028 (8)
N20.0255 (10)0.0270 (10)0.0174 (9)0.0026 (8)0.0036 (8)0.0011 (8)
N30.0258 (10)0.0383 (11)0.0189 (9)0.0050 (9)0.0008 (8)0.0034 (8)
N40.0281 (10)0.0381 (12)0.0190 (9)0.0055 (9)0.0028 (8)0.0049 (8)
C10.0306 (12)0.0250 (12)0.0173 (10)0.0116 (10)0.0023 (9)0.0003 (9)
C20.0377 (13)0.0222 (12)0.0207 (10)0.0101 (10)0.0087 (9)0.0006 (9)
C30.0524 (16)0.0274 (13)0.0182 (11)0.0140 (12)0.0093 (10)0.0022 (10)
C40.0501 (16)0.0367 (14)0.0155 (10)0.0157 (12)0.0014 (10)0.0010 (10)
C50.0338 (13)0.0406 (14)0.0250 (12)0.0088 (11)0.0007 (10)0.0064 (11)
C60.0341 (13)0.0324 (13)0.0209 (11)0.0082 (11)0.0038 (10)0.0028 (10)
C70.0212 (11)0.0206 (11)0.0205 (10)0.0022 (9)0.0040 (9)0.0032 (9)
C80.0204 (10)0.0177 (10)0.0182 (10)0.0027 (8)0.0027 (8)0.0023 (8)
C90.0209 (10)0.0197 (11)0.0206 (10)0.0065 (9)0.0032 (9)0.0026 (9)
C100.0230 (11)0.0233 (11)0.0248 (11)0.0064 (9)0.0067 (9)0.0017 (9)
C110.0230 (11)0.0273 (12)0.0288 (11)0.0018 (10)0.0033 (9)0.0004 (10)
C120.0246 (11)0.0236 (11)0.0224 (11)0.0023 (9)0.0002 (9)0.0019 (9)
C130.0261 (11)0.0194 (11)0.0212 (10)0.0030 (9)0.0041 (9)0.0000 (9)
C140.0220 (11)0.0367 (13)0.0186 (10)0.0096 (10)0.0018 (9)0.0012 (10)
C150.0266 (12)0.0361 (13)0.0188 (10)0.0048 (10)0.0036 (9)0.0015 (10)
C160.0308 (13)0.0394 (14)0.0221 (11)0.0013 (11)0.0016 (10)0.0003 (10)
C170.0362 (13)0.0468 (15)0.0164 (10)0.0046 (12)0.0011 (10)0.0023 (10)
C180.0332 (13)0.0421 (14)0.0210 (11)0.0095 (11)0.0046 (10)0.0074 (10)
C190.0220 (11)0.0357 (13)0.0298 (12)0.0043 (10)0.0029 (9)0.0028 (10)
C200.0233 (11)0.0257 (12)0.0193 (10)0.0016 (9)0.0035 (9)0.0024 (9)
C210.0239 (11)0.0247 (12)0.0189 (10)0.0009 (9)0.0046 (9)0.0011 (9)
C220.0229 (11)0.0256 (11)0.0194 (10)0.0007 (9)0.0031 (9)0.0008 (9)
C230.0245 (12)0.0289 (12)0.0219 (10)0.0032 (10)0.0029 (9)0.0029 (9)
C240.0323 (13)0.0386 (14)0.0234 (11)0.0126 (11)0.0032 (10)0.0069 (10)
C250.0321 (12)0.0335 (13)0.0188 (10)0.0060 (10)0.0015 (9)0.0054 (10)
C260.0245 (12)0.0380 (14)0.0265 (12)0.0036 (10)0.0030 (9)0.0023 (11)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C7—C121.467 (3)
Cl2—C61.737 (2)C8—C91.390 (3)
Cl3—C151.736 (2)C8—C131.441 (3)
Cl4—C191.743 (2)C9—C101.512 (3)
O1—C131.234 (2)C10—C111.457 (3)
O2—C101.223 (2)C11—C121.334 (3)
O3—C261.229 (3)C11—H110.9500
O4—C231.217 (2)C12—H120.9500
N1—C71.293 (3)C13—H130.9500
N1—C11.408 (3)C14—C151.397 (3)
N2—C91.322 (2)C14—C191.400 (3)
N2—H2X0.917 (9)C15—C161.387 (3)
N2—H2Y0.922 (9)C16—C171.380 (3)
N3—C201.293 (3)C16—H160.9500
N3—C141.414 (3)C17—C181.377 (3)
N4—C221.328 (3)C17—H170.9500
N4—H4X0.931 (9)C18—C191.385 (3)
N4—H4Y0.921 (9)C18—H180.9500
C1—C61.390 (3)C20—C211.456 (3)
C1—C21.402 (3)C20—C251.474 (3)
C2—C31.387 (3)C21—C221.383 (3)
C3—C41.381 (3)C21—C261.444 (3)
C3—H30.9500C22—C231.501 (3)
C4—C51.380 (3)C23—C241.465 (3)
C4—H40.9500C24—C251.334 (3)
C5—C61.392 (3)C24—H240.9500
C5—H50.9500C25—H250.9500
C7—C81.460 (3)C26—H260.9500
C7—N1—C1122.17 (18)C7—C12—H12118.8
C9—N2—H2X122.1 (13)O1—C13—C8124.65 (19)
C9—N2—H2Y121.0 (13)O1—C13—H13117.7
H2X—N2—H2Y116.9 (14)C8—C13—H13117.7
C20—N3—C14120.77 (18)C15—C14—C19116.48 (19)
C22—N4—H4X123.3 (13)C15—C14—N3120.83 (19)
C22—N4—H4Y120.7 (13)C19—C14—N3122.5 (2)
H4X—N4—H4Y116.0 (14)C16—C15—C14122.0 (2)
C6—C1—C2116.73 (19)C16—C15—Cl3118.86 (18)
C6—C1—N1123.4 (2)C14—C15—Cl3119.13 (16)
C2—C1—N1119.2 (2)C17—C16—C15119.5 (2)
C3—C2—C1122.0 (2)C17—C16—H16120.2
C3—C2—Cl1119.52 (18)C15—C16—H16120.2
C1—C2—Cl1118.43 (16)C18—C17—C16120.4 (2)
C4—C3—C2119.2 (2)C18—C17—H17119.8
C4—C3—H3120.4C16—C17—H17119.8
C2—C3—H3120.4C17—C18—C19119.5 (2)
C5—C4—C3120.6 (2)C17—C18—H18120.2
C5—C4—H4119.7C19—C18—H18120.2
C3—C4—H4119.7C18—C19—C14122.1 (2)
C4—C5—C6119.3 (2)C18—C19—Cl4118.83 (18)
C4—C5—H5120.3C14—C19—Cl4119.07 (17)
C6—C5—H5120.3N3—C20—C21119.18 (19)
C1—C6—C5122.1 (2)N3—C20—C25122.72 (19)
C1—C6—Cl2119.52 (16)C21—C20—C25118.09 (18)
C5—C6—Cl2118.42 (19)C22—C21—C26120.17 (19)
N1—C7—C8118.35 (18)C22—C21—C20120.36 (19)
N1—C7—C12123.02 (19)C26—C21—C20119.46 (18)
C8—C7—C12118.62 (18)N4—C22—C21124.6 (2)
C9—C8—C13121.14 (18)N4—C22—C23114.66 (18)
C9—C8—C7119.67 (18)C21—C22—C23120.70 (18)
C13—C8—C7119.16 (17)O4—C23—C24122.5 (2)
N2—C9—C8125.56 (19)O4—C23—C22120.41 (19)
N2—C9—C10113.89 (18)C24—C23—C22117.07 (18)
C8—C9—C10120.53 (18)C25—C24—C23121.5 (2)
O2—C10—C11123.0 (2)C25—C24—H24119.3
O2—C10—C9119.78 (19)C23—C24—H24119.3
C11—C10—C9117.17 (18)C24—C25—C20122.3 (2)
C12—C11—C10121.5 (2)C24—C25—H25118.9
C12—C11—H11119.2C20—C25—H25118.9
C10—C11—H11119.2O3—C26—C21124.8 (2)
C11—C12—C7122.34 (19)O3—C26—H26117.6
C11—C12—H12118.8C21—C26—H26117.6
C7—N1—C1—C677.3 (3)C20—N3—C14—C15110.1 (2)
C7—N1—C1—C2111.9 (2)C20—N3—C14—C1975.8 (3)
C6—C1—C2—C31.7 (3)C19—C14—C15—C161.2 (3)
N1—C1—C2—C3173.0 (2)N3—C14—C15—C16175.7 (2)
C6—C1—C2—Cl1176.76 (16)C19—C14—C15—Cl3178.67 (16)
N1—C1—C2—Cl15.4 (3)N3—C14—C15—Cl34.2 (3)
C1—C2—C3—C40.4 (3)C14—C15—C16—C170.8 (3)
Cl1—C2—C3—C4177.98 (17)Cl3—C15—C16—C17179.07 (18)
C2—C3—C4—C50.8 (3)C15—C16—C17—C180.3 (4)
C3—C4—C5—C60.7 (3)C16—C17—C18—C190.2 (3)
C2—C1—C6—C51.8 (3)C17—C18—C19—C140.7 (3)
N1—C1—C6—C5172.7 (2)C17—C18—C19—Cl4178.31 (18)
C2—C1—C6—Cl2177.02 (16)C15—C14—C19—C181.1 (3)
N1—C1—C6—Cl26.1 (3)N3—C14—C19—C18175.5 (2)
C4—C5—C6—C10.7 (3)C15—C14—C19—Cl4177.85 (17)
C4—C5—C6—Cl2178.15 (17)N3—C14—C19—Cl43.5 (3)
C1—N1—C7—C8179.69 (19)C14—N3—C20—C21175.9 (2)
C1—N1—C7—C121.3 (3)C14—N3—C20—C255.1 (3)
N1—C7—C8—C9177.60 (19)N3—C20—C21—C22178.9 (2)
C12—C7—C8—C93.9 (3)C25—C20—C21—C220.2 (3)
N1—C7—C8—C134.4 (3)N3—C20—C21—C262.5 (3)
C12—C7—C8—C13174.09 (18)C25—C20—C21—C26178.5 (2)
C13—C8—C9—N22.5 (3)C26—C21—C22—N42.5 (3)
C7—C8—C9—N2179.58 (19)C20—C21—C22—N4178.8 (2)
C13—C8—C9—C10175.95 (18)C26—C21—C22—C23178.1 (2)
C7—C8—C9—C102.0 (3)C20—C21—C22—C230.5 (3)
N2—C9—C10—O21.2 (3)N4—C22—C23—O41.6 (3)
C8—C9—C10—O2179.80 (19)C21—C22—C23—O4177.8 (2)
N2—C9—C10—C11177.42 (18)N4—C22—C23—C24179.7 (2)
C8—C9—C10—C111.2 (3)C21—C22—C23—C240.3 (3)
O2—C10—C11—C12178.9 (2)O4—C23—C24—C25176.6 (2)
C9—C10—C11—C122.5 (3)C22—C23—C24—C251.5 (3)
C10—C11—C12—C70.6 (3)C23—C24—C25—C201.9 (4)
N1—C7—C12—C11178.9 (2)N3—C20—C25—C24179.9 (2)
C8—C7—C12—C112.7 (3)C21—C20—C25—C241.0 (3)
C9—C8—C13—O13.6 (3)C22—C21—C26—O32.6 (4)
C7—C8—C13—O1178.44 (19)C20—C21—C26—O3178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2X···Cl1i0.92 (1)2.60 (1)3.4590 (18)156 (2)
N2—H2Y···O10.92 (1)2.08 (2)2.722 (2)126 (2)
N2—H2Y···O4i0.92 (1)2.26 (2)2.933 (2)130 (2)
N4—H4X···O1i0.93 (1)2.04 (1)2.916 (2)155 (2)
N4—H4Y···O30.92 (1)2.01 (2)2.666 (3)127 (2)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H8Cl2N2O2
Mr295.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)17.1738 (14), 10.5718 (8), 14.1457 (11)
β (°) 101.192 (5)
V3)2519.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.07 × 0.04 × 0.01
Data collection
DiffractometerBruker X8 KappaCCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.965, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
24324, 4600, 3466
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.02
No. of reflections4600
No. of parameters355
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2X···Cl1i0.917 (9)2.601 (13)3.4590 (18)156.0 (19)
N2—H2Y···O10.922 (9)2.080 (16)2.722 (2)125.5 (16)
N2—H2Y···O4i0.922 (9)2.259 (18)2.933 (2)129.5 (16)
N4—H4X···O1i0.931 (9)2.044 (14)2.916 (2)155 (2)
N4—H4Y···O30.921 (9)2.008 (17)2.666 (3)127.0 (17)
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER, Portugal) for their general financial support to QOPNA and CICECO, and for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationBernadou, J. & Meunier, B. (2004). Adv. Synth. Catal. 346, 171-184.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Marques, J., Marques, M. P. M. & Braga, S. S. (2011). Acta Cryst. C67, o57–o59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A., Vilela, S. M. F., Tomé, J. C., Cavaleiro, J. A. S., Ribeiro-Claro, P. J. A. & Rocha, J. (2010). Acta Cryst. E66, o2271–o2272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoughzail, M., Fernandes, J. A., Baouid, A., Essaber, M., Cavaleiro, J. A. S. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2075–o2076.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMansuy, D. (2007). C. R. Chimie, 10, 392–413.  Web of Science CrossRef CAS Google Scholar
First citationNeves, C. M. B., Simões, M. M. Q., Santos, I. C. M. S., Domingues, F. M. J., Neves, M. G. P. M. S., Paz, F. A. A., Silva, A. M. S. & Cavaleiro, J. A. S. (2011). Tetrahedron Lett. 52, 2898–2902.  Web of Science CSD CrossRef CAS Google Scholar
First citationOthman, S., Mouries, V. M., Bensoussan, C., Battioni, P. & Mansuy, D. (2000). Bioorg. Med. Chem. 3, 751–755.  CAS Google Scholar
First citationRebelo, S. L. H., Pereira, M. M., Simões, M. M. Q., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2005). J. Catal. 234, 76–87.  CrossRef CAS Google Scholar
First citationRebelo, S. L. H., Simões, M. M. Q., Neves, M. G. P. M. S., Silva, A. M. S. & Cavaleiro, J. A. S. (2004a). Chem. Commun. pp. 608–609.  Web of Science CrossRef Google Scholar
First citationRebelo, S. L. H., Simões, M. M. Q., Neves, M. G. P. M. S., Silva, A. M. S., Cavaleiro, J. A. S., Peixoto, A. F., Pereira, M. M., Silva, M. R., Paixão, J. A. & Beja, A. M. (2004b). Eur. J. Org. Chem. pp. 4778–4787.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimões, M. M. Q., De Paula, R., Neves, M. G. P. M. S. & Cavaleiro, J. A. S. (2009). J. Porphyrins Phthalocyanines, 13, 589–596.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3022-o3023
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds