metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1579-m1580

Di-μ-benzoato-κ3O,O′:O′;κ3O:O,O′-bis­[aqua­bis­­(benzoato-κ2O,O′)(di­methylformamide-κO)europium(III)]

aCollege of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China, and bDepartment of Mathematics and Physics, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
*Correspondence e-mail: wzll-232612@163.com

(Received 21 September 2011; accepted 15 October 2011; online 22 October 2011)

The title dimeric complex, [Eu2(C7H5O2)6(C3H7NO)2(H2O)2], is centrosymmetric, implying that pairs of equivalent Eu3+ ions and ligands lie trans to each other and that the two Eu3+ ions have exactly the same coordination environment. Each Eu3+ ion is nine-coordinated by two bidentate benzoate ligands, two bridging tridentate chelating benzoate ligands, and one dimethylformamide and one water molecule. The coordination polyhedron of each Eu3+ ion can be described with a distorted monocapped square-anti­prismatic geometry. The mol­ecular structure is stabilized by intra- and inter­molecular hydrogen bonds between the water mol­ecules and benzoate O atoms.

Related literature

For properties of rare earth compounds derived from carboxylic acids, see: Chin et al. (1994[Chin, K. O. A., Morrow, J. R., Lake, C. H. & Churchill, M. R. (1994). Inorg. Chem. 33, 656-664.]); Singh et al. (2002[Singh, U. P., Tyagi, S., Sharma, C. L., Görner, H. & Weyhermüller, T. (2002). J. Chem. Soc. Dalton Trans. pp. 4464-4470.]). For related compounds, see: Jin et al. (1996[Jin, L., Lu, S. & Lu, S. (1996). Polyhedron, 15, 4069-4077.]); Gubina et al. (2000[Gubina, K. E., Shatrava, J. A., Ovchynnikov, V. A. & Amirkhanov, V. M. (2000). Polyhedron, 19, 2203-2209.]); Wang et al. (2003[Wang, R.-F., Wang, S.-P. & Zhang, J.-J. (2003). J. Mol. Struct. 648, 151-158.]); Qiu et al. (2007[Qiu, Y., Liu, H., Ling, Y., Deng, H., Zeng, R., Zhou, G. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399-1403.]); Ooi et al. (2010[Ooi, P. H., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m597-m598.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C7H5O2)6(C3H7NO)2(H2O)2]

  • Mr = 1212.80

  • Monoclinic, P 21 /c

  • a = 11.6395 (2) Å

  • b = 8.3692 (1) Å

  • c = 25.5235 (4) Å

  • β = 101.460 (2)°

  • V = 2436.76 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 18.84 mm−1

  • T = 291 K

  • 0.36 × 0.32 × 0.32 mm

Data collection
  • Oxford Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, Oxfordshire, England.]) Tmin = 0.056, Tmax = 0.065

  • 8782 measured reflections

  • 4294 independent reflections

  • 3860 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.120

  • S = 1.03

  • 4294 reflections

  • 315 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.20 e Å−3

  • Δρmin = −1.92 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O8 2.368 (4)
Eu1—O4 2.368 (3)
Eu1—O7 2.404 (4)
Eu1—O2 2.416 (3)
Eu1—O3 2.416 (3)
Eu1—O5 2.420 (4)
Eu1—O6 2.500 (3)
Eu1—O1 2.584 (4)
Eu1—O4i 2.889 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O6ii 0.86 (2) 1.90 (2) 2.756 (5) 174 (9)
O7—H7A⋯O2i 0.86 (2) 1.90 (4) 2.724 (5) 159 (9)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Because of their excellent luminescent properties (Chin et al., 1994; Singh et al., 2002), rare earth–carboxylic acid complexes have been widely studied and applied in many fields. Distinct structure features with various rare earths (Qiu et al., 2007; Gubina et al., 2000) or ligands (Jin et al., 1996; Wang et al., 2003) have been reported. The title compound, (I) was synthesized and its structure was determined. Similar crystal structure with benzoate as ligands have been reported recently (Ooi et al., 2010).

The centrosymmetric structure of the title complex (I) is shown in Fig. 1. The two Eu3+ ions are bridged by two tridentate bridging carboxylates. Each of the two Eu3+ ions is further coordinated by two chelating carboxlates, one DMF molecule and one water molecule, with an overall coordination number of nine. Eu—O bond distances are presented in Table 1.

In the crystal structure, intermolecular O7—H7B···O6ii hydrogen bonds (Table 2) link molecules into chains along the b axis (Fig. 2). The molecular structure is stabilized by intramolecular O7—H7A···O2i hydrogen bonds (Table 2).

Related literature top

For luminescence properties of rare earth–carboxylic acid complexes, see: Chin et al. (1994); Singh et al. (2002). For related compounds, see: Jin et al. (1996); Gubina et al. (2000); Wang et al. (2003); Qiu et al. (2007); Ooi et al. (2010).

Experimental top

0.5 g Eu2O3 (Strem, 99.99%) was dissolved in 5 ml 37% HCl and the solution was evaporated to dryness. 10 ml water was added to the residue and the pH was adjusted to 8 by the addition of NH3 (aq). The ensuing precipitate was filtered, washed with water and dried. This precipitate was added to a solution containing 1 g C6H5COOH and 20 ml DMF with stirring. The mixture was vigorously stirred and filtered. The filtrate was put in a beaker covered with parafilm and left in a dark fume cupboard at room temperature to form colorless needle crystals.

Refinement top

All aromatic and methyl H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å, and were constrained to ride on their parent C atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), respectively. The DANG and DFIX restraints were used in order to keep the geometry of the water molecule reasonable.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The suffix A corresponds to the symmetry code [-x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis. C—H···O hydrogen bonds are shown as yellow dashed lines in bold.
Di-µ-benzoato- κ3O,O':O';κ3O:O,O'- bis[aquabis(benzoato-κ2O,O')(dimethylformamide- κO)europium(III)] top
Crystal data top
[Eu2(C7H5O2)6(C3H7NO)2(H2O)2]F(000) = 1208
Mr = 1212.80Dx = 1.653 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5244 reflections
a = 11.6395 (2) Åθ = 3.5–67.5°
b = 8.3692 (1) ŵ = 18.84 mm1
c = 25.5235 (4) ÅT = 291 K
β = 101.460 (2)°Block, colourless
V = 2436.76 (6) Å30.36 × 0.32 × 0.32 mm
Z = 2
Data collection top
Oxford Gemini S Ultra
diffractometer
4294 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray source3860 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 15.9149 pixels mm-1θmax = 67.6°, θmin = 3.5°
ω scansh = 139
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 95
Tmin = 0.056, Tmax = 0.065l = 3030
8782 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
4294 reflections(Δ/σ)max = 0.003
315 parametersΔρmax = 1.20 e Å3
3 restraintsΔρmin = 1.92 e Å3
Crystal data top
[Eu2(C7H5O2)6(C3H7NO)2(H2O)2]V = 2436.76 (6) Å3
Mr = 1212.80Z = 2
Monoclinic, P21/cCu Kα radiation
a = 11.6395 (2) ŵ = 18.84 mm1
b = 8.3692 (1) ÅT = 291 K
c = 25.5235 (4) Å0.36 × 0.32 × 0.32 mm
β = 101.460 (2)°
Data collection top
Oxford Gemini S Ultra
diffractometer
4294 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3860 reflections with I > 2σ(I)
Tmin = 0.056, Tmax = 0.065Rint = 0.035
8782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.20 e Å3
4294 reflectionsΔρmin = 1.92 e Å3
315 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2010). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.58936 (2)0.32204 (3)0.555114 (10)0.02985 (13)
O10.7648 (3)0.4223 (4)0.62602 (15)0.0471 (8)
O50.5539 (3)0.2337 (5)0.64080 (14)0.0455 (8)
O80.7148 (3)0.0976 (5)0.55948 (16)0.0499 (9)
O20.6119 (3)0.5789 (4)0.59914 (14)0.0426 (8)
O70.5164 (4)0.2066 (5)0.46868 (15)0.0460 (8)
O40.4078 (3)0.4576 (4)0.53174 (15)0.0450 (8)
O60.4632 (3)0.0941 (4)0.57245 (14)0.0442 (8)
O30.7419 (3)0.4010 (5)0.50855 (15)0.0530 (10)
C10.7736 (4)0.6905 (6)0.65945 (19)0.0347 (11)
N10.8798 (4)0.0405 (6)0.5577 (2)0.0521 (11)
C80.7618 (4)0.5287 (6)0.42852 (19)0.0379 (10)
C150.4233 (4)0.0286 (6)0.6587 (2)0.0414 (11)
C140.6945 (4)0.4870 (6)0.47094 (19)0.0366 (10)
C160.4494 (5)0.0601 (8)0.7132 (2)0.0546 (14)
H160.50500.13740.72650.065*
C90.8819 (5)0.5075 (8)0.4393 (2)0.0503 (14)
H90.91750.46100.47160.060*
C220.8222 (5)0.0822 (7)0.5720 (3)0.0530 (13)
H220.86500.16180.59260.064*
C210.4839 (4)0.1220 (6)0.62194 (19)0.0378 (10)
C200.3412 (5)0.0855 (8)0.6391 (3)0.0540 (14)
H200.32390.10830.60270.065*
C60.8917 (6)0.6821 (7)0.6827 (3)0.0544 (16)
H60.93290.58780.68080.065*
C70.7149 (4)0.5550 (6)0.62677 (18)0.0366 (10)
C100.9505 (6)0.5531 (9)0.4038 (3)0.0681 (19)
H101.03150.54050.41220.082*
C190.2840 (6)0.1669 (8)0.6742 (4)0.070 (2)
H190.22740.24300.66110.084*
C180.3111 (6)0.1349 (10)0.7283 (3)0.070 (2)
H180.27330.19020.75160.084*
C130.7090 (6)0.5896 (8)0.3796 (2)0.0622 (17)
H130.62810.60200.37130.075*
C170.3936 (6)0.0219 (9)0.7476 (3)0.0668 (18)
H170.41200.00050.78410.080*
C241.0054 (6)0.0566 (11)0.5768 (4)0.088 (3)
H24B1.02070.14510.60110.132*
H24A1.03580.03960.59490.132*
H24C1.04280.07500.54700.132*
C50.9487 (7)0.8130 (9)0.7088 (3)0.071 (2)
H51.02830.80740.72370.085*
C40.8876 (7)0.9514 (9)0.7128 (3)0.077 (2)
H40.92611.03990.73000.093*
C120.7762 (8)0.6330 (10)0.3423 (3)0.085 (3)
H120.74030.67170.30890.102*
C230.8170 (8)0.1668 (8)0.5251 (4)0.078 (2)
H23B0.81750.26160.54630.118*
H23A0.85450.18860.49560.118*
H23C0.73760.13390.51190.118*
C20.7126 (6)0.8298 (7)0.6634 (3)0.0581 (16)
H20.63360.83710.64750.070*
C110.8975 (8)0.6176 (10)0.3556 (3)0.082 (2)
H110.94310.65140.33170.098*
C30.7697 (7)0.9596 (8)0.6914 (3)0.078 (2)
H30.72801.05190.69550.093*
H7B0.527 (8)0.112 (5)0.458 (4)0.117*
H7A0.470 (7)0.253 (10)0.443 (3)0.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.03041 (19)0.0315 (2)0.02777 (18)0.00101 (9)0.00612 (12)0.00123 (9)
O10.0428 (19)0.048 (2)0.048 (2)0.0050 (16)0.0030 (15)0.0044 (17)
O50.050 (2)0.047 (2)0.0392 (18)0.0082 (17)0.0086 (15)0.0080 (17)
O80.050 (2)0.042 (2)0.057 (2)0.0100 (17)0.0084 (17)0.0019 (18)
O20.0427 (18)0.0357 (19)0.0443 (18)0.0032 (14)0.0039 (14)0.0070 (15)
O70.061 (2)0.0381 (19)0.0350 (18)0.0043 (18)0.0003 (16)0.0049 (15)
O40.0327 (17)0.053 (2)0.051 (2)0.0026 (15)0.0118 (15)0.0110 (17)
O60.060 (2)0.0393 (19)0.0350 (18)0.0067 (16)0.0138 (16)0.0023 (15)
O30.0423 (19)0.073 (3)0.046 (2)0.0038 (19)0.0142 (16)0.012 (2)
C10.037 (3)0.040 (3)0.025 (2)0.0001 (19)0.0017 (19)0.0030 (18)
N10.048 (2)0.048 (3)0.061 (3)0.009 (2)0.013 (2)0.002 (2)
C80.037 (2)0.045 (3)0.035 (2)0.004 (2)0.0158 (19)0.004 (2)
C150.039 (3)0.041 (3)0.046 (3)0.006 (2)0.012 (2)0.011 (2)
C140.029 (2)0.044 (3)0.038 (2)0.003 (2)0.0085 (19)0.006 (2)
C160.064 (3)0.062 (4)0.040 (3)0.000 (3)0.015 (3)0.006 (3)
C90.038 (3)0.067 (4)0.049 (3)0.004 (3)0.016 (2)0.008 (3)
C220.055 (3)0.044 (3)0.058 (3)0.001 (3)0.005 (3)0.001 (3)
C210.040 (3)0.038 (3)0.036 (2)0.006 (2)0.010 (2)0.006 (2)
C200.052 (3)0.058 (4)0.054 (3)0.005 (3)0.017 (3)0.004 (3)
C60.049 (3)0.058 (4)0.049 (3)0.005 (2)0.010 (3)0.010 (3)
C70.036 (2)0.044 (3)0.030 (2)0.004 (2)0.0063 (18)0.001 (2)
C100.059 (4)0.078 (5)0.078 (5)0.005 (3)0.040 (4)0.005 (4)
C190.056 (4)0.064 (4)0.093 (6)0.011 (3)0.022 (4)0.019 (4)
C180.063 (4)0.080 (5)0.074 (5)0.010 (4)0.029 (4)0.032 (4)
C130.069 (4)0.076 (4)0.046 (3)0.036 (3)0.022 (3)0.012 (3)
C170.079 (4)0.079 (5)0.048 (3)0.008 (4)0.026 (3)0.018 (3)
C240.061 (4)0.100 (6)0.101 (6)0.029 (4)0.011 (4)0.014 (5)
C50.060 (4)0.078 (5)0.063 (4)0.008 (3)0.014 (3)0.008 (3)
C40.093 (5)0.060 (4)0.062 (4)0.017 (4)0.026 (4)0.009 (3)
C120.128 (7)0.085 (5)0.054 (4)0.053 (5)0.047 (4)0.025 (4)
C230.083 (5)0.060 (4)0.095 (6)0.006 (3)0.024 (5)0.022 (4)
C20.054 (4)0.059 (4)0.053 (4)0.008 (3)0.010 (3)0.013 (3)
C110.107 (6)0.068 (5)0.091 (6)0.018 (4)0.072 (5)0.016 (4)
C30.099 (5)0.051 (4)0.066 (4)0.012 (4)0.026 (4)0.027 (3)
Geometric parameters (Å, º) top
Eu1—O82.368 (4)C16—C171.374 (8)
Eu1—O42.368 (3)C16—H160.9300
Eu1—O72.404 (4)C9—C101.377 (8)
Eu1—O22.416 (3)C9—H90.9300
Eu1—O32.416 (3)C22—H220.9300
Eu1—O52.420 (4)C20—C191.395 (9)
Eu1—O62.500 (3)C20—H200.9300
Eu1—O12.584 (4)C6—C51.380 (10)
Eu1—C212.837 (5)C6—H60.9300
Eu1—C72.867 (5)C10—C111.371 (11)
Eu1—O4i2.889 (4)C10—H100.9300
Eu1—C143.011 (5)C19—C181.380 (12)
O1—C71.255 (6)C19—H190.9300
O5—C211.271 (6)C18—C171.368 (11)
O8—C221.235 (7)C18—H180.9300
O2—C71.280 (6)C13—C121.394 (9)
O7—H7B0.86 (2)C13—H130.9300
O7—H7A0.86 (2)C17—H170.9300
O4—C14i1.267 (5)C24—H24B0.9600
O4—Eu1i2.889 (4)C24—H24A0.9600
O6—C211.260 (6)C24—H24C0.9600
O3—C141.238 (6)C5—C41.373 (10)
C1—C21.379 (8)C5—H50.9300
C1—C61.388 (8)C4—C31.374 (10)
C1—C71.490 (7)C4—H40.9300
N1—C221.316 (7)C12—C111.392 (12)
N1—C231.450 (9)C12—H120.9300
N1—C241.453 (8)C23—H23B0.9600
C8—C131.376 (8)C23—H23A0.9600
C8—C91.382 (7)C23—H23C0.9600
C8—C141.498 (6)C2—C31.393 (9)
C15—C201.373 (8)C2—H20.9300
C15—C161.388 (8)C11—H110.9300
C15—C211.501 (7)C3—H30.9300
C14—O4i1.267 (5)
O8—Eu1—O4154.52 (13)C13—C8—C9118.7 (5)
O8—Eu1—O780.01 (13)C13—C8—C14122.6 (5)
O4—Eu1—O780.00 (13)C9—C8—C14118.6 (5)
O8—Eu1—O2132.46 (13)C20—C15—C16119.7 (5)
O4—Eu1—O272.54 (12)C20—C15—C21120.9 (5)
O7—Eu1—O2140.39 (13)C16—C15—C21119.4 (5)
O8—Eu1—O374.58 (14)O3—C14—O4i121.6 (4)
O4—Eu1—O3116.81 (13)O3—C14—C8118.7 (4)
O7—Eu1—O379.55 (15)O4i—C14—C8119.8 (4)
O2—Eu1—O387.86 (14)O3—C14—Eu150.3 (2)
O8—Eu1—O585.94 (14)O4i—C14—Eu172.3 (3)
O4—Eu1—O594.03 (13)C8—C14—Eu1165.4 (3)
O7—Eu1—O5127.89 (13)C17—C16—C15120.5 (6)
O2—Eu1—O582.75 (13)C17—C16—H16119.7
O3—Eu1—O5143.29 (13)C15—C16—H16119.7
O8—Eu1—O676.39 (14)C10—C9—C8121.9 (6)
O4—Eu1—O683.33 (13)C10—C9—H9119.0
O7—Eu1—O675.10 (13)C8—C9—H9119.0
O2—Eu1—O6127.60 (12)O8—C22—N1123.7 (6)
O3—Eu1—O6144.16 (14)O8—C22—H22118.2
O5—Eu1—O652.81 (12)N1—C22—H22118.2
O8—Eu1—O180.26 (13)O6—C21—O5119.8 (4)
O4—Eu1—O1124.21 (12)O6—C21—C15120.7 (5)
O7—Eu1—O1149.22 (13)O5—C21—C15119.5 (4)
O2—Eu1—O152.24 (11)O6—C21—Eu161.7 (3)
O3—Eu1—O172.56 (13)O5—C21—Eu158.1 (2)
O5—Eu1—O173.68 (12)C15—C21—Eu1175.2 (4)
O6—Eu1—O1122.27 (12)C15—C20—C19119.5 (6)
O8—Eu1—C2180.78 (14)C15—C20—H20120.3
O4—Eu1—C2187.89 (13)C19—C20—H20120.3
O7—Eu1—C21101.45 (15)C5—C6—C1120.5 (6)
O2—Eu1—C21105.40 (14)C5—C6—H6119.8
O3—Eu1—C21154.81 (14)C1—C6—H6119.8
O5—Eu1—C2126.48 (14)O1—C7—O2121.0 (5)
O6—Eu1—C2126.34 (13)O1—C7—C1121.3 (4)
O1—Eu1—C2198.42 (13)O2—C7—C1117.7 (4)
O8—Eu1—C7106.16 (14)O1—C7—Eu164.3 (3)
O4—Eu1—C798.69 (13)O2—C7—Eu156.8 (2)
O7—Eu1—C7154.32 (14)C1—C7—Eu1173.3 (3)
O2—Eu1—C726.30 (12)C11—C10—C9118.9 (7)
O3—Eu1—C778.27 (14)C11—C10—H10120.5
O5—Eu1—C777.76 (13)C9—C10—H10120.5
O6—Eu1—C7130.46 (12)C18—C19—C20120.3 (7)
O1—Eu1—C725.97 (12)C18—C19—H19119.9
C21—Eu1—C7104.14 (14)C20—C19—H19119.9
O8—Eu1—O4i116.21 (12)C17—C18—C19119.9 (6)
O4—Eu1—O4i69.30 (12)C17—C18—H18120.0
O7—Eu1—O4i66.92 (12)C19—C18—H18120.0
O2—Eu1—O4i76.82 (11)C8—C13—C12120.5 (6)
O3—Eu1—O4i47.66 (11)C8—C13—H13119.8
O5—Eu1—O4i156.69 (11)C12—C13—H13119.8
O6—Eu1—O4i136.02 (11)C18—C17—C16120.1 (7)
O1—Eu1—O4i101.67 (11)C18—C17—H17119.9
C21—Eu1—O4i155.54 (12)C16—C17—H17119.9
C7—Eu1—O4i88.47 (12)N1—C24—H24B109.5
O8—Eu1—C1493.62 (13)N1—C24—H24A109.5
O4—Eu1—C1493.99 (13)H24B—C24—H24A109.5
O7—Eu1—C1469.44 (14)N1—C24—H24C109.5
O2—Eu1—C1484.36 (13)H24B—C24—H24C109.5
O3—Eu1—C1423.22 (13)H24A—C24—H24C109.5
O5—Eu1—C14162.04 (12)C4—C5—C6119.9 (7)
O6—Eu1—C14144.35 (12)C4—C5—H5120.1
O1—Eu1—C1488.52 (12)C6—C5—H5120.1
C21—Eu1—C14170.15 (14)C5—C4—C3120.2 (6)
C7—Eu1—C1485.15 (13)C5—C4—H4119.9
O4i—Eu1—C1424.70 (11)C3—C4—H4119.9
C7—O1—Eu189.7 (3)C11—C12—C13119.2 (7)
C21—O5—Eu195.4 (3)C11—C12—H12120.4
C22—O8—Eu1132.7 (4)C13—C12—H12120.4
C7—O2—Eu196.9 (3)N1—C23—H23B109.5
Eu1—O7—H7B128 (6)N1—C23—H23A109.5
Eu1—O7—H7A126 (6)H23B—C23—H23A109.5
H7B—O7—H7A106 (5)N1—C23—H23C109.5
C14i—O4—Eu1166.2 (3)H23B—C23—H23C109.5
C14i—O4—Eu1i83.0 (3)H23A—C23—H23C109.5
Eu1—O4—Eu1i110.70 (12)C1—C2—C3119.8 (6)
C21—O6—Eu192.0 (3)C1—C2—H2120.1
C14—O3—Eu1106.4 (3)C3—C2—H2120.1
C2—C1—C6119.4 (5)C10—C11—C12120.7 (6)
C2—C1—C7119.9 (5)C10—C11—H11119.7
C6—C1—C7120.5 (5)C12—C11—H11119.7
C22—N1—C23120.1 (5)C4—C3—C2120.1 (7)
C22—N1—C24120.9 (6)C4—C3—H3119.9
C23—N1—C24118.9 (6)C2—C3—H3119.9
O8—Eu1—O1—C7175.9 (3)O8—Eu1—C14—O4i157.2 (3)
O4—Eu1—O1—C711.9 (3)O4—Eu1—C14—O4i1.5 (3)
O7—Eu1—O1—C7125.1 (3)O7—Eu1—C14—O4i79.3 (3)
O2—Eu1—O1—C72.1 (3)O2—Eu1—C14—O4i70.5 (3)
O3—Eu1—O1—C799.1 (3)O3—Eu1—C14—O4i168.3 (5)
O5—Eu1—O1—C795.5 (3)O5—Eu1—C14—O4i114.8 (4)
O6—Eu1—O1—C7117.1 (3)O6—Eu1—C14—O4i85.6 (3)
C21—Eu1—O1—C7105.1 (3)O1—Eu1—C14—O4i122.7 (3)
O4i—Eu1—O1—C760.9 (3)C7—Eu1—C14—O4i96.9 (3)
C14—Eu1—O1—C781.9 (3)O8—Eu1—C14—C810.2 (13)
O8—Eu1—O5—C2177.4 (3)O4—Eu1—C14—C8145.4 (13)
O4—Eu1—O5—C2177.0 (3)O7—Eu1—C14—C867.7 (13)
O7—Eu1—O5—C213.4 (4)O2—Eu1—C14—C8142.6 (13)
O2—Eu1—O5—C21148.8 (3)O3—Eu1—C14—C844.8 (12)
O3—Eu1—O5—C21134.7 (3)O5—Eu1—C14—C898.2 (13)
O6—Eu1—O5—C211.4 (3)O6—Eu1—C14—C861.3 (13)
O1—Eu1—O5—C21158.4 (3)O1—Eu1—C14—C890.4 (13)
C7—Eu1—O5—C21175.1 (3)C7—Eu1—C14—C8116.2 (13)
O4i—Eu1—O5—C21120.0 (3)O4i—Eu1—C14—C8146.9 (14)
C14—Eu1—O5—C21166.6 (4)C20—C15—C16—C170.0 (9)
O4—Eu1—O8—C22169.1 (5)C21—C15—C16—C17178.9 (5)
O7—Eu1—O8—C22130.3 (5)C13—C8—C9—C103.4 (10)
O2—Eu1—O8—C2223.8 (6)C14—C8—C9—C10175.5 (6)
O3—Eu1—O8—C2248.5 (5)Eu1—O8—C22—N1159.4 (4)
O5—Eu1—O8—C22100.1 (5)C23—N1—C22—O80.5 (10)
O6—Eu1—O8—C22152.8 (5)C24—N1—C22—O8175.8 (6)
O1—Eu1—O8—C2226.0 (5)Eu1—O6—C21—O52.5 (5)
C21—Eu1—O8—C22126.2 (5)Eu1—O6—C21—C15175.2 (4)
C7—Eu1—O8—C2224.1 (5)Eu1—O5—C21—O62.6 (5)
O4i—Eu1—O8—C2272.3 (5)Eu1—O5—C21—C15175.1 (4)
C14—Eu1—O8—C2261.9 (5)C20—C15—C21—O62.2 (8)
O8—Eu1—O2—C70.7 (4)C16—C15—C21—O6179.0 (5)
O4—Eu1—O2—C7173.6 (3)C20—C15—C21—O5175.5 (5)
O7—Eu1—O2—C7138.2 (3)C16—C15—C21—O53.3 (8)
O3—Eu1—O2—C767.4 (3)O8—Eu1—C21—O677.9 (3)
O5—Eu1—O2—C777.0 (3)O4—Eu1—C21—O679.2 (3)
O6—Eu1—O2—C7106.9 (3)O7—Eu1—C21—O60.2 (3)
O1—Eu1—O2—C72.1 (3)O2—Eu1—C21—O6150.4 (3)
C21—Eu1—O2—C790.8 (3)O3—Eu1—C21—O689.9 (4)
O4i—Eu1—O2—C7114.3 (3)O5—Eu1—C21—O6177.4 (5)
C14—Eu1—O2—C790.5 (3)O1—Eu1—C21—O6156.5 (3)
O8—Eu1—O4—C14i78.9 (14)C7—Eu1—C21—O6177.6 (3)
O7—Eu1—O4—C14i117.7 (14)O4i—Eu1—C21—O658.5 (5)
O2—Eu1—O4—C14i91.2 (14)O8—Eu1—C21—O599.5 (3)
O3—Eu1—O4—C14i169.5 (14)O4—Eu1—C21—O5103.4 (3)
O5—Eu1—O4—C14i10.1 (14)O7—Eu1—C21—O5177.2 (3)
O6—Eu1—O4—C14i41.7 (14)O2—Eu1—C21—O532.2 (3)
O1—Eu1—O4—C14i83.1 (14)O3—Eu1—C21—O587.5 (5)
C21—Eu1—O4—C14i15.6 (14)O6—Eu1—C21—O5177.4 (5)
C7—Eu1—O4—C14i88.3 (14)O1—Eu1—C21—O520.9 (3)
O4i—Eu1—O4—C14i173.4 (15)C7—Eu1—C21—O55.0 (3)
C14—Eu1—O4—C14i174.0 (13)O4i—Eu1—C21—O5124.1 (3)
O8—Eu1—O4—Eu1i107.7 (3)C16—C15—C20—C190.7 (9)
O7—Eu1—O4—Eu1i68.97 (14)C21—C15—C20—C19178.1 (5)
O2—Eu1—O4—Eu1i82.15 (14)C2—C1—C6—C51.3 (11)
O3—Eu1—O4—Eu1i3.84 (19)C7—C1—C6—C5174.0 (7)
O5—Eu1—O4—Eu1i163.24 (13)Eu1—O1—C7—O23.6 (5)
O6—Eu1—O4—Eu1i144.95 (14)Eu1—O1—C7—C1175.9 (4)
O1—Eu1—O4—Eu1i90.26 (16)Eu1—O2—C7—O13.9 (5)
C21—Eu1—O4—Eu1i170.98 (15)Eu1—O2—C7—C1175.7 (4)
C7—Eu1—O4—Eu1i85.03 (14)C2—C1—C7—O1173.9 (5)
O4i—Eu1—O4—Eu1i0.0C6—C1—C7—O110.8 (8)
C14—Eu1—O4—Eu1i0.67 (15)C2—C1—C7—O26.5 (7)
O8—Eu1—O6—C2196.7 (3)C6—C1—C7—O2168.7 (5)
O4—Eu1—O6—C2198.8 (3)O8—Eu1—C7—O14.2 (3)
O7—Eu1—O6—C21179.8 (3)O4—Eu1—C7—O1170.1 (3)
O2—Eu1—O6—C2136.9 (3)O7—Eu1—C7—O1104.9 (4)
O3—Eu1—O6—C21133.4 (3)O2—Eu1—C7—O1176.3 (5)
O5—Eu1—O6—C211.5 (3)O3—Eu1—C7—O174.2 (3)
O1—Eu1—O6—C2127.8 (3)O5—Eu1—C7—O177.8 (3)
C7—Eu1—O6—C213.0 (4)O6—Eu1—C7—O181.5 (3)
O4i—Eu1—O6—C21149.5 (3)C21—Eu1—C7—O180.1 (3)
C14—Eu1—O6—C21173.7 (3)O4i—Eu1—C7—O1121.1 (3)
O8—Eu1—O3—C14144.0 (4)C14—Eu1—C7—O196.6 (3)
O4—Eu1—O3—C1411.5 (4)O8—Eu1—C7—O2179.5 (3)
O7—Eu1—O3—C1461.6 (4)O4—Eu1—C7—O26.2 (3)
O2—Eu1—O3—C1480.7 (4)O7—Eu1—C7—O278.8 (4)
O5—Eu1—O3—C14155.5 (3)O3—Eu1—C7—O2109.5 (3)
O6—Eu1—O3—C14107.0 (4)O5—Eu1—C7—O298.5 (3)
O1—Eu1—O3—C14131.6 (4)O6—Eu1—C7—O294.8 (3)
C21—Eu1—O3—C14156.3 (3)O1—Eu1—C7—O2176.3 (5)
C7—Eu1—O3—C14105.4 (4)C21—Eu1—C7—O296.2 (3)
O4i—Eu1—O3—C146.6 (3)O4i—Eu1—C7—O262.6 (3)
Eu1—O3—C14—O4i13.2 (6)C14—Eu1—C7—O287.1 (3)
Eu1—O3—C14—C8168.3 (4)C8—C9—C10—C111.8 (11)
C13—C8—C14—O3164.0 (6)C15—C20—C19—C181.1 (10)
C9—C8—C14—O317.0 (8)C20—C19—C18—C170.6 (11)
C13—C8—C14—O4i17.4 (8)C9—C8—C13—C121.7 (10)
C9—C8—C14—O4i161.5 (5)C14—C8—C13—C12177.2 (6)
C13—C8—C14—Eu1125.8 (12)C19—C18—C17—C160.2 (11)
C9—C8—C14—Eu155.2 (15)C15—C16—C17—C180.5 (10)
O8—Eu1—C14—O334.6 (4)C1—C6—C5—C41.4 (13)
O4—Eu1—C14—O3169.7 (4)C6—C5—C4—C30.7 (14)
O7—Eu1—C14—O3112.5 (4)C8—C13—C12—C111.6 (12)
O2—Eu1—C14—O397.8 (4)C6—C1—C2—C30.9 (10)
O5—Eu1—C14—O353.4 (6)C7—C1—C2—C3176.2 (6)
O6—Eu1—C14—O3106.1 (4)C9—C10—C11—C121.6 (12)
O1—Eu1—C14—O345.6 (4)C13—C12—C11—C103.3 (13)
C7—Eu1—C14—O371.3 (4)C5—C4—C3—C22.9 (13)
O4i—Eu1—C14—O3168.3 (5)C1—C2—C3—C43.0 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O6ii0.86 (2)1.90 (2)2.756 (5)174 (9)
O7—H7A···O2i0.86 (2)1.90 (4)2.724 (5)159 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Eu2(C7H5O2)6(C3H7NO)2(H2O)2]
Mr1212.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.6395 (2), 8.3692 (1), 25.5235 (4)
β (°) 101.460 (2)
V3)2436.76 (6)
Z2
Radiation typeCu Kα
µ (mm1)18.84
Crystal size (mm)0.36 × 0.32 × 0.32
Data collection
DiffractometerOxford Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.056, 0.065
No. of measured, independent and
observed [I > 2σ(I)] reflections
8782, 4294, 3860
Rint0.035
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 1.03
No. of reflections4294
No. of parameters315
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.20, 1.92

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Eu1—O82.368 (4)Eu1—O52.420 (4)
Eu1—O42.368 (3)Eu1—O62.500 (3)
Eu1—O72.404 (4)Eu1—O12.584 (4)
Eu1—O22.416 (3)Eu1—O4i2.889 (4)
Eu1—O32.416 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O6ii0.86 (2)1.90 (2)2.756 (5)174 (9)
O7—H7A···O2i0.86 (2)1.90 (4)2.724 (5)159 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 10704090 and 20903123), the Key Project of the Chinese Ministry of Education (grant No. KJ110532) and the Natural Science Foundation Project of Chongqing (grant Nos. CSTC2010BA4009, KJTD201016 and CSTC2011jjA1425). ZXJ thanks Dr Shiming Zhou and Dr Xiantao Wei from the University of Science and Technology of China for helpful discussions and assistance with the X-ray diffraction measurements.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChin, K. O. A., Morrow, J. R., Lake, C. H. & Churchill, M. R. (1994). Inorg. Chem. 33, 656–664.  CSD CrossRef CAS Web of Science Google Scholar
First citationGubina, K. E., Shatrava, J. A., Ovchynnikov, V. A. & Amirkhanov, V. M. (2000). Polyhedron, 19, 2203–2209.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, L., Lu, S. & Lu, S. (1996). Polyhedron, 15, 4069–4077.  CSD CrossRef CAS Web of Science Google Scholar
First citationOoi, P. H., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, m597–m598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationQiu, Y., Liu, H., Ling, Y., Deng, H., Zeng, R., Zhou, G. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399–1403.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Tyagi, S., Sharma, C. L., Görner, H. & Weyhermüller, T. (2002). J. Chem. Soc. Dalton Trans. pp. 4464–4470.  Web of Science CSD CrossRef Google Scholar
First citationWang, R.-F., Wang, S.-P. & Zhang, J.-J. (2003). J. Mol. Struct. 648, 151–158.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1579-m1580
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds