metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[2-methyl-1H-imidazol-3-ium [(aqua­chloridocadmate)-di-μ-chlorido]]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 6 October 2011; accepted 17 October 2011; online 22 October 2011)

The asymmetric unit of the title compound, {(C4H7N2)[CdCl3(H2O)]}n, contains one 1-methyl-1H-imidazol-3-ium cation, one CdII atom, three Cl atoms and one water mol­ecule. Adjacent Cd ions are inter­connected alternately by paired Cl bridges to generate an infinite one-dimensional coordination chain along the b axis. In the chain, the crystallographically unique CdII atom, with a distorted octa­hedral geometry, is coordinated by five Cl ions and one water mol­ecule. Intra-chain O—H⋯Cl hydrogen bonding and N—H⋯Cl hydrogen bonding between the cations and the anionic chains consolidate the crystal packing.

Related literature

For general background to ferroelectric metal-organic compounds with framework structures, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H7N2)[CdCl3(H2O)]

  • Mr = 319.88

  • Monoclinic, P 21 /c

  • a = 9.0479 (18) Å

  • b = 14.922 (3) Å

  • c = 7.4711 (15) Å

  • β = 94.17 (3)°

  • V = 1006.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.421, Tmax = 0.558

  • 10317 measured reflections

  • 2308 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.12

  • 2308 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 2.13 2.884 (3) 146
N1—H1D⋯Cl1i 0.86 2.33 3.163 (3) 164
O1—H1G⋯Cl1ii 0.85 2.40 3.250 (2) 174
O1—H1F⋯Cl1iii 0.85 2.44 3.174 (2) 146
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The basic method to find potential ferroelectric phase change materials is the measurement of the dielectric constant as function of temperature (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008, 2010). Unfortunately, the title compound's dielectric constant does not change from 80 K to 298 K (m.p. 319–329).

X-ray analysis (Fig. 1) revealed that the title compound possesses 1-D chain structures. In the chain, the Cd atoms are connected by two Cl atoms acting as bridges between Cd1 and Cd1[x, 0.5 - y, 1/2 + z] centers. The Cd—Cl(µ2) distances from 2.5973 (11) to 2.6293 (12) Å are slightly longer than that of Cd—Cl(terminal) 2.5916 (10) Å. It is interesting to note that the free 2-methyl imidazole molecules extend the 1-D host chains into a 3-D supramolecular network via the hydrogen-bonded interactions (Table 1, Fig. 2).

Related literature top

For general background on ferroelectric metal–organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

A mixture of 2-methyl imidazole (2.4 g, 30 mmol), cadmium chloride (3.15 g, 10 mmol) in water was stirred for several days at ambient temperature. Colourless block crystals were obtained.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å and N—H = 0.86, with Uiso(H) = 1.2Ueq(C,N)and 1.5Ueq(C) for methyl H atoms. The H atoms of the water molecule were restrained with O—H = 0.85 Å yielding O1—H1G = 0.8501 Å and O1—H1F = 0.8500 Å, with Uiso(H) = 1.2Ueq(O)

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A partial packing diagram of the title compound, with the displacement ellipsoids drawn at the 30% probability level, the intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound, hydrogen bonds are shown as dashed lines.
catena-Poly[2-methyl-1H-imidazol-3-ium [(aquachloridocadmate)-di-µ-chlorido]] top
Crystal data top
(C4H7N2)[CdCl3(H2O)]F(000) = 616
Mr = 319.88Dx = 2.112 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2308 reflections
a = 9.0479 (18) Åθ = 2.2–27.5°
b = 14.922 (3) ŵ = 2.92 mm1
c = 7.4711 (15) ÅT = 293 K
β = 94.17 (3)°Block, colourless
V = 1006.0 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2038 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.421, Tmax = 0.558l = 99
10317 measured reflections2 standard reflections every 150 reflections
2308 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.0243P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2308 reflectionsΔρmax = 0.72 e Å3
102 parametersΔρmin = 0.71 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0729 (19)
Crystal data top
(C4H7N2)[CdCl3(H2O)]V = 1006.0 (3) Å3
Mr = 319.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0479 (18) ŵ = 2.92 mm1
b = 14.922 (3) ÅT = 293 K
c = 7.4711 (15) Å0.30 × 0.25 × 0.20 mm
β = 94.17 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2038 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.082
Tmin = 0.421, Tmax = 0.5582 standard reflections every 150 reflections
10317 measured reflections intensity decay: none
2308 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.12Δρmax = 0.72 e Å3
2308 reflectionsΔρmin = 0.71 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.57821 (2)0.235443 (17)0.32343 (3)0.02778 (14)
Cl30.38194 (10)0.26229 (6)0.06038 (12)0.0358 (2)
Cl20.78469 (10)0.25735 (5)0.08951 (12)0.0318 (2)
Cl10.59444 (8)0.06319 (6)0.28507 (11)0.0381 (2)
N20.8602 (3)0.4748 (2)0.2374 (4)0.0461 (8)
H2A0.80000.43180.25630.055*
C21.0070 (4)0.4697 (2)0.2644 (4)0.0395 (8)
C30.8185 (4)0.5580 (3)0.1755 (5)0.0487 (10)
H30.72240.57800.14600.058*
C11.0943 (4)0.3909 (3)0.3283 (5)0.0588 (12)
H1A1.12190.35670.22720.088*
H1B1.03570.35440.40180.088*
H1C1.18190.41050.39750.088*
N11.0572 (3)0.5493 (2)0.2218 (4)0.0458 (8)
H1D1.14920.56430.22830.055*
C40.9424 (4)0.6046 (3)0.1659 (5)0.0509 (10)
H40.95000.66370.12820.061*
O10.5944 (2)0.39528 (16)0.3580 (3)0.0371 (6)
H1G0.59220.41010.46770.045*
H1F0.52300.42070.29780.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0307 (2)0.0277 (2)0.02493 (19)0.00076 (9)0.00188 (13)0.00017 (8)
Cl30.0272 (5)0.0527 (6)0.0275 (5)0.0054 (3)0.0023 (4)0.0021 (3)
Cl20.0266 (4)0.0399 (5)0.0287 (4)0.0026 (3)0.0010 (4)0.0007 (3)
Cl10.0325 (4)0.0251 (4)0.0565 (5)0.0026 (3)0.0024 (4)0.0006 (4)
N20.0311 (15)0.044 (2)0.063 (2)0.0122 (14)0.0037 (15)0.0024 (15)
C20.0347 (19)0.040 (2)0.044 (2)0.0029 (16)0.0047 (17)0.0045 (16)
C30.0349 (19)0.049 (2)0.063 (2)0.0025 (18)0.0062 (18)0.002 (2)
C10.057 (3)0.057 (3)0.062 (3)0.012 (2)0.000 (2)0.0006 (19)
N10.0290 (15)0.049 (2)0.060 (2)0.0095 (14)0.0037 (14)0.0025 (16)
C40.052 (2)0.037 (2)0.064 (3)0.0008 (18)0.004 (2)0.0003 (18)
O10.0370 (12)0.0341 (15)0.0402 (12)0.0050 (10)0.0029 (10)0.0065 (10)
Geometric parameters (Å, º) top
Cd1—O12.402 (2)C2—C11.476 (5)
Cd1—Cl32.5824 (12)C3—C41.325 (5)
Cd1—Cl12.5916 (10)C3—H30.9300
Cd1—Cl3i2.5973 (11)C1—H1A0.9600
Cd1—Cl2i2.6293 (12)C1—H1B0.9600
Cd1—Cl22.6694 (11)C1—H1C0.9600
Cl3—Cd1ii2.5973 (11)N1—C41.368 (4)
Cl2—Cd1ii2.6293 (12)N1—H1D0.8600
N2—C21.331 (4)C4—H40.9300
N2—C31.369 (5)O1—H1G0.8501
N2—H2A0.8600O1—H1F0.8500
C2—N11.318 (4)
O1—Cd1—Cl387.77 (5)N1—C2—C1127.5 (3)
O1—Cd1—Cl1173.24 (5)N2—C2—C1126.8 (4)
Cl3—Cd1—Cl196.38 (3)C4—C3—N2106.3 (3)
O1—Cd1—Cl3i87.31 (5)C4—C3—H3126.9
Cl3—Cd1—Cl3i92.88 (3)N2—C3—H3126.9
Cl1—Cd1—Cl3i97.78 (3)C2—C1—H1A109.5
O1—Cd1—Cl2i81.00 (5)C2—C1—H1B109.5
Cl3—Cd1—Cl2i168.67 (3)H1A—C1—H1B109.5
Cl1—Cd1—Cl2i94.66 (2)C2—C1—H1C109.5
Cl3i—Cd1—Cl2i88.14 (3)H1A—C1—H1C109.5
O1—Cd1—Cl284.77 (5)H1B—C1—H1C109.5
Cl3—Cd1—Cl287.60 (3)C2—N1—C4110.4 (3)
Cl1—Cd1—Cl290.06 (3)C2—N1—H1D124.8
Cl3i—Cd1—Cl2172.04 (3)C4—N1—H1D124.8
Cl2i—Cd1—Cl289.85 (3)C3—C4—N1107.1 (4)
Cd1—Cl3—Cd1ii93.11 (3)C3—C4—H4126.4
Cd1ii—Cl2—Cd190.42 (3)N1—C4—H4126.4
C2—N2—C3110.5 (3)Cd1—O1—H1G110.9
C2—N2—H2A124.8Cd1—O1—H1F110.4
C3—N2—H2A124.8H1G—O1—H1F108.9
N1—C2—N2105.7 (3)
O1—Cd1—Cl3—Cd1ii91.33 (5)Cl2i—Cd1—Cl2—Cd1ii175.35 (4)
Cl1—Cd1—Cl3—Cd1ii83.31 (3)C3—N2—C2—N10.7 (4)
Cl3i—Cd1—Cl3—Cd1ii178.53 (4)C3—N2—C2—C1179.2 (3)
Cl2i—Cd1—Cl3—Cd1ii83.60 (12)C2—N2—C3—C40.4 (4)
Cl2—Cd1—Cl3—Cd1ii6.48 (3)N2—C2—N1—C40.7 (4)
O1—Cd1—Cl2—Cd1ii94.37 (5)C1—C2—N1—C4179.1 (3)
Cl3—Cd1—Cl2—Cd1ii6.39 (2)N2—C3—C4—N10.0 (4)
Cl1—Cd1—Cl2—Cd1ii89.99 (3)C2—N1—C4—C30.4 (4)
Cl3i—Cd1—Cl2—Cd1ii100.00 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.132.884 (3)146
N1—H1D···Cl1iii0.862.333.163 (3)164
O1—H1G···Cl1i0.852.403.250 (2)174
O1—H1F···Cl1iv0.852.443.174 (2)146
Symmetry codes: (i) x, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C4H7N2)[CdCl3(H2O)]
Mr319.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0479 (18), 14.922 (3), 7.4711 (15)
β (°) 94.17 (3)
V3)1006.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.421, 0.558
No. of measured, independent and
observed [I > 2σ(I)] reflections
10317, 2308, 2038
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.12
No. of reflections2308
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.71

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862.132.884 (3)146.0
N1—H1D···Cl1i0.862.333.163 (3)163.5
O1—H1G···Cl1ii0.852.403.250 (2)174.2
O1—H1F···Cl1iii0.852.443.174 (2)145.6
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds