metal-organic compounds
catena-Poly[2-methyl-1H-imidazol-3-ium [(aquachloridocadmate)-di-μ-chlorido]]
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com
The 4H7N2)[CdCl3(H2O)]}n, contains one 1-methyl-1H-imidazol-3-ium cation, one CdII atom, three Cl atoms and one water molecule. Adjacent Cd ions are interconnected alternately by paired Cl− bridges to generate an infinite one-dimensional coordination chain along the b axis. In the chain, the crystallographically unique CdII atom, with a distorted octahedral geometry, is coordinated by five Cl− ions and one water molecule. Intra-chain O—H⋯Cl hydrogen bonding and N—H⋯Cl hydrogen bonding between the cations and the anionic chains consolidate the crystal packing.
of the title compound, {(CRelated literature
For general background to ferroelectric metal-organic compounds with framework structures, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811042905/vm2126sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042905/vm2126Isup2.hkl
A mixture of 2-methyl imidazole (2.4 g, 30 mmol), cadmium chloride (3.15 g, 10 mmol) in water was stirred for several days at ambient temperature. Colourless block crystals were obtained.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å and N—H = 0.86, with Uiso(H) = 1.2Ueq(C,N)and 1.5Ueq(C) for methyl H atoms. The H atoms of the water molecule were restrained with O—H = 0.85 Å yielding O1—H1G = 0.8501 Å and O1—H1F = 0.8500 Å, with Uiso(H) = 1.2Ueq(O)
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C4H7N2)[CdCl3(H2O)] | F(000) = 616 |
Mr = 319.88 | Dx = 2.112 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2308 reflections |
a = 9.0479 (18) Å | θ = 2.2–27.5° |
b = 14.922 (3) Å | µ = 2.92 mm−1 |
c = 7.4711 (15) Å | T = 293 K |
β = 94.17 (3)° | Block, colourless |
V = 1006.0 (3) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 4 |
Rigaku SCXmini diffractometer | 2038 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.082 |
Graphite monochromator | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −19→19 |
Tmin = 0.421, Tmax = 0.558 | l = −9→9 |
10317 measured reflections | 2 standard reflections every 150 reflections |
2308 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0174P)2 + 0.0243P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
2308 reflections | Δρmax = 0.72 e Å−3 |
102 parameters | Δρmin = −0.71 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0729 (19) |
(C4H7N2)[CdCl3(H2O)] | V = 1006.0 (3) Å3 |
Mr = 319.88 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0479 (18) Å | µ = 2.92 mm−1 |
b = 14.922 (3) Å | T = 293 K |
c = 7.4711 (15) Å | 0.30 × 0.25 × 0.20 mm |
β = 94.17 (3)° |
Rigaku SCXmini diffractometer | 2038 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.082 |
Tmin = 0.421, Tmax = 0.558 | 2 standard reflections every 150 reflections |
10317 measured reflections | intensity decay: none |
2308 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.72 e Å−3 |
2308 reflections | Δρmin = −0.71 e Å−3 |
102 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.57821 (2) | 0.235443 (17) | 0.32343 (3) | 0.02778 (14) | |
Cl3 | 0.38194 (10) | 0.26229 (6) | 0.06038 (12) | 0.0358 (2) | |
Cl2 | 0.78469 (10) | 0.25735 (5) | 0.08951 (12) | 0.0318 (2) | |
Cl1 | 0.59444 (8) | 0.06319 (6) | 0.28507 (11) | 0.0381 (2) | |
N2 | 0.8602 (3) | 0.4748 (2) | 0.2374 (4) | 0.0461 (8) | |
H2A | 0.8000 | 0.4318 | 0.2563 | 0.055* | |
C2 | 1.0070 (4) | 0.4697 (2) | 0.2644 (4) | 0.0395 (8) | |
C3 | 0.8185 (4) | 0.5580 (3) | 0.1755 (5) | 0.0487 (10) | |
H3 | 0.7224 | 0.5780 | 0.1460 | 0.058* | |
C1 | 1.0943 (4) | 0.3909 (3) | 0.3283 (5) | 0.0588 (12) | |
H1A | 1.1219 | 0.3567 | 0.2272 | 0.088* | |
H1B | 1.0357 | 0.3544 | 0.4018 | 0.088* | |
H1C | 1.1819 | 0.4105 | 0.3975 | 0.088* | |
N1 | 1.0572 (3) | 0.5493 (2) | 0.2218 (4) | 0.0458 (8) | |
H1D | 1.1492 | 0.5643 | 0.2283 | 0.055* | |
C4 | 0.9424 (4) | 0.6046 (3) | 0.1659 (5) | 0.0509 (10) | |
H4 | 0.9500 | 0.6637 | 0.1282 | 0.061* | |
O1 | 0.5944 (2) | 0.39528 (16) | 0.3580 (3) | 0.0371 (6) | |
H1G | 0.5922 | 0.4101 | 0.4677 | 0.045* | |
H1F | 0.5230 | 0.4207 | 0.2978 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0307 (2) | 0.0277 (2) | 0.02493 (19) | −0.00076 (9) | 0.00188 (13) | 0.00017 (8) |
Cl3 | 0.0272 (5) | 0.0527 (6) | 0.0275 (5) | 0.0054 (3) | 0.0023 (4) | 0.0021 (3) |
Cl2 | 0.0266 (4) | 0.0399 (5) | 0.0287 (4) | −0.0026 (3) | 0.0010 (4) | 0.0007 (3) |
Cl1 | 0.0325 (4) | 0.0251 (4) | 0.0565 (5) | −0.0026 (3) | 0.0024 (4) | −0.0006 (4) |
N2 | 0.0311 (15) | 0.044 (2) | 0.063 (2) | −0.0122 (14) | 0.0037 (15) | 0.0024 (15) |
C2 | 0.0347 (19) | 0.040 (2) | 0.044 (2) | −0.0029 (16) | 0.0047 (17) | −0.0045 (16) |
C3 | 0.0349 (19) | 0.049 (2) | 0.063 (2) | 0.0025 (18) | 0.0062 (18) | 0.002 (2) |
C1 | 0.057 (3) | 0.057 (3) | 0.062 (3) | 0.012 (2) | 0.000 (2) | 0.0006 (19) |
N1 | 0.0290 (15) | 0.049 (2) | 0.060 (2) | −0.0095 (14) | 0.0037 (14) | −0.0025 (16) |
C4 | 0.052 (2) | 0.037 (2) | 0.064 (3) | −0.0008 (18) | 0.004 (2) | 0.0003 (18) |
O1 | 0.0370 (12) | 0.0341 (15) | 0.0402 (12) | 0.0050 (10) | 0.0029 (10) | 0.0065 (10) |
Cd1—O1 | 2.402 (2) | C2—C1 | 1.476 (5) |
Cd1—Cl3 | 2.5824 (12) | C3—C4 | 1.325 (5) |
Cd1—Cl1 | 2.5916 (10) | C3—H3 | 0.9300 |
Cd1—Cl3i | 2.5973 (11) | C1—H1A | 0.9600 |
Cd1—Cl2i | 2.6293 (12) | C1—H1B | 0.9600 |
Cd1—Cl2 | 2.6694 (11) | C1—H1C | 0.9600 |
Cl3—Cd1ii | 2.5973 (11) | N1—C4 | 1.368 (4) |
Cl2—Cd1ii | 2.6293 (12) | N1—H1D | 0.8600 |
N2—C2 | 1.331 (4) | C4—H4 | 0.9300 |
N2—C3 | 1.369 (5) | O1—H1G | 0.8501 |
N2—H2A | 0.8600 | O1—H1F | 0.8500 |
C2—N1 | 1.318 (4) | ||
O1—Cd1—Cl3 | 87.77 (5) | N1—C2—C1 | 127.5 (3) |
O1—Cd1—Cl1 | 173.24 (5) | N2—C2—C1 | 126.8 (4) |
Cl3—Cd1—Cl1 | 96.38 (3) | C4—C3—N2 | 106.3 (3) |
O1—Cd1—Cl3i | 87.31 (5) | C4—C3—H3 | 126.9 |
Cl3—Cd1—Cl3i | 92.88 (3) | N2—C3—H3 | 126.9 |
Cl1—Cd1—Cl3i | 97.78 (3) | C2—C1—H1A | 109.5 |
O1—Cd1—Cl2i | 81.00 (5) | C2—C1—H1B | 109.5 |
Cl3—Cd1—Cl2i | 168.67 (3) | H1A—C1—H1B | 109.5 |
Cl1—Cd1—Cl2i | 94.66 (2) | C2—C1—H1C | 109.5 |
Cl3i—Cd1—Cl2i | 88.14 (3) | H1A—C1—H1C | 109.5 |
O1—Cd1—Cl2 | 84.77 (5) | H1B—C1—H1C | 109.5 |
Cl3—Cd1—Cl2 | 87.60 (3) | C2—N1—C4 | 110.4 (3) |
Cl1—Cd1—Cl2 | 90.06 (3) | C2—N1—H1D | 124.8 |
Cl3i—Cd1—Cl2 | 172.04 (3) | C4—N1—H1D | 124.8 |
Cl2i—Cd1—Cl2 | 89.85 (3) | C3—C4—N1 | 107.1 (4) |
Cd1—Cl3—Cd1ii | 93.11 (3) | C3—C4—H4 | 126.4 |
Cd1ii—Cl2—Cd1 | 90.42 (3) | N1—C4—H4 | 126.4 |
C2—N2—C3 | 110.5 (3) | Cd1—O1—H1G | 110.9 |
C2—N2—H2A | 124.8 | Cd1—O1—H1F | 110.4 |
C3—N2—H2A | 124.8 | H1G—O1—H1F | 108.9 |
N1—C2—N2 | 105.7 (3) | ||
O1—Cd1—Cl3—Cd1ii | 91.33 (5) | Cl2i—Cd1—Cl2—Cd1ii | −175.35 (4) |
Cl1—Cd1—Cl3—Cd1ii | −83.31 (3) | C3—N2—C2—N1 | 0.7 (4) |
Cl3i—Cd1—Cl3—Cd1ii | 178.53 (4) | C3—N2—C2—C1 | −179.2 (3) |
Cl2i—Cd1—Cl3—Cd1ii | 83.60 (12) | C2—N2—C3—C4 | −0.4 (4) |
Cl2—Cd1—Cl3—Cd1ii | 6.48 (3) | N2—C2—N1—C4 | −0.7 (4) |
O1—Cd1—Cl2—Cd1ii | −94.37 (5) | C1—C2—N1—C4 | 179.1 (3) |
Cl3—Cd1—Cl2—Cd1ii | −6.39 (2) | N2—C3—C4—N1 | 0.0 (4) |
Cl1—Cd1—Cl2—Cd1ii | 89.99 (3) | C2—N1—C4—C3 | 0.4 (4) |
Cl3i—Cd1—Cl2—Cd1ii | −100.00 (16) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 2.13 | 2.884 (3) | 146 |
N1—H1D···Cl1iii | 0.86 | 2.33 | 3.163 (3) | 164 |
O1—H1G···Cl1i | 0.85 | 2.40 | 3.250 (2) | 174 |
O1—H1F···Cl1iv | 0.85 | 2.44 | 3.174 (2) | 146 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C4H7N2)[CdCl3(H2O)] |
Mr | 319.88 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.0479 (18), 14.922 (3), 7.4711 (15) |
β (°) | 94.17 (3) |
V (Å3) | 1006.0 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.92 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.421, 0.558 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10317, 2308, 2038 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.083, 1.12 |
No. of reflections | 2308 |
No. of parameters | 102 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.71 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O1 | 0.86 | 2.13 | 2.884 (3) | 146.0 |
N1—H1D···Cl1i | 0.86 | 2.33 | 3.163 (3) | 163.5 |
O1—H1G···Cl1ii | 0.85 | 2.40 | 3.250 (2) | 174.2 |
O1—H1F···Cl1iii | 0.85 | 2.44 | 3.174 (2) | 145.6 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by Southeast University.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The basic method to find potential ferroelectric phase change materials is the measurement of the dielectric constant as function of temperature (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008, 2010). Unfortunately, the title compound's dielectric constant does not change from 80 K to 298 K (m.p. 319–329).
X-ray analysis (Fig. 1) revealed that the title compound possesses 1-D chain structures. In the chain, the Cd atoms are connected by two Cl atoms acting as bridges between Cd1 and Cd1[x, 0.5 - y, 1/2 + z] centers. The Cd—Cl(µ2) distances from 2.5973 (11) to 2.6293 (12) Å are slightly longer than that of Cd—Cl(terminal) 2.5916 (10) Å. It is interesting to note that the free 2-methyl imidazole molecules extend the 1-D host chains into a 3-D supramolecular network via the hydrogen-bonded interactions (Table 1, Fig. 2).