inorganic compounds
Heptasodium tetraaluminium tetrakis(diphosphate) orthophosphate, Na7Al4(P2O7)4(PO4)
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The +, one Al3+, three P5+ and eight O2− atoms, with one Na+ atom lying on a twofold rotation axis and one Na+ and one P5+ atom on fourfold rotoinversion axes. The fundamental building units of the title structure are isolated PO4 tetrahedra, AlO6 octahedra and P2O7 groups, which are further interlocked by corner-sharing O atoms, forming a three-dimensional framework structure. The Na+ atoms are located within the cavities of the framework, showing coordination numbers of 4, 6 and 7.
of title compound contains three NaExperimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2004); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536811041729/wm2530sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811041729/wm2530Isup2.hkl
The finely ground reagents Na2CO3, Al2O3 and NH4H2PO4 were mixed in the molar ratio Na: Al: P = 2: 1: 8, were placed in a Pt crucible, and heated at 673 K for 4 h. The mixture was then re-ground and heated at 1173 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few colorless crystals of the title compound with prismatic shape were obtained.
The highest peak in the difference
equals to 0.22 e/Å3 at the distance of 0.63 Å from O4 site while the deepest hole equals to -0.29 e/Å3 at the distance of 0.68 Å from the P3 site.Data collection: CrystalClear (Rigaku, 2004); cell
CrystalClear (Rigaku, 2004); data reduction: CrystalClear (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Na7Al4(P2O7)4(PO4) | Dx = 2.887 Mg m−3 |
Mr = 1059.58 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P421c | Cell parameters from 3720 reflections |
Hall symbol: P -4 2n | θ = 2.9–27.5° |
a = 14.054 (3) Å | µ = 1.06 mm−1 |
c = 6.1718 (16) Å | T = 296 K |
V = 1219.1 (4) Å3 | Prism, colourless |
Z = 2 | 0.15 × 0.05 × 0.05 mm |
F(000) = 1040 |
Rigaku Saturn70 CCD diffractometer | 1347 independent reflections |
Radiation source: fine-focus sealed tube | 1287 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.024 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
ω scans | h = −18→17 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −18→16 |
Tmin = 0.857, Tmax = 0.949 | l = −7→7 |
5562 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.017 | w = 1/[σ2(Fo2) + (0.0297P)2 + 0.278P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.047 | (Δ/σ)max = 0.001 |
S = 1.08 | Δρmax = 0.22 e Å−3 |
1347 reflections | Δρmin = −0.29 e Å−3 |
118 parameters | Absolute structure: Flack (1983), 540 Friedel pairs |
0 restraints | Absolute structure parameter: −0.04 (9) |
Na7Al4(P2O7)4(PO4) | Z = 2 |
Mr = 1059.58 | Mo Kα radiation |
Tetragonal, P421c | µ = 1.06 mm−1 |
a = 14.054 (3) Å | T = 296 K |
c = 6.1718 (16) Å | 0.15 × 0.05 × 0.05 mm |
V = 1219.1 (4) Å3 |
Rigaku Saturn70 CCD diffractometer | 1347 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1287 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.949 | Rint = 0.024 |
5562 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 0 restraints |
wR(F2) = 0.047 | Δρmax = 0.22 e Å−3 |
S = 1.08 | Δρmin = −0.29 e Å−3 |
1347 reflections | Absolute structure: Flack (1983), 540 Friedel pairs |
118 parameters | Absolute structure parameter: −0.04 (9) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.42251 (6) | 0.75865 (7) | 0.09314 (15) | 0.0200 (2) | |
Na2 | 0.5000 | 1.0000 | 0.3156 (2) | 0.0268 (3) | |
Na3 | 0.5000 | 0.5000 | 1.0000 | 0.0411 (6) | |
Al1 | 0.32097 (4) | 0.62225 (4) | 0.63747 (9) | 0.00558 (13) | |
P1 | 0.62752 (3) | 0.74207 (3) | 0.84990 (8) | 0.00573 (11) | |
P2 | 0.46166 (3) | 0.79988 (3) | 0.60041 (8) | 0.00656 (11) | |
P3 | 0.5000 | 0.5000 | 0.5000 | 0.00535 (19) | |
O1 | 0.42717 (10) | 0.89936 (10) | 0.5600 (2) | 0.0117 (3) | |
O2 | 0.54197 (10) | 0.81323 (10) | 0.7882 (2) | 0.0109 (3) | |
O3 | 0.38751 (10) | 0.73621 (10) | 0.7038 (2) | 0.0128 (3) | |
O4 | 0.51085 (9) | 0.75581 (10) | 0.4067 (2) | 0.0104 (3) | |
O5 | 0.71136 (9) | 0.80522 (10) | 0.8791 (2) | 0.0129 (3) | |
O6 | 0.59683 (10) | 0.69263 (10) | 1.0575 (2) | 0.0113 (3) | |
O7 | 0.63718 (10) | 0.66852 (9) | 0.6721 (2) | 0.0087 (3) | |
O8 | 0.43148 (9) | 0.55247 (10) | 0.6522 (2) | 0.0100 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0224 (4) | 0.0242 (5) | 0.0133 (4) | −0.0060 (3) | −0.0034 (4) | 0.0031 (4) |
Na2 | 0.0280 (7) | 0.0405 (9) | 0.0118 (6) | −0.0216 (6) | 0.000 | 0.000 |
Na3 | 0.0561 (9) | 0.0561 (9) | 0.0111 (9) | 0.000 | 0.000 | 0.000 |
Al1 | 0.0049 (2) | 0.0063 (3) | 0.0055 (3) | 0.0010 (2) | 0.0002 (2) | 0.0000 (2) |
P1 | 0.0056 (2) | 0.0069 (2) | 0.0047 (2) | −0.00024 (16) | 0.00004 (17) | 0.00036 (18) |
P2 | 0.0064 (2) | 0.0068 (2) | 0.0064 (2) | 0.00048 (16) | −0.00085 (19) | −0.00024 (18) |
P3 | 0.0053 (3) | 0.0053 (3) | 0.0054 (4) | 0.000 | 0.000 | 0.000 |
O1 | 0.0133 (7) | 0.0101 (6) | 0.0117 (8) | 0.0030 (6) | −0.0018 (6) | 0.0007 (6) |
O2 | 0.0106 (7) | 0.0123 (7) | 0.0097 (7) | 0.0043 (5) | −0.0043 (6) | −0.0034 (6) |
O3 | 0.0139 (7) | 0.0127 (7) | 0.0118 (7) | −0.0066 (6) | 0.0023 (6) | −0.0033 (6) |
O4 | 0.0086 (6) | 0.0138 (7) | 0.0088 (6) | 0.0027 (5) | 0.0000 (5) | −0.0019 (6) |
O5 | 0.0101 (7) | 0.0166 (7) | 0.0121 (8) | −0.0056 (5) | −0.0004 (6) | −0.0012 (6) |
O6 | 0.0149 (7) | 0.0134 (7) | 0.0055 (7) | −0.0024 (5) | 0.0008 (6) | 0.0021 (5) |
O7 | 0.0119 (7) | 0.0076 (7) | 0.0065 (7) | 0.0015 (5) | −0.0005 (5) | 0.0007 (5) |
O8 | 0.0081 (6) | 0.0135 (7) | 0.0084 (6) | 0.0039 (5) | 0.0000 (6) | −0.0014 (5) |
Na1—O4 | 2.2998 (17) | P1—O7 | 1.5136 (14) |
Na1—O1i | 2.3993 (17) | P1—O6 | 1.5199 (14) |
Na1—O3ii | 2.4730 (18) | P1—O2 | 1.6097 (14) |
Na1—O7iii | 2.5789 (17) | P2—O1 | 1.5006 (14) |
Na1—O6ii | 2.6291 (18) | P2—O4 | 1.5134 (14) |
Na1—O2ii | 2.6363 (18) | P2—O3 | 1.5145 (15) |
Na1—O6iii | 2.9419 (18) | P2—O2 | 1.6284 (15) |
Na2—O1iv | 2.3072 (16) | P3—O8iii | 1.5341 (14) |
Na2—O1 | 2.3072 (17) | P3—O8x | 1.5341 (14) |
Na2—O1i | 2.3532 (17) | P3—O8 | 1.5341 (14) |
Na2—O1v | 2.3532 (17) | P3—O8vii | 1.5341 (14) |
Na2—O2i | 2.6957 (15) | O1—Na2xi | 2.3532 (17) |
Na2—O2v | 2.6957 (15) | O1—Na1xii | 2.3993 (17) |
Na3—O8vi | 2.4655 (16) | O2—Na1xiii | 2.6363 (18) |
Na3—O8 | 2.4655 (16) | O2—Na2xi | 2.6957 (15) |
Na3—O8vii | 2.4655 (16) | O3—Na1xiii | 2.4730 (18) |
Na3—O8viii | 2.4655 (16) | O4—Al1x | 1.9210 (15) |
Al1—O8 | 1.8391 (15) | O5—Al1xiv | 1.8500 (15) |
Al1—O5ix | 1.8500 (15) | O6—Al1vi | 1.9258 (16) |
Al1—O3 | 1.8993 (16) | O6—Na1xiii | 2.6291 (18) |
Al1—O4iii | 1.9210 (15) | O6—Na1x | 2.9419 (18) |
Al1—O6viii | 1.9258 (16) | O7—Al1x | 1.9278 (16) |
Al1—O7iii | 1.9278 (16) | O7—Na1x | 2.5789 (17) |
P1—O5 | 1.4862 (14) | ||
O4—Na1—O1i | 99.33 (6) | O3—Al1—O6viii | 89.69 (7) |
O4—Na1—O3ii | 157.36 (7) | O4iii—Al1—O6viii | 86.10 (7) |
O1i—Na1—O3ii | 90.92 (6) | O8—Al1—O7iii | 92.43 (7) |
O4—Na1—O7iii | 77.49 (5) | O5ix—Al1—O7iii | 87.07 (6) |
O1i—Na1—O7iii | 129.35 (6) | O3—Al1—O7iii | 94.82 (7) |
O3ii—Na1—O7iii | 111.27 (6) | O4iii—Al1—O7iii | 89.49 (6) |
O4—Na1—O6ii | 63.97 (5) | O6viii—Al1—O7iii | 175.36 (7) |
O1i—Na1—O6ii | 117.88 (6) | O5—P1—O7 | 115.13 (8) |
O3ii—Na1—O6ii | 93.38 (6) | O5—P1—O6 | 113.31 (8) |
O7iii—Na1—O6ii | 106.00 (5) | O7—P1—O6 | 108.92 (9) |
O4—Na1—O2ii | 105.20 (6) | O5—P1—O2 | 104.47 (8) |
O1i—Na1—O2ii | 74.83 (5) | O7—P1—O2 | 108.65 (8) |
O3ii—Na1—O2ii | 58.00 (5) | O6—P1—O2 | 105.76 (8) |
O7iii—Na1—O2ii | 155.46 (6) | O1—P2—O4 | 113.43 (9) |
O6ii—Na1—O2ii | 56.60 (5) | O1—P2—O3 | 113.46 (8) |
O4—Na1—O6iii | 123.33 (6) | O4—P2—O3 | 113.91 (8) |
O1i—Na1—O6iii | 131.42 (6) | O1—P2—O2 | 103.58 (8) |
O3ii—Na1—O6iii | 59.00 (5) | O4—P2—O2 | 107.01 (8) |
O7iii—Na1—O6iii | 52.62 (5) | O3—P2—O2 | 104.19 (8) |
O6ii—Na1—O6iii | 102.31 (6) | O8iii—P3—O8x | 104.48 (11) |
O2ii—Na1—O6iii | 110.46 (5) | O8iii—P3—O8 | 112.02 (6) |
O1iv—Na2—O1 | 98.36 (9) | O8x—P3—O8 | 112.02 (6) |
O1iv—Na2—O1i | 166.32 (7) | O8iii—P3—O8vii | 112.02 (6) |
O1—Na2—O1i | 84.54 (5) | O8x—P3—O8vii | 112.02 (6) |
O1iv—Na2—O1v | 84.54 (5) | O8—P3—O8vii | 104.48 (11) |
O1—Na2—O1v | 166.32 (7) | P1—O2—P2 | 127.92 (9) |
O1i—Na2—O1v | 95.80 (8) | P1—O2—Na1xiii | 97.23 (7) |
O1iv—Na2—O2i | 109.82 (5) | P2—O2—Na1xiii | 91.90 (7) |
O1—Na2—O2i | 75.12 (5) | P1—O2—Na2xi | 138.90 (8) |
O1i—Na2—O2i | 57.84 (5) | P2—O2—Na2xi | 90.30 (6) |
O1v—Na2—O2i | 116.61 (6) | Na1xiii—O2—Na2xi | 95.69 (5) |
O1iv—Na2—O2v | 75.12 (5) | P2—O3—Al1 | 138.27 (10) |
O1—Na2—O2v | 109.82 (5) | P2—O3—Na1xiii | 101.37 (7) |
O1i—Na2—O2v | 116.61 (6) | Al1—O3—Na1xiii | 114.51 (7) |
O1v—Na2—O2v | 57.84 (5) | P2—O4—Al1x | 135.59 (9) |
O2i—Na2—O2v | 172.79 (8) | P2—O4—Na1 | 114.27 (8) |
O8vi—Na3—O8 | 139.29 (4) | Al1x—O4—Na1 | 109.28 (7) |
O8vi—Na3—O8vii | 139.29 (4) | P1—O5—Al1xiv | 169.27 (10) |
O8—Na3—O8vii | 58.94 (7) | P1—O6—Al1vi | 144.77 (10) |
O8vi—Na3—O8viii | 58.94 (7) | P1—O6—Na1xiii | 100.00 (7) |
O8—Na3—O8viii | 139.29 (4) | Al1vi—O6—Na1xiii | 97.24 (6) |
O8vii—Na3—O8viii | 139.29 (4) | P1—O6—Na1x | 76.46 (6) |
O8—Al1—O5ix | 178.73 (7) | Al1vi—O6—Na1x | 96.37 (6) |
O8—Al1—O3 | 91.33 (7) | Na1xiii—O6—Na1x | 160.22 (7) |
O5ix—Al1—O3 | 87.55 (7) | P1—O7—Al1x | 131.02 (9) |
O8—Al1—O4iii | 92.68 (6) | P1—O7—Na1x | 89.48 (7) |
O5ix—Al1—O4iii | 88.48 (6) | Al1x—O7—Na1x | 131.83 (7) |
O3—Al1—O4iii | 173.98 (7) | P3—O8—Al1 | 139.13 (10) |
O8—Al1—O6viii | 86.36 (7) | P3—O8—Na3 | 98.29 (7) |
O5ix—Al1—O6viii | 94.23 (6) | Al1—O8—Na3 | 122.17 (7) |
Symmetry codes: (i) y−1/2, x+1/2, z−1/2; (ii) x, y, z−1; (iii) −y+1, x, −z+1; (iv) −x+1, −y+2, z; (v) −y+3/2, −x+3/2, z−1/2; (vi) y, −x+1, −z+2; (vii) −x+1, −y+1, z; (viii) −y+1, x, −z+2; (ix) x−1/2, −y+3/2, −z+3/2; (x) y, −x+1, −z+1; (xi) −y+3/2, −x+3/2, z+1/2; (xii) y−1/2, x+1/2, z+1/2; (xiii) x, y, z+1; (xiv) x+1/2, −y+3/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | Na7Al4(P2O7)4(PO4) |
Mr | 1059.58 |
Crystal system, space group | Tetragonal, P421c |
Temperature (K) | 296 |
a, c (Å) | 14.054 (3), 6.1718 (16) |
V (Å3) | 1219.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.15 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Rigaku Saturn70 CCD diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.857, 0.949 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5562, 1347, 1287 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.017, 0.047, 1.08 |
No. of reflections | 1347 |
No. of parameters | 118 |
Δρmax, Δρmin (e Å−3) | 0.22, −0.29 |
Absolute structure | Flack (1983), 540 Friedel pairs |
Absolute structure parameter | −0.04 (9) |
Computer programs: CrystalClear (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).
Acknowledgements
The author acknowledges the Doctoral Foundation of Henan Polytechnic University (B2010–92, 648483).
References
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rochère, M., Kahn, A., d'Yvoire, F. & Bretey, E. (1985). Mater. Res. Bull. 20, 27–34. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stus, N. V., Lisnyak, V. V. & Nagornyi, P. G. (2001). J. Alloys Compd, 314, 62–66. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal phosphates possessing open-framework structures with defined tunnels have been extensively investigated for their structural diversity, properties, and potential applications in shape-selective catalysis, adsorbents, ion exchangers, and molecular sieves. Among them, a series of isotypic ortho-diphosphates Na7(MP2O7)4PO4 (M = Al, Cr, Fe) (Rochère et al., 1985) and Na7(InP2O7)4PO4 (Stus et al., 2001) were synthesized, and their ion exchange and conductivity properties studied. However, for compound Na7(AlP2O7)4PO4, a detailed crystal structure analysis has not been reported so far. In this work, the synthesis and results of the crystal structure refinement of this compound is reported. In comparison with the unit cell parameters reported by Rochère from X-ray powder data (a = 14.046 (3), c = 6.169 (2) Å; Rochère et al., 1985), the determined unit cell parameters from the single crystal X-ray study are slighty larger.
As shown in Figs 1 and 2, the structure of the title compound consists of a three-dimensional framework of isolated PO4 tetrahedra, AlO6 octahedra and P2O7 groups, the conformation of the latter more eclipsed than staggered. The sodium cations are located in sites within cavities in the framework, exhibiting coordination numbers of 7 (Na1), 6 (Na2) and 4 (Na3). There are three crystallography distinct P atoms in the structure of the title compound. P1 and P2 atoms are located in general positions and their corresponding P1O4 and P2O4 tetrahedra are connected by the bridging O5 atom to form a P2O7 group, which is further linked to four AlO6 octahedra. P3 atoms are located on 4 axes, forming isolated P3O4 tetrahedra which are further connected to four AlO6 octahedra. The P3O4 tetrahedra are regular with a P—O bond length of 1.5351 (18) Å, while the P–O distances in the P2O7 group are irregular, showing the characteristic variance of smaller P–Oterminal bonds (1.4862 (14) to 1.5199 (14) Å) and larger P–Obridging bonds (1.6097 (14) and 1.6284 (15) Å) as typically observed for diphosphate unit. The title structure differs in their P–O–P bridging angle of the diphosphate group and the average metal–O distances from those of the isotypic congeners. For the Al compound, the interatomic distances in the MO6 octahedron are decreasing (Fe–O6 1.968–2.021 Å, InO6 2.091–2.146 Å, AlO6 1.8391 (15)–1.9278 (16) Å), as expected from the smaller ionic radius of Al3+ comparerd to Fe3+ and In3+. With a decrease of the unit-cell parameters a trend in a likewise decreasing P–O–P bridging angle of the diphosphate groups is observed: (Na7(FeP2O7)4PO4: 136.6 (3)°; Na7(InP2O7)4PO4: 136.7 (3)°, Na7(AlP2O7)4PO4: 127.92 (9)°.