metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2,3-di-2-pyridyl­pyrazine-κ2N1,N2)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 October 2011; accepted 25 October 2011; online 29 October 2011)

The PdII ion in the title complex, [PdCl2(C14H10N4)], is four-coordinated in a distorted square-planar environment defined by two N atoms of a chelating 2,3-di-2-pyridyl­pyrazine (dpp) ligand and two chloride anions. The pyridine ring coordinated to the Pd atom is inclined slightly to its carrier pyrazine ring [dihedral angle = 14.4 (3)°], whereas the uncoordinated pyridine ring is inclined considerably to the pyrazine ring [dihedral angle = 52.2 (2)°]. The dihedral angle between the two pyridine rings is 58.8 (2)°. In the crystal, complex mol­ecules are connected by inter­molecular C—H⋯Cl and C—H⋯N hydrogen bonds, forming a three-dimensional network. Intra­molecular C—H⋯Cl hydrogen bonds are also present.

Related literature

For related crystal structures of [PtX2(dpp)] (X = Br, Cl), see: Ha (2011a[Ha, K. (2011a). Acta Cryst. E67, m1230.],b[Ha, K. (2011b). Acta Cryst. E67, m1454.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C14H10N4)]

  • Mr = 411.56

  • Triclinic, [P \overline 1]

  • a = 8.1681 (10) Å

  • b = 9.5480 (11) Å

  • c = 10.1137 (12) Å

  • α = 84.543 (2)°

  • β = 71.400 (2)°

  • γ = 71.475 (2)°

  • V = 708.81 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 200 K

  • 0.26 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.748, Tmax = 1.000

  • 5225 measured reflections

  • 3406 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 1.24

  • 3406 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −2.09 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N3 2.035 (5)
Pd1—N1 2.038 (5)
Pd1—Cl2 2.2787 (17)
Pd1—Cl1 2.2860 (17)
N3—Pd1—N1 80.24 (19)
Cl2—Pd1—Cl1 89.14 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl2i 0.95 2.73 3.632 (7) 159
C4—H4⋯Cl1 0.95 2.60 3.216 (7) 123
C8—H8⋯N4ii 0.95 2.58 3.529 (9) 178
C9—H9⋯Cl2 0.95 2.62 3.241 (7) 123
C13—H13⋯Cl2iii 0.95 2.76 3.530 (7) 139
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) x, y-1, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title complex, [PdCl2(dpp)] (dpp = 2,3-di-2-pyridylpyrazine, C14H10N4), the central PdII ion has a distorted square-planar coordination defined by two N atoms, one from the pyrazine ring and the other from pyridyl ring of the chelating dpp ligand and two Cl- anions (Fig. 1). The complex crystallized in the triclinic space group P1, whereas the previously reported analogous PtII complexes [PtX2(dpp)] (X = Br, Cl) crystallized in the monoclinic space group P21/n (Ha, 2011a,b).

The tight N1—Pd1—N3 chelate angle of 80.24 (19)° contributes the distortion of the square, which results in slightly bent trans axes [<Cl1—Pd1—N3 = 174.80 (14)° and <Cl2—Pd1—N1 = 175.50 (15)°]. The pairs of Pd—N and Pd—Cl bond lengths are nearly equal, respectively (Table 1). The pyridyl ring coordinated to the Pd atom is inclined slightly to its carrier pyrazine ring, making dihedral angle of 14.4 (3)°. By contrast, the uncoordinated pyridyl ring is inclined considerably to the pyrazine ring forming a dihedral angle of 52.2 (2)°. The dihedral angle between the two pyridyl rings is 58.8 (2)°. The complexes are connected by intermolecular C—H···Cl and C—H···N hydrogen bonds, forming a three-dimensional network (Fig. 2 and Table 2). There are also intramolecular C—H···Cl hydrogen bonds (Table 2). The molecules stack in columns along the a axis and display numerous inter- and intramolecular π-π interactions between the six-membered rings, with a shortest ring centroid-centroid distance of 3.848 (4) Å.

Related literature top

For related crystal structures of [PtX2(dpp)] (X = Br, Cl), see: Ha (2011a,b).

Experimental top

The single crystals of the title complex were obtained as a by-product from the reaction of Na2PdCl4 (0.2960 g, 1.006 mmol) with 2,3-di-2-pyridylpyrazine (0.2361 g, 1.008 mmol) in MeOH (30 ml). After stirring of the reaction mixture for 20 h at room temperature, the formed precipitate was separated by filtration, washed with MeOH, and dried at 50 °C, to give a yellow powder (0.3560 g). Orange crystals suitable for X-ray analysis were obtained by slow evaporation from an acetone/CH3NO2 solution of the yellow product.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest peak (1.18 e Å-3) and the deepest hole (-2.09 e Å-3) in the final difference Fourier map are located 0.74 Å and 0.88 Å from the N1 and Pd1 atoms, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level; H atoms are shown as small circles of arbitrary radius.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Intermolecular hydrogen-bond interactions are drawn with dashed lines.
Dichlorido(2,3-di-2-pyridylpyrazine-κ2N1,N2)palladium(II) top
Crystal data top
[PdCl2(C14H10N4)]Z = 2
Mr = 411.56F(000) = 404
Triclinic, P1Dx = 1.928 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1681 (10) ÅCell parameters from 2636 reflections
b = 9.5480 (11) Åθ = 2.8–28.2°
c = 10.1137 (12) ŵ = 1.68 mm1
α = 84.543 (2)°T = 200 K
β = 71.400 (2)°Block, orange
γ = 71.475 (2)°0.26 × 0.16 × 0.12 mm
V = 708.81 (15) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3406 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.748, Tmax = 1.000k = 1211
5225 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.P)2 + 3.5422P]
where P = (Fo2 + 2Fc2)/3
3406 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 2.09 e Å3
Crystal data top
[PdCl2(C14H10N4)]γ = 71.475 (2)°
Mr = 411.56V = 708.81 (15) Å3
Triclinic, P1Z = 2
a = 8.1681 (10) ÅMo Kα radiation
b = 9.5480 (11) ŵ = 1.68 mm1
c = 10.1137 (12) ÅT = 200 K
α = 84.543 (2)°0.26 × 0.16 × 0.12 mm
β = 71.400 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3406 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2608 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 1.000Rint = 0.025
5225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.24Δρmax = 1.18 e Å3
3406 reflectionsΔρmin = 2.09 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.71773 (7)0.48277 (5)0.10860 (5)0.02952 (14)
Cl10.6858 (3)0.43540 (19)0.31486 (17)0.0416 (4)
Cl20.6748 (2)0.72437 (18)0.17098 (19)0.0416 (4)
N10.7538 (6)0.2716 (5)0.0374 (5)0.0241 (10)
N20.7697 (8)0.0024 (6)0.0868 (6)0.0384 (13)
N30.7611 (6)0.5057 (5)0.0743 (5)0.0249 (10)
N40.8648 (8)0.0406 (6)0.3339 (6)0.0398 (14)
C10.7696 (8)0.2515 (7)0.0931 (6)0.0305 (14)
C20.7656 (9)0.1158 (7)0.1572 (7)0.0313 (14)
C30.7645 (11)0.0272 (8)0.0442 (7)0.0450 (18)
H30.77080.05240.09720.054*
C40.7504 (9)0.1629 (7)0.1050 (7)0.0349 (15)
H40.73810.17820.19600.042*
C50.7923 (7)0.3781 (6)0.1508 (6)0.0228 (12)
C60.8494 (9)0.3771 (7)0.2643 (7)0.0362 (15)
H60.87760.28830.31490.043*
C70.8667 (9)0.5053 (8)0.3064 (7)0.0368 (15)
H70.90280.50560.38680.044*
C80.8305 (9)0.6301 (8)0.2296 (7)0.0381 (16)
H80.84140.71890.25580.046*
C90.7787 (8)0.6264 (6)0.1150 (7)0.0288 (13)
H90.75410.71400.06210.035*
C100.7479 (8)0.0837 (7)0.3079 (6)0.0290 (13)
C110.6105 (9)0.1744 (7)0.4115 (7)0.0362 (15)
H110.53000.26280.38910.043*
C120.5941 (10)0.1325 (8)0.5488 (7)0.0434 (17)
H120.50140.19210.62280.052*
C130.7126 (11)0.0043 (8)0.5770 (7)0.0461 (19)
H130.70260.02730.67040.055*
C140.8465 (11)0.0774 (8)0.4673 (8)0.049 (2)
H140.93050.16490.48740.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0345 (3)0.0262 (3)0.0292 (3)0.0109 (2)0.0108 (2)0.00380 (18)
Cl10.0574 (11)0.0411 (9)0.0321 (9)0.0175 (8)0.0211 (8)0.0073 (7)
Cl20.0506 (10)0.0293 (8)0.0514 (11)0.0165 (7)0.0235 (9)0.0126 (7)
N10.024 (2)0.022 (2)0.024 (3)0.008 (2)0.006 (2)0.0076 (19)
N20.057 (4)0.025 (3)0.036 (3)0.013 (3)0.019 (3)0.005 (2)
N30.027 (3)0.022 (2)0.030 (3)0.010 (2)0.014 (2)0.009 (2)
N40.055 (4)0.030 (3)0.036 (3)0.006 (3)0.022 (3)0.001 (2)
C10.032 (3)0.036 (4)0.022 (3)0.008 (3)0.009 (3)0.000 (3)
C20.037 (3)0.024 (3)0.030 (3)0.007 (3)0.008 (3)0.004 (2)
C30.076 (5)0.032 (4)0.036 (4)0.020 (4)0.024 (4)0.006 (3)
C40.059 (4)0.024 (3)0.028 (3)0.016 (3)0.016 (3)0.006 (2)
C50.023 (3)0.023 (3)0.022 (3)0.005 (2)0.007 (2)0.004 (2)
C60.040 (4)0.032 (3)0.039 (4)0.010 (3)0.017 (3)0.001 (3)
C70.034 (3)0.053 (4)0.028 (3)0.019 (3)0.011 (3)0.000 (3)
C80.042 (4)0.040 (4)0.032 (4)0.018 (3)0.004 (3)0.007 (3)
C90.030 (3)0.020 (3)0.037 (4)0.009 (2)0.008 (3)0.002 (2)
C100.037 (3)0.026 (3)0.029 (3)0.013 (3)0.013 (3)0.001 (2)
C110.046 (4)0.032 (4)0.033 (4)0.014 (3)0.013 (3)0.002 (3)
C120.058 (5)0.050 (4)0.027 (4)0.027 (4)0.008 (3)0.000 (3)
C130.081 (6)0.044 (4)0.029 (4)0.035 (4)0.024 (4)0.009 (3)
C140.075 (6)0.040 (4)0.055 (5)0.025 (4)0.046 (5)0.015 (4)
Geometric parameters (Å, º) top
Pd1—N32.035 (5)C4—H40.9500
Pd1—N12.038 (5)C5—C61.368 (8)
Pd1—Cl22.2787 (17)C6—C71.395 (9)
Pd1—Cl12.2860 (17)C6—H60.9500
N1—C41.308 (7)C7—C81.363 (9)
N1—C11.357 (7)C7—H70.9500
N2—C31.336 (8)C8—C91.362 (9)
N2—C21.338 (8)C8—H80.9500
N3—C91.323 (7)C9—H90.9500
N3—C51.377 (7)C10—C111.383 (9)
N4—C101.331 (8)C11—C121.385 (9)
N4—C141.334 (9)C11—H110.9500
C1—C21.398 (8)C12—C131.368 (10)
C1—C51.477 (8)C12—H120.9500
C2—C101.495 (8)C13—C141.373 (11)
C3—C41.367 (9)C13—H130.9500
C3—H30.9500C14—H140.9500
N3—Pd1—N180.24 (19)N3—C5—C1114.2 (5)
N3—Pd1—Cl295.40 (14)C5—C6—C7120.6 (6)
N1—Pd1—Cl2175.50 (15)C5—C6—H6119.7
N3—Pd1—Cl1174.80 (14)C7—C6—H6119.7
N1—Pd1—Cl195.27 (14)C8—C7—C6118.5 (6)
Cl2—Pd1—Cl189.14 (6)C8—C7—H7120.8
C4—N1—C1120.7 (5)C6—C7—H7120.8
C4—N1—Pd1124.3 (4)C9—C8—C7119.4 (6)
C1—N1—Pd1114.8 (4)C9—C8—H8120.3
C3—N2—C2117.3 (6)C7—C8—H8120.3
C9—N3—C5119.8 (5)N3—C9—C8122.6 (6)
C9—N3—Pd1125.0 (4)N3—C9—H9118.7
C5—N3—Pd1114.8 (4)C8—C9—H9118.7
C10—N4—C14117.3 (6)N4—C10—C11123.3 (6)
N1—C1—C2117.9 (6)N4—C10—C2115.6 (5)
N1—C1—C5114.9 (5)C11—C10—C2121.0 (6)
C2—C1—C5127.2 (5)C10—C11—C12117.9 (7)
N2—C2—C1121.4 (6)C10—C11—H11121.0
N2—C2—C10113.5 (5)C12—C11—H11121.0
C1—C2—C10125.1 (5)C13—C12—C11119.4 (7)
N2—C3—C4122.5 (6)C13—C12—H12120.3
N2—C3—H3118.8C11—C12—H12120.3
C4—C3—H3118.8C12—C13—C14118.5 (7)
N1—C4—C3119.8 (6)C12—C13—H13120.7
N1—C4—H4120.1C14—C13—H13120.7
C3—C4—H4120.1N4—C14—C13123.5 (7)
C6—C5—N3118.9 (5)N4—C14—H14118.2
C6—C5—C1126.8 (6)C13—C14—H14118.2
N3—Pd1—N1—C4178.6 (5)Pd1—N3—C5—C16.1 (6)
Cl1—Pd1—N1—C41.2 (5)N1—C1—C5—C6164.9 (6)
N3—Pd1—N1—C16.0 (4)C2—C1—C5—C614.1 (10)
Cl1—Pd1—N1—C1176.7 (4)N1—C1—C5—N311.2 (7)
N1—Pd1—N3—C9173.4 (5)C2—C1—C5—N3169.8 (6)
Cl2—Pd1—N3—C97.8 (5)N3—C5—C6—C73.4 (9)
N1—Pd1—N3—C50.3 (4)C1—C5—C6—C7179.2 (6)
Cl2—Pd1—N3—C5179.2 (4)C5—C6—C7—C81.9 (10)
C4—N1—C1—C25.6 (9)C6—C7—C8—C90.1 (10)
Pd1—N1—C1—C2170.0 (4)C5—N3—C9—C81.3 (9)
C4—N1—C1—C5173.5 (5)Pd1—N3—C9—C8171.3 (5)
Pd1—N1—C1—C510.9 (6)C7—C8—C9—N30.1 (10)
C3—N2—C2—C14.7 (10)C14—N4—C10—C110.1 (10)
C3—N2—C2—C10172.6 (6)C14—N4—C10—C2176.2 (6)
N1—C1—C2—N28.5 (9)N2—C2—C10—N450.6 (8)
C5—C1—C2—N2170.5 (6)C1—C2—C10—N4132.3 (7)
N1—C1—C2—C10168.5 (6)N2—C2—C10—C11125.6 (7)
C5—C1—C2—C1012.5 (10)C1—C2—C10—C1151.5 (9)
C2—N2—C3—C41.8 (11)N4—C10—C11—C120.5 (10)
C1—N1—C4—C30.6 (10)C2—C10—C11—C12175.4 (6)
Pd1—N1—C4—C3175.8 (5)C10—C11—C12—C130.0 (10)
N2—C3—C4—N14.6 (12)C11—C12—C13—C141.0 (11)
C9—N3—C5—C63.1 (8)C10—N4—C14—C131.2 (11)
Pd1—N3—C5—C6170.3 (4)C12—C13—C14—N41.7 (11)
C9—N3—C5—C1179.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.733.632 (7)159
C4—H4···Cl10.952.603.216 (7)123
C8—H8···N4ii0.952.583.529 (9)178
C9—H9···Cl20.952.623.241 (7)123
C13—H13···Cl2iii0.952.763.530 (7)139
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C14H10N4)]
Mr411.56
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)8.1681 (10), 9.5480 (11), 10.1137 (12)
α, β, γ (°)84.543 (2), 71.400 (2), 71.475 (2)
V3)708.81 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.26 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.748, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5225, 3406, 2608
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.24
No. of reflections3406
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 2.09

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N32.035 (5)Pd1—Cl22.2787 (17)
Pd1—N12.038 (5)Pd1—Cl12.2860 (17)
N3—Pd1—N180.24 (19)Cl2—Pd1—Cl189.14 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl2i0.952.733.632 (7)159
C4—H4···Cl10.952.603.216 (7)123
C8—H8···N4ii0.952.583.529 (9)178
C9—H9···Cl20.952.623.241 (7)123
C13—H13···Cl2iii0.952.763.530 (7)139
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y1, z+1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626). The author thanks the KBSI, Jeonju Center, for the X-ray data collection.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds