metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1563-m1564

Hexa­kis­(di­methyl­formamide-κO)manganese(II) μ-oxido-bis­­[tri­chlorido­ferrate(III)]

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: chigorin@mail.univ.kiev.ua

(Received 5 September 2011; accepted 9 October 2011; online 22 October 2011)

The title compound, [Mn(C3H7NO)6][Fe2Cl6O], was obtained unintentionally as a product of an attempted synthesis of heterometallic complexes with Schiff base ligands using manganese powder and FeCl3·6H2O as starting materials. In the [Fe2OCl6]2− anion, the O atom and the Fe atom occupy positions with site symmetry [\overline{3}] and 3, respectively, resulting in a linear Fe—O—Fe angle and a staggered conformation. The octa­hedrally surrounded cation (site symmetry [\overline{3}]) and the [Fe2Cl6O]2− anion are alternately stacked along [001].

Related literature

For structures including [Mn(dmf)6]2+ cations, see: Khutornoi et al. (2002[Khutornoi, V. A., Naumov, N. G., Mironov, Yu. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 193-201.]). For stuctures including [Fe(dmf)6]2+, see: Albanati et al. (2007[Albanati, A., Calderazzo, F., Marchetti, F., Mason, S. A., Melai, B., Pampaloni, G. & Rizatto, S. (2007). Inorg. Chem. Commun. 10, 902-904.]); Baumgartner (1986[Baumgartner, O. (1986). Z. Kristallogr. 174, 253-263.]); Li et al. (2007a[Li, Y., Zhang, Z.-X., Li, K.-C., Song, W.-D., Cui, X.-B. & Pan, L.-Y. (2007a). J. Mol. Struct. 843, 102-106.],b[Li, Y., Zhang, Z.-X., Li, K.-C., Xu, J.-Q., Song, W.-D. & Pan, L.-Y. (2007b). J. Mol. Struct. 833, 8-12.]); Lode & Krautscheid (2000[Lode, C. & Krautscheid, H. (2000). Z. Anorg. Allg. Chem. 626, 326-331.]); Müller et al. (1989a[Müller, A., Bogge, H., Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Romer, C., Romer, M., Dornfeld, H., Wienboker, U., Hellmann, W. & Zimmermann, M. (1989a). Monatsh. Chem. 120, 367-391.],b[Müller, A., Schaladerbeck, N. H., Krickemeyer, E., Bogge, H., Schmitz, K., Bill, E. & Trautwein, A. X. (1989b). Z. Anorg. Allg. Chem. 570, 7-36.]); Qiutian et al. (1983[Qiutian, L., Liangren, H., Beisheng, K. & Jiaxi, L. (1983). Chin. J. Struct. Chem. 2, 225-229.]); Silva et al. (2008[Silva, R. M., Gwengo, C., Lindeman, S. V., Smith, M. D., Long, G. J., Grandjean, F. & Gardinier, J. R. (2008). Inorg. Chem. 47, 7233-7242.]); Young et al. (1989[Young, A. C. M., Walters, M. A. & Dewan, J. C. (1989). Acta Cryst. C45, 1733-1736.]). For the isostructural complex [Mg(dmf)6][Fe2OCl6], see: Juang et al. (1984[Juang, L., Jiang, F. & Lu, J. (1984). Huaxue Tongbao, 3, 14-19.]). For bond-valence-sum calculations, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For related direct syntheses, see: Garnovskii et al. (1999[Garnovskii, A. D., Kharisov, B. I., Skopenko, V. V., Blanco Jerez, L. M., Kokozay, V. N., Kuzharov, A. S., Garnovskii, D. A., Vassilyeva, O. Yu., Burlov, A. S. & Pavlenko, V. A. (1999). Direct Synthesis of Coordination and Organometallic Compounds. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C3H7NO)6][Fe2Cl6O]

  • Mr = 833.92

  • Trigonal, [R \overline 3]

  • a = 14.0171 (8) Å

  • c = 15.3966 (14) Å

  • V = 2619.8 (3) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 173 K

  • 0.60 × 0.40 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur/Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.557, Tmax = 1.000

  • 16066 measured reflections

  • 1624 independent reflections

  • 1323 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 0.98

  • 1624 reflections

  • 68 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.1736 (15)
Fe1—O1S 1.7758 (5)
Fe1—Cl1 2.2330 (6)

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Continuing our research on direct synthesis of bimetallic complexes with Schiff base ligands, i.e. one-pot synthesis with the use of metal powders or their oxides as starting materials (Garnovskii et al., 1999), we present here a new MnII/FeIII complex, which was obtained as a by-product during the investigation of the system: Mn0 – FeCl3.6H2O – salicylic aldehyde – glycine – Et3N – dmf (dimethylformamide).

The crystal structure of the title complex, (I), is shown in Fig. 1. Six dmf molecules coordinate to the Mn2+ ion forming the almost regular octahedral complex cation [Mn(dmf)6]2+ [site symmetry 3; Mn1—O1 distances of 2.1736 (15) Å and O1–Mn1–O1 bond angles of 87.49 (6), 92.51 (6) and 180°]. Since the neighbouring elements Mn and Fe are difficult to distinguish by X-ray methods, a comparison of MnII—O and FeII—O bond lengths can be useful in the assignment of the correct metal to this polyhedron. The observed metal–Odmf distances are in good agreement with those in [Mn(dmf)6][Mo6Br8(NCS)6] [2.152Å (Khutornoi et al., 2002)]. An additional argument for Mn in the cation as the correct metal, but not its Fe analogue, is the analysis of crystallographic data for 10 structures containing [Fe(dmf)6]2+ (Albanati et al., 2007; Baumgartner, 1986; Li et al., 2007a,b; Lode & Krautscheid, 2000; Müller et al., 1989a,b; Qiutian et al., 1983; Silva et al., 2008; Young et al., 1989) where Fe—O bond lengths in the range of 1.99 – 2.16 Å with an average value of 2.11 Å are found. Moreover, no FeII complexes with a regular octahedral dmf environment have been found.

The [Fe2OCl6]2- anion possesses D3d geometry with Fe and O atoms in special positions (3 and 3, respectively) that force the Fe—O—Fe angle to be linear and the anion to adopt a staggered conformation (Fig. 2). The Fe3+ atom has a distorted tetrahedral coordination with an Fe1–O1S distances of 1.7758 (5) Å, an Fe1–Cl1 distance of 2.2330 (6) Å, and bond angles of 106.348 (19) and 112. 438 (17)° for Cl1–Fe1–Cl1 and Cl1–Fe1–O1S, respectively. The oxidation states (+II) and (+III) for hexa-coordinate Mn and four-coordinate Fe atoms are supported by bond-valence sum calculations [1.914 for Mn2+ and 3.099 for Fe3+ (Brown & Altermatt, 1985)].

The [Mn(dmf)6]2+ cations and [Fe2OCl6]2- anions are arranged in such a way that the cations and anions are arranged alternatingly along the [001] direction (Fig. 3).

The described complex (I) can be supposed as isostructural to [Mg(dmf)6][Fe2OCl6] (Juang et al., 1984) but interestingly the volume of the unit cell in case of the manganese complex is ca 200 Å3 less than that of the magnesium complex.

Related literature top

For structures including [Mn(dmf)6]2+ cations, see: Khutornoi et al. (2002). For stuctures including [Fe(dmf)6]2+, see: Albanati et al. (2007); Baumgartner (1986); Li et al. (2007a,b); Lode & Krautscheid (2000); Müller et al. (1989a,b); Qiutian et al. (1983); Silva et al. (2008); Young et al. (1989). For the isostructural complex [Mg(dmf)6][Fe2OCl6], see: Juang et al. (1984). For bond-valence-sum calculations, see: Brown & Altermatt (1985). For related direct syntheses, see: Garnovskii et al. (1999).

Experimental top

Salicylic aldehyde (0.31 g, 2.5 mmol), glycine (0.19 g, 2.5 mmol) and triethylamine (0.35 mmol, 2.5 mmol) were dissolved in dimethylformamide (dmf; 25 ml) in this order, and stirred at 323 – 333 K (10 min). Then, manganese powder (0.14 g, 2.5 mmol) and FeCl3.6H2O (0.68 g, 2.5 mmol) were added to the hot yellow solution with stirring for 3 h, until total dissolution of manganese was observed. The resulting solution was filtered and subsequently pale pink crystals suitable for X-ray crystallography were separated after eight days at successive addition of a PriOH. Yield: 0.23 g, 21.5% (per iron). Elemental analysis for C18H42MnFe2N6O7Cl6 (Mr= 833.92). Calcd: C, 25.93; N, 10.08; H, 5.08; Fe, 13.39; Mn, 6.59. Found: C, 26.1; N, 10.0; H, 5.0; Fe, 13.3; Mn, 6.3. IR(KBr, cm-1): 3344(br), 2924(m), 1629(m), 1572(w), 1557(w), 1535(w), 1521(w), 1470(w), 1412(br), 1312(w), 1580(w), 1174(w), 1154(w), 1041(w), 952(w), 851(w), 689(s), 482(w), 443(w). The compound is sparingly soluble in dimethylsulfoxide (dmso), dmf, and H2O. In the IR spectrum of (I), the band corresponding to ν(CO) in dmf is shifted to the region of longer wavelenghts (1629 cm-1) relative to this band in the spectrum of noncoordinating dmf (1675 cm-1).

Refinement top

The carbonyl H atom was found from a difference Fourier map and was refined freely. Methyl H atoms were allowed to ride on their attached atoms with C—H = 0.98 (1)Å and Uiso(H)= 1.5Ueq(C). The highest remaining difference Fourier peak is located 0.87 Å from atom O1S.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Parts of the structure of (I), with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I) showing a staggerded conformation of the [Fe2OCl6]2- anion. Colour code as in Fig. 1; hydrogen atoms were omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of (I) showing the linear arrangement of Fe–O–Fe mojeties and Mn atoms. Colour code as in Fig. 1; hydrogen atoms were omitted for clarity.
Hexakis(dimethylformamide-κO)manganese(II) µ-oxido-bis[trichloridoferrate(III)] top
Crystal data top
[Mn(C3H7NO)6][Fe2Cl6O]Dx = 1.586 Mg m3
Mr = 833.92Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2653 reflections
Hall symbol: -R 3θ = 2.9–32.5°
a = 14.0171 (8) ŵ = 1.68 mm1
c = 15.3966 (14) ÅT = 173 K
V = 2619.8 (3) Å3Block, red
Z = 30.60 × 0.40 × 0.40 mm
F(000) = 1281
Data collection top
Oxford Diffraction Xcalibur/Sapphire3
diffractometer
1624 independent reflections
Radiation source: Enhance (Mo) X-ray Source1323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 2.9°
ω scansh = 1919
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1915
Tmin = 0.557, Tmax = 1.000l = 2018
16066 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
1624 reflections(Δ/σ)max < 0.001
68 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.37 e Å3
0 constraints
Crystal data top
[Mn(C3H7NO)6][Fe2Cl6O]Z = 3
Mr = 833.92Mo Kα radiation
Trigonal, R3µ = 1.68 mm1
a = 14.0171 (8) ÅT = 173 K
c = 15.3966 (14) Å0.60 × 0.40 × 0.40 mm
V = 2619.8 (3) Å3
Data collection top
Oxford Diffraction Xcalibur/Sapphire3
diffractometer
1624 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1323 reflections with I > 2σ(I)
Tmin = 0.557, Tmax = 1.000Rint = 0.067
16066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 1.05 e Å3
1624 reflectionsΔρmin = 0.37 e Å3
68 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.00000.50000.02020 (19)
N10.23962 (14)0.02345 (15)0.65588 (11)0.0223 (4)
Fe10.00000.00000.88467 (3)0.02113 (16)
O10.08798 (13)0.06054 (12)0.57785 (10)0.0262 (4)
Cl10.03397 (5)0.12729 (4)0.82931 (3)0.02609 (16)
C10.15838 (18)0.00668 (18)0.63362 (15)0.0232 (4)
H10.1622 (18)0.0567 (19)0.6623 (13)0.015 (6)*
O1S0.00000.00001.00000.0282 (8)
C20.2521 (2)0.1115 (2)0.61800 (16)0.0318 (5)
H2A0.19390.15120.57500.048*
H2B0.24670.16260.66380.048*
H2C0.32420.08020.58970.048*
C30.3184 (2)0.0425 (2)0.72297 (17)0.0347 (6)
H3A0.31430.00550.77090.052*
H3B0.30100.09770.74460.052*
H3C0.39290.07950.69850.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0176 (2)0.0176 (2)0.0254 (4)0.00880 (12)0.0000.000
N10.0200 (9)0.0211 (9)0.0259 (9)0.0104 (7)0.0009 (7)0.0000 (7)
Fe10.02076 (19)0.02076 (19)0.0219 (3)0.01038 (10)0.0000.000
O10.0238 (8)0.0209 (8)0.0340 (9)0.0112 (7)0.0040 (6)0.0015 (6)
Cl10.0271 (3)0.0233 (3)0.0303 (3)0.0145 (2)0.0021 (2)0.00083 (19)
C10.0209 (11)0.0185 (10)0.0296 (11)0.0093 (9)0.0026 (8)0.0041 (8)
O1S0.0274 (13)0.0274 (13)0.030 (2)0.0137 (6)0.0000.000
C20.0373 (14)0.0370 (13)0.0331 (13)0.0278 (12)0.0034 (10)0.0044 (10)
C30.0339 (13)0.0269 (13)0.0446 (14)0.0162 (11)0.0151 (11)0.0065 (10)
Geometric parameters (Å, º) top
Mn1—O1i2.1736 (15)Fe1—Cl12.2330 (6)
Mn1—O1ii2.1736 (15)Fe1—Cl1v2.2330 (6)
Mn1—O12.1736 (15)O1—C11.239 (3)
Mn1—O1iii2.1736 (15)C1—H10.97 (2)
Mn1—O1iv2.1736 (15)O1S—Fe1vi1.7758 (5)
Mn1—O1v2.1736 (15)C2—H2A0.9800
N1—C11.318 (3)C2—H2B0.9800
N1—C21.453 (3)C2—H2C0.9800
N1—C31.456 (3)C3—H3A0.9800
Fe1—O1S1.7758 (5)C3—H3B0.9800
Fe1—Cl1ii2.2330 (6)C3—H3C0.9800
O1i—Mn1—O1ii180.00 (6)O1S—Fe1—Cl1v112.438 (17)
O1i—Mn1—O187.49 (6)Cl1ii—Fe1—Cl1v106.348 (19)
O1ii—Mn1—O192.51 (6)Cl1—Fe1—Cl1v106.348 (19)
O1i—Mn1—O1iii92.51 (6)C1—O1—Mn1125.35 (15)
O1ii—Mn1—O1iii87.49 (6)O1—C1—N1124.6 (2)
O1—Mn1—O1iii180.00 (7)O1—C1—H1122.4 (13)
O1i—Mn1—O1iv92.51 (6)N1—C1—H1112.8 (13)
O1ii—Mn1—O1iv87.49 (6)Fe1vi—O1S—Fe1180.0
O1—Mn1—O1iv87.49 (6)N1—C2—H2A109.5
O1iii—Mn1—O1iv92.51 (6)N1—C2—H2B109.5
O1i—Mn1—O1v87.49 (6)H2A—C2—H2B109.5
O1ii—Mn1—O1v92.51 (6)N1—C2—H2C109.5
O1—Mn1—O1v92.51 (6)H2A—C2—H2C109.5
O1iii—Mn1—O1v87.49 (6)H2B—C2—H2C109.5
O1iv—Mn1—O1v180.00 (7)N1—C3—H3A109.5
C1—N1—C2121.94 (18)N1—C3—H3B109.5
C1—N1—C3121.34 (19)H3A—C3—H3B109.5
C2—N1—C3116.65 (18)N1—C3—H3C109.5
O1S—Fe1—Cl1ii112.438 (17)H3A—C3—H3C109.5
O1S—Fe1—Cl1112.438 (17)H3B—C3—H3C109.5
Cl1ii—Fe1—Cl1106.348 (19)
O1i—Mn1—O1—C1169.64 (18)Mn1—O1—C1—N1152.23 (16)
O1ii—Mn1—O1—C110.36 (18)C2—N1—C1—O12.2 (3)
O1iv—Mn1—O1—C177.01 (14)C3—N1—C1—O1179.2 (2)
O1v—Mn1—O1—C1102.99 (14)
Symmetry codes: (i) y, x+y, z+1; (ii) y, xy, z; (iii) x, y, z+1; (iv) xy, x, z+1; (v) x+y, x, z; (vi) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C3H7NO)6][Fe2Cl6O]
Mr833.92
Crystal system, space groupTrigonal, R3
Temperature (K)173
a, c (Å)14.0171 (8), 15.3966 (14)
V3)2619.8 (3)
Z3
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur/Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.557, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16066, 1624, 1323
Rint0.067
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 0.98
No. of reflections1624
No. of parameters68
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.05, 0.37

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Mn1—O12.1736 (15)Fe1—Cl12.2330 (6)
Fe1—O1S1.7758 (5)
 

Acknowledgements

This work was partially supported by the State Fund for Fundamental Research of Ukraine (Project 28.3/017).

References

First citationAlbanati, A., Calderazzo, F., Marchetti, F., Mason, S. A., Melai, B., Pampaloni, G. & Rizatto, S. (2007). Inorg. Chem. Commun. 10, 902–904.  Google Scholar
First citationBaumgartner, O. (1986). Z. Kristallogr. 174, 253–263.  CrossRef CAS Web of Science Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnovskii, A. D., Kharisov, B. I., Skopenko, V. V., Blanco Jerez, L. M., Kokozay, V. N., Kuzharov, A. S., Garnovskii, D. A., Vassilyeva, O. Yu., Burlov, A. S. & Pavlenko, V. A. (1999). Direct Synthesis of Coordination and Organometallic Compounds. Amsterdam: Elsevier.  Google Scholar
First citationJuang, L., Jiang, F. & Lu, J. (1984). Huaxue Tongbao, 3, 14–19.  Google Scholar
First citationKhutornoi, V. A., Naumov, N. G., Mironov, Yu. V., Oeckler, O., Simon, A. & Fedorov, V. E. (2002). Russ. J. Coord. Chem. 28, 193–201.  Web of Science CrossRef Google Scholar
First citationLi, Y., Zhang, Z.-X., Li, K.-C., Song, W.-D., Cui, X.-B. & Pan, L.-Y. (2007a). J. Mol. Struct. 843, 102–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Zhang, Z.-X., Li, K.-C., Xu, J.-Q., Song, W.-D. & Pan, L.-Y. (2007b). J. Mol. Struct. 833, 8–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationLode, C. & Krautscheid, H. (2000). Z. Anorg. Allg. Chem. 626, 326–331.  CrossRef CAS Google Scholar
First citationMüller, A., Bogge, H., Schimanski, U., Penk, M., Nieradzik, K., Dartmann, M., Krickemeyer, E., Schimanski, J., Romer, C., Romer, M., Dornfeld, H., Wienboker, U., Hellmann, W. & Zimmermann, M. (1989a). Monatsh. Chem. 120, 367–391.  Google Scholar
First citationMüller, A., Schaladerbeck, N. H., Krickemeyer, E., Bogge, H., Schmitz, K., Bill, E. & Trautwein, A. X. (1989b). Z. Anorg. Allg. Chem. 570, 7–36.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationQiutian, L., Liangren, H., Beisheng, K. & Jiaxi, L. (1983). Chin. J. Struct. Chem. 2, 225–229.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, R. M., Gwengo, C., Lindeman, S. V., Smith, M. D., Long, G. J., Grandjean, F. & Gardinier, J. R. (2008). Inorg. Chem. 47, 7233–7242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, A. C. M., Walters, M. A. & Dewan, J. C. (1989). Acta Cryst. C45, 1733–1736.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1563-m1564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds