organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(5-Fluoro-3-iso­propyl­sulfanyl-1-benzo­furan-2-yl)acetic acid

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 24 October 2011; accepted 25 October 2011; online 29 October 2011)

The title compound, C13H13FO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-fluoro-3-isopropyl­sulfanyl-1-benzofuran-2-yl)acetate. In the crystal, the carb­oxy groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further packed into stacks along the b axis by a slipped ππ inter­action between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.727 (2) Å, inter­planar distance = 3.465 (2) Å and slippage = 1.373 (2) Å]. The crystal structure also exhibits a short S⋯O contact [S⋯O = 3.219 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1813.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2482.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13FO3S

  • Mr = 268.29

  • Monoclinic, P 21 /n

  • a = 10.6101 (2) Å

  • b = 8.5749 (1) Å

  • c = 13.6083 (2) Å

  • β = 97.149 (1)°

  • V = 1228.47 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.34 × 0.26 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.958

  • 11299 measured reflections

  • 2812 independent reflections

  • 2535 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.08

  • 2812 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 (2) 1.79 (2) 2.6257 (14) 177 (2)
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted benzofuran derivatives have attracted considerable interest in view of their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing study of 2-(3-alkylsulfanyl-5-fluoro-1-benzofuran-2-yl)acetic acid analogues (Choi et al., 2009a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.014 (2) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O—H···O hydrogen bonds (Table 1 & Fig. 2), which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the b axis by a weak slipped ππ interaction between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.727 (2) Å and an interplanar distance of 3.465 (2) Å resulting in a slippage of 1.373 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). The crystal packing (Fig. 2) is further stabilized by an intermolecular S···O contact between the S atom and the O atom of the hydroxyl group [S1···O2ii = 3.219 (2) Å].

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2009a,b).

Experimental top

Ethyl 2-(5-fluoro-3-isopropylsulfanyl-1-benzofuran-2-yl)acetate (355 mg, 1.2 mmol) was added to a solution of potassium hydroxide (337 mg. 6 mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 5 h, then cooled. Water (10 ml) was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 89%, m.p. 399–400 K; Rf = 0.58 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in diisopropyl ether at room temperature.

Refinement top

Atom H2 of the hydroxy group was found in a different Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.98 Å for the methine, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) =1.2Ueq(C) for the aryl, methine, and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O—H···O, ππ and S···O interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, - y, - z + 1 (ii) - x + 2 , - y + 1, - z + 1 (iii) - x + 1 , - y + 1, - z + 1]
2-(5-Fluoro-3-isopropylsulfanyl-1-benzofuran-2-yl)acetic acid top
Crystal data top
C13H13FO3SF(000) = 560
Mr = 268.29Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6368 reflections
a = 10.6101 (2) Åθ = 2.3–27.5°
b = 8.5749 (1) ŵ = 0.27 mm1
c = 13.6083 (2) ÅT = 296 K
β = 97.149 (1)°Block, colourless
V = 1228.47 (3) Å30.34 × 0.26 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2812 independent reflections
Radiation source: rotating anode2535 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.3°
ϕ and ω scansh = 913
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 911
Tmin = 0.913, Tmax = 0.958l = 1717
11299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.4795P]
where P = (Fo2 + 2Fc2)/3
2812 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H13FO3SV = 1228.47 (3) Å3
Mr = 268.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6101 (2) ŵ = 0.27 mm1
b = 8.5749 (1) ÅT = 296 K
c = 13.6083 (2) Å0.34 × 0.26 × 0.16 mm
β = 97.149 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2812 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2535 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.958Rint = 0.026
11299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
2812 reflectionsΔρmin = 0.27 e Å3
169 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78862 (3)0.58282 (4)0.59632 (2)0.02413 (11)
F10.31233 (8)0.47027 (11)0.75555 (6)0.0345 (2)
O10.59098 (8)0.21589 (10)0.48893 (6)0.0214 (2)
O20.98666 (9)0.17121 (12)0.42302 (8)0.0282 (2)
H21.039 (2)0.102 (3)0.4435 (17)0.061 (7)*
O30.85509 (9)0.05406 (12)0.51590 (8)0.0315 (2)
C10.68384 (12)0.42599 (14)0.56964 (9)0.0193 (3)
C20.56451 (12)0.39600 (14)0.60737 (9)0.0193 (3)
C30.49739 (12)0.46787 (15)0.67707 (9)0.0231 (3)
H30.52840.55540.71260.028*
C40.38297 (13)0.40136 (16)0.68987 (10)0.0250 (3)
C50.33252 (12)0.26984 (17)0.64039 (10)0.0263 (3)
H50.25490.23000.65370.032*
C60.39816 (12)0.19808 (16)0.57121 (10)0.0241 (3)
H60.36720.10960.53680.029*
C70.51263 (12)0.26584 (15)0.55626 (9)0.0194 (3)
C80.69308 (11)0.31625 (14)0.49921 (9)0.0198 (3)
C90.79023 (13)0.29168 (16)0.43123 (10)0.0245 (3)
H9A0.83870.38710.42800.029*
H9B0.74750.27070.36530.029*
C100.88063 (12)0.15988 (15)0.46143 (9)0.0212 (3)
C110.89540 (13)0.51469 (17)0.70409 (10)0.0266 (3)
H110.95450.60040.72330.032*
C120.82624 (15)0.4816 (2)0.79269 (11)0.0363 (4)
H12A0.76900.39570.77790.055*
H12B0.77910.57230.80760.055*
H12C0.88680.45580.84880.055*
C130.97563 (14)0.3767 (2)0.67876 (12)0.0370 (4)
H13A1.03820.35380.73410.056*
H13B1.01730.40190.62210.056*
H13C0.92200.28740.66420.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02556 (18)0.01943 (17)0.02593 (18)0.00434 (12)0.00267 (13)0.00363 (12)
F10.0348 (5)0.0401 (5)0.0317 (4)0.0130 (4)0.0158 (4)0.0031 (4)
O10.0213 (4)0.0201 (4)0.0227 (4)0.0003 (4)0.0024 (3)0.0032 (3)
O20.0196 (5)0.0303 (5)0.0363 (5)0.0019 (4)0.0095 (4)0.0084 (4)
O30.0273 (5)0.0289 (5)0.0413 (6)0.0064 (4)0.0158 (4)0.0119 (4)
C10.0185 (6)0.0180 (6)0.0207 (6)0.0002 (5)0.0002 (5)0.0021 (5)
C20.0188 (6)0.0187 (6)0.0197 (6)0.0029 (5)0.0001 (5)0.0020 (5)
C30.0270 (7)0.0205 (6)0.0216 (6)0.0047 (5)0.0026 (5)0.0008 (5)
C40.0253 (7)0.0287 (7)0.0219 (6)0.0103 (5)0.0069 (5)0.0054 (5)
C50.0193 (6)0.0305 (7)0.0292 (7)0.0013 (5)0.0035 (5)0.0101 (6)
C60.0217 (6)0.0228 (6)0.0266 (6)0.0014 (5)0.0018 (5)0.0027 (5)
C70.0193 (6)0.0196 (6)0.0191 (5)0.0037 (5)0.0007 (4)0.0013 (5)
C80.0182 (6)0.0194 (6)0.0212 (6)0.0013 (5)0.0004 (5)0.0024 (5)
C90.0253 (7)0.0255 (7)0.0237 (6)0.0034 (5)0.0067 (5)0.0029 (5)
C100.0209 (6)0.0224 (6)0.0209 (6)0.0013 (5)0.0051 (5)0.0022 (5)
C110.0249 (7)0.0266 (7)0.0261 (7)0.0072 (5)0.0059 (5)0.0037 (5)
C120.0394 (8)0.0435 (9)0.0245 (7)0.0098 (7)0.0023 (6)0.0027 (6)
C130.0276 (7)0.0404 (9)0.0410 (8)0.0041 (7)0.0040 (6)0.0072 (7)
Geometric parameters (Å, º) top
S1—C11.7539 (13)C5—H50.9300
S1—C111.8335 (13)C6—C71.3840 (18)
S1—O2i3.2185 (10)C6—H60.9300
F1—C41.3699 (15)C8—C91.4832 (17)
O1—C81.3769 (15)C9—C101.5060 (18)
O1—C71.3797 (15)C9—H9A0.9700
O2—C101.3018 (15)C9—H9B0.9700
O2—H20.84 (2)C11—C121.514 (2)
O3—C101.2232 (16)C11—C131.522 (2)
C1—C81.3553 (18)C11—H110.9800
C1—C21.4472 (17)C12—H12A0.9600
C2—C71.3919 (18)C12—H12B0.9600
C2—C31.3981 (17)C12—H12C0.9600
C3—C41.3719 (19)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.386 (2)C13—H13C0.9600
C5—C61.3832 (19)
C1—S1—C11103.53 (6)O1—C8—C9116.54 (11)
C1—S1—O2i160.48 (5)C8—C9—C10113.88 (11)
C11—S1—O2i83.33 (5)C8—C9—H9A108.8
C8—O1—C7105.66 (9)C10—C9—H9A108.8
C10—O2—H2112.4 (15)C8—C9—H9B108.8
C8—C1—C2105.73 (11)C10—C9—H9B108.8
C8—C1—S1125.38 (10)H9A—C9—H9B107.7
C2—C1—S1128.52 (10)O3—C10—O2124.50 (12)
C7—C2—C3119.30 (12)O3—C10—C9122.72 (11)
C7—C2—C1105.91 (11)O2—C10—C9112.79 (11)
C3—C2—C1134.78 (12)C12—C11—C13112.00 (13)
C4—C3—C2115.87 (12)C12—C11—S1112.60 (10)
C4—C3—H3122.1C13—C11—S1111.96 (10)
C2—C3—H3122.1C12—C11—H11106.6
F1—C4—C3117.92 (13)C13—C11—H11106.6
F1—C4—C5117.27 (12)S1—C11—H11106.6
C3—C4—C5124.81 (12)C11—C12—H12A109.5
C6—C5—C4119.72 (12)C11—C12—H12B109.5
C6—C5—H5120.1H12A—C12—H12B109.5
C4—C5—H5120.1C11—C12—H12C109.5
C5—C6—C7116.02 (12)H12A—C12—H12C109.5
C5—C6—H6122.0H12B—C12—H12C109.5
C7—C6—H6122.0C11—C13—H13A109.5
O1—C7—C6125.42 (12)C11—C13—H13B109.5
O1—C7—C2110.32 (11)H13A—C13—H13B109.5
C6—C7—C2124.26 (12)C11—C13—H13C109.5
C1—C8—O1112.37 (11)H13A—C13—H13C109.5
C1—C8—C9131.05 (12)H13B—C13—H13C109.5
C11—S1—C1—C898.49 (12)C3—C2—C7—O1177.94 (11)
O2i—S1—C1—C810.3 (2)C1—C2—C7—O10.95 (13)
C11—S1—C1—C289.60 (12)C3—C2—C7—C61.66 (19)
O2i—S1—C1—C2161.66 (10)C1—C2—C7—C6179.46 (12)
C8—C1—C2—C71.13 (13)C2—C1—C8—O10.95 (14)
S1—C1—C2—C7174.29 (10)S1—C1—C8—O1174.38 (9)
C8—C1—C2—C3177.50 (14)C2—C1—C8—C9176.54 (13)
S1—C1—C2—C34.3 (2)S1—C1—C8—C93.1 (2)
C7—C2—C3—C40.35 (18)C7—O1—C8—C10.38 (13)
C1—C2—C3—C4178.84 (13)C7—O1—C8—C9177.51 (10)
C2—C3—C4—F1178.33 (11)C1—C8—C9—C10103.58 (16)
C2—C3—C4—C51.0 (2)O1—C8—C9—C1079.02 (14)
F1—C4—C5—C6178.22 (11)C8—C9—C10—O321.68 (19)
C3—C4—C5—C61.1 (2)C8—C9—C10—O2158.70 (11)
C4—C5—C6—C70.16 (18)C1—S1—C11—C1261.64 (12)
C8—O1—C7—C6179.98 (12)O2i—S1—C11—C12136.93 (11)
C8—O1—C7—C20.39 (13)C1—S1—C11—C1365.60 (11)
C5—C6—C7—O1178.00 (11)O2i—S1—C11—C1395.82 (10)
C5—C6—C7—C21.53 (19)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.84 (2)1.79 (2)2.6257 (14)177 (2)
Symmetry code: (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H13FO3S
Mr268.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.6101 (2), 8.5749 (1), 13.6083 (2)
β (°) 97.149 (1)
V3)1228.47 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.34 × 0.26 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.913, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11299, 2812, 2535
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.08
No. of reflections2812
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.84 (2)1.79 (2)2.6257 (14)177 (2)
Symmetry code: (i) x+2, y, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds