metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1500-m1501

[1,2-Bis(di­phenyl­phosphan­yl)ethane-2κ2P,P′]tetra­carbonyl-1κ3C,2κC-(μ-2-cyclo­pentyl-2-aza­propane-1,3-di­thiol­ato-1:2κ4S,S′:S,S′)diiron(II)(FeFe)

aState Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bState Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: yt.si@fjnu.edu.cn

(Received 16 September 2011; accepted 30 September 2011; online 8 October 2011)

In the title compound, [Fe2(C7H13NS2)(C26H24P2)(CO)4], the Fe2S2 core exhibits a butterfly-like shape, with two S atoms bridging the Fe–Fe dumbbell. Each of the two Fe atoms exhibits a distorted octa­hedral environment. One Fe atom is additionally bonded to three carbonyl C atoms, whereas the other Fe atom is additionally bonded to one carbonyl C atom and two P atoms of the chelating dppe [dppe = 1,2-bis­(diphenyl­phosphan­yl)ethane] ligand. Non-classical intra­molecular C—H⋯S hydrogen-bonding inter­actions are present in the structure. The packing of adjacent mol­ecules along [100] is accomplished mainly through van der Waals forces.

Related literature

For background to Fe-only hydrogenases, see: Darensbourg et al. (2000[Darensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206, 533-561.]); Lawrence et al. (2001[Lawrence, J. D., Li, H. X., Rauchfuss, T. B., Benard, M. & Rohmer, M. M. (2001). Angew. Chem. Int. Ed. Eng. 40, 1768-1771.]). For synthetic details, see: Li & Rauchfuss (2002[Li, H. & Rauchfuss, T. B. (2002). J. Am. Chem. Soc. 124, 726-727.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C7H13NS2)(C26H24P2)(CO)4]

  • Mr = 797.44

  • Triclinic, [P \overline 1]

  • a = 11.763 (10) Å

  • b = 12.402 (12) Å

  • c = 13.284 (13) Å

  • α = 84.66 (3)°

  • β = 78.19 (3)°

  • γ = 76.33 (3)°

  • V = 1841 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 294 K

  • 0.12 × 0.09 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.840, Tmax = 1.000

  • 13988 measured reflections

  • 8063 independent reflections

  • 4461 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.209

  • S = 1.07

  • 8058 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected bond lengths (Å)

Fe2—C4 1.766 (7)
Fe2—P1 2.224 (2)
Fe2—P2 2.265 (2)
Fe2—S1 2.282 (2)
Fe2—S2 2.289 (2)
Fe2—Fe1 2.583 (2)
Fe1—C3 1.786 (6)
Fe1—C1 1.791 (7)
Fe1—C2 1.814 (7)
Fe1—S1 2.281 (2)
Fe1—S2 2.286 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯S1 0.93 2.77 3.490 (7) 135
C27—H27⋯S1 0.93 2.84 3.416 (7) 122

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrogenases are capable of efficiently catalysing the oxidation of molecular hydrogen or its production from protons and electrons (Darensbourg et al., 2000; Lawrence et al., 2001). The well-known active sites of intensively studied Fe—Fe hydrogenases include Fe2S2 clusters and a cuboidal Fe4S4 unit, with the former playing an important role in the catalytic process.

The title compound is a mimic of the Fe2S2 cluster. As shown in Fig. 1, the two Fe atoms are linked through an Fe—Fe single bond and further bridged by two S atoms. Thus a butterfly arrangement is formed, with the dihedral angle between the two Fe2S planes being 73.28 (8)° and the average Fe—S bond length 2.285 Å. Each Fe atom exhibits a distorted octahedral environment. Atom Fe1 is bonded to three carbonyl C atoms, whereas atom Fe2 is bonded to one carbonyl C atom and two P atoms of the chelating dppe [dppe = 1,2-bis(diphenylphosphanyl)ethane] ligand. Notably, the P atoms of dppe have substituted two carbonyl C atoms at Fe2, with one P atom in apical position and the other in basal position. Because the Fe–Fe dumbbell is asymetrically substituted, there is an obvious difference among Fe—C bond lengths (Table 1; average value 1.79 Å). The Fe2—P2 bond is 0.04 Å longer than the Fe2—P1 bond due to steric effects, and the average Fe—P bond length is 2.25 Å. The P—Fe—P angle [88.10 (7)°] is much smaller than the mean C—Fe—C bond angle [97 (5)°], because of the rigidity of the dppe ligand. Non-classical intramolecular C—H···S hydrogen bonding interactions (Table 2) are present in the structure.

The packing diagram is shown in Fig. 2. The packing of adjacent molecules along [100] is accomplished mainly through van der Waals forces.

Related literature top

For background to Fe-only hydrogenases, see: Darensbourg et al. (2000); Lawrence et al. (2001). For synthetic details, see: Li & Rauchfuss (2002).

Experimental top

The synthesis of the title compound was carried out under an dry, purified, oxygen-free nitrogen atmosphere using standard Schlenk techniques. Solvents, such as THF and hexane, were dried according to standard methods. Commercially available products, like paraformaldehyde, [Fe(CO)5], LiBEt3H, F3CCOOH, dppe and C5H9NH2 were of reagent grade and used as received. The starting material [Fe2(SH)2(CO)6] was prepared as documented. The title compound was prepared by a condensation of Fe2(SH)2(CO)6 with formaldehyde in the presence of cyclopentyamie (Li & Rauchfuss, 2002), followed by substitution of carbonyls by dppe (1,2-bis(diphenylphosphanyl)ethane).

[Fe2S2(CO)6] (1 mmol, 0.344 g) was dissolved in dry THF (40 ml) under a nitrogen atmosphere and then cooled to 195 K with acetone and liquid nitrogen. After the solution was stirred for 30 minutes, LiBEt3H (2 mmol) was added dropwise very slowly. At the midpoint of the addition, the color of the reaction mixture turned from red to dark green; for the rest of addition it remained green. After another 30 minutes, F3CCOOH (2 mmol, 0.149 ml) was added. The new mixture was stirred for an additional hour. The cool solution was added to a mixture of paraformaldehyde (40 mmol, 1.2 g) and C5H9NH2 (1 mmol) in THF which had been stirred for 10 h and cooled to 273 K. The last mixture was stirred for 24 h and the majority of the solvent was evaporated under vacuum. The remaining residual was filtered through silica gel. A red fraction was collected by elution with hexane. 1 mmol (excess) dppe was added to the red fraction, and the solution gradually became purple, after which the solution was stirred for another 3 h. Recrystallization of the crude purple product from freshly distilled pentane in a refridgerator at 253 K for several days produced crystals in moderate yield (~60%) suitable for X-ray crystallography.

Refinement top

Hydrogen atoms were placed at idealized positions and allowed to ride on their parent atoms, with CH2 and CH3 bonds set equal to 0.97 and 0.96 Å, respectively. For all H atoms, Uiso(H) = 1.2Ueq(C). The highest residual peak was located at 0.06 Å from Fe2. Reflections 111, 110, 011, 011, and 101 were affected by the beam stop and were omitted from the refinement.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 20% probability displacement ellipsoids for all non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the a axis.
[1,2-Bis(diphenylphosphanyl)ethane-2κ2P,P']tetracarbonyl- 1κ3C,2κC-(µ-3-cyclopentyl-2-azapropane-1,3-dithiolato- 1:2κ4S,S':S,S')diiron(II)(FeFe) top
Crystal data top
[Fe2(C7H13NS2)(C26H24P2)(CO)4]Z = 2
Mr = 797.44F(000) = 824
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.763 (10) ÅCell parameters from 3975 reflections
b = 12.402 (12) Åθ = 2.7–27.2°
c = 13.284 (13) ŵ = 1.03 mm1
α = 84.66 (3)°T = 294 K
β = 78.19 (3)°Prism, dark red
γ = 76.33 (3)°0.12 × 0.09 × 0.08 mm
V = 1841 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
8063 independent reflections
Radiation source: fine-focus sealed tube4461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.2°, θmin = 2.2°
ω and ϕ scansh = 1415
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1315
Tmin = 0.840, Tmax = 1.000l = 1717
13988 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0941P)2 + 0.4758P]
where P = (Fo2 + 2Fc2)/3
8058 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Fe2(C7H13NS2)(C26H24P2)(CO)4]γ = 76.33 (3)°
Mr = 797.44V = 1841 (3) Å3
Triclinic, P1Z = 2
a = 11.763 (10) ÅMo Kα radiation
b = 12.402 (12) ŵ = 1.03 mm1
c = 13.284 (13) ÅT = 294 K
α = 84.66 (3)°0.12 × 0.09 × 0.08 mm
β = 78.19 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
8063 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4461 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1.000Rint = 0.046
13988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.07Δρmax = 0.73 e Å3
8058 reflectionsΔρmin = 0.66 e Å3
433 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe20.41292 (7)0.25705 (6)0.22097 (6)0.0369 (2)
Fe10.31542 (7)0.22815 (6)0.07103 (6)0.0414 (2)
S20.42334 (13)0.35974 (11)0.06835 (11)0.0410 (3)
P10.56027 (13)0.25745 (12)0.30241 (11)0.0408 (4)
S10.48107 (12)0.11162 (10)0.11497 (11)0.0383 (3)
P20.33243 (14)0.16019 (12)0.35931 (12)0.0424 (4)
N10.6532 (4)0.2314 (4)0.0138 (4)0.0418 (11)
C50.6158 (5)0.1258 (5)0.0199 (4)0.0431 (13)
H5A0.68140.06670.03500.052*
H5B0.60290.11380.04760.052*
C210.7043 (5)0.0418 (5)0.2622 (5)0.0475 (14)
H210.63630.02480.24850.057*
C70.7746 (5)0.2213 (5)0.0525 (5)0.0469 (14)
H70.77270.19260.11830.056*
C260.3043 (5)0.0186 (5)0.3614 (5)0.0466 (14)
C200.7012 (5)0.1498 (5)0.2865 (4)0.0440 (13)
C110.8735 (5)0.1388 (5)0.0039 (5)0.0529 (15)
H11A0.84450.12210.06830.063*
H11B0.89990.07000.03970.063*
C290.2679 (7)0.1986 (5)0.3619 (5)0.0613 (18)
H290.25550.26990.36150.074*
C20.1821 (6)0.3386 (5)0.0909 (5)0.0552 (16)
C270.3942 (6)0.0665 (5)0.3120 (5)0.0562 (16)
H270.46680.05130.27890.067*
C280.3753 (7)0.1745 (5)0.3122 (5)0.0587 (17)
H280.43510.22990.27880.070*
C320.1888 (5)0.2396 (5)0.4284 (5)0.0476 (14)
C250.8064 (5)0.1740 (5)0.3036 (5)0.0561 (17)
H250.80680.24560.31880.067*
C60.5649 (5)0.3214 (5)0.0233 (5)0.0461 (14)
H6A0.54840.29970.08620.055*
H6B0.59880.38640.04030.055*
O10.3405 (5)0.1815 (4)0.1468 (4)0.0742 (14)
O30.1806 (4)0.0572 (4)0.1566 (4)0.0658 (13)
C140.6148 (6)0.3867 (5)0.2996 (5)0.0493 (15)
C220.8095 (6)0.0418 (5)0.2583 (5)0.0522 (15)
H220.80960.11390.24420.063*
O20.0965 (5)0.4090 (4)0.1033 (5)0.0948 (19)
C230.9120 (6)0.0174 (6)0.2752 (5)0.0614 (18)
H230.98180.07230.27160.074*
C80.8162 (6)0.3313 (6)0.0757 (6)0.0657 (19)
H8A0.78850.37840.01730.079*
H8B0.78830.37140.13540.079*
C240.9100 (6)0.0909 (6)0.2979 (6)0.067 (2)
H240.97910.10780.30930.080*
C10.3323 (6)0.2011 (5)0.0619 (5)0.0511 (15)
C30.2328 (5)0.1256 (5)0.1234 (5)0.0490 (14)
C120.4347 (6)0.1366 (5)0.4513 (4)0.0496 (14)
H12A0.39020.13060.52080.060*
H12B0.49300.06730.43760.060*
C190.6330 (6)0.4289 (6)0.3881 (6)0.0623 (18)
H190.61250.39510.45270.075*
C330.1659 (7)0.2628 (6)0.5333 (5)0.0650 (18)
H330.22510.23530.57180.078*
C180.6826 (7)0.5228 (6)0.3780 (7)0.073 (2)
H180.69560.55090.43610.088*
C310.1982 (6)0.0077 (5)0.4136 (5)0.0587 (17)
H310.13930.04650.44970.070*
C370.0973 (6)0.2850 (5)0.3732 (6)0.0613 (18)
H370.11070.27260.30340.074*
C130.4998 (6)0.2336 (5)0.4421 (4)0.0521 (15)
H13A0.56400.21440.48070.062*
H13B0.44460.30020.46930.062*
C150.6431 (8)0.4408 (7)0.2059 (6)0.084 (3)
H150.62820.41560.14720.100*
C300.1788 (7)0.1157 (6)0.4124 (6)0.068 (2)
H300.10640.13140.44550.082*
C100.9750 (7)0.1999 (7)0.0165 (7)0.085 (3)
H10A0.97570.22980.04820.103*
H10B1.05120.14950.03840.103*
C90.9529 (6)0.2921 (6)0.0967 (7)0.080 (2)
H9A0.98240.26520.16550.096*
H9B0.99050.35170.08860.096*
C170.7117 (9)0.5727 (6)0.2841 (8)0.095 (3)
H170.74440.63490.27830.114*
C360.0121 (6)0.3474 (6)0.4187 (6)0.0654 (19)
H360.07200.37480.38080.078*
C340.0576 (8)0.3254 (7)0.5809 (6)0.078 (2)
H340.04420.33860.65060.094*
C350.0303 (7)0.3683 (6)0.5238 (6)0.075 (2)
H350.10250.41140.55530.090*
C160.6934 (10)0.5323 (7)0.1977 (7)0.107 (4)
H160.71480.56630.13350.129*
O40.2806 (5)0.4676 (4)0.3127 (4)0.0747 (15)
C40.3300 (6)0.3821 (5)0.2772 (5)0.0524 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0411 (5)0.0303 (4)0.0380 (4)0.0066 (3)0.0071 (3)0.0003 (3)
Fe10.0435 (5)0.0357 (4)0.0463 (5)0.0090 (4)0.0116 (4)0.0004 (3)
S20.0464 (8)0.0298 (7)0.0456 (8)0.0067 (6)0.0100 (6)0.0026 (5)
P10.0440 (8)0.0373 (8)0.0408 (8)0.0066 (6)0.0102 (7)0.0018 (6)
S10.0417 (8)0.0277 (6)0.0442 (8)0.0068 (6)0.0070 (6)0.0004 (5)
P20.0471 (9)0.0359 (8)0.0416 (8)0.0080 (7)0.0061 (7)0.0024 (6)
N10.043 (3)0.034 (2)0.048 (3)0.011 (2)0.007 (2)0.005 (2)
C50.048 (3)0.037 (3)0.042 (3)0.009 (3)0.007 (3)0.001 (2)
C210.051 (4)0.039 (3)0.053 (4)0.009 (3)0.012 (3)0.000 (3)
C70.039 (3)0.039 (3)0.056 (4)0.005 (3)0.001 (3)0.001 (3)
C260.049 (3)0.038 (3)0.049 (3)0.011 (3)0.002 (3)0.003 (2)
C200.047 (3)0.046 (3)0.039 (3)0.011 (3)0.007 (3)0.001 (2)
C110.050 (4)0.044 (3)0.059 (4)0.006 (3)0.008 (3)0.007 (3)
C290.080 (5)0.041 (4)0.071 (5)0.025 (4)0.022 (4)0.005 (3)
C20.050 (4)0.049 (4)0.068 (4)0.009 (3)0.019 (3)0.001 (3)
C270.065 (4)0.041 (3)0.057 (4)0.012 (3)0.002 (3)0.003 (3)
C280.079 (5)0.039 (3)0.054 (4)0.009 (3)0.008 (4)0.000 (3)
C320.050 (4)0.042 (3)0.048 (3)0.014 (3)0.002 (3)0.001 (3)
C250.047 (4)0.050 (4)0.076 (5)0.006 (3)0.021 (3)0.019 (3)
C60.049 (3)0.037 (3)0.052 (4)0.009 (3)0.015 (3)0.007 (2)
O10.096 (4)0.069 (3)0.058 (3)0.019 (3)0.016 (3)0.007 (2)
O30.064 (3)0.065 (3)0.074 (3)0.030 (3)0.009 (2)0.005 (2)
C140.058 (4)0.038 (3)0.056 (4)0.009 (3)0.022 (3)0.004 (3)
C220.054 (4)0.045 (3)0.052 (4)0.000 (3)0.012 (3)0.000 (3)
O20.061 (3)0.055 (3)0.158 (6)0.010 (3)0.021 (4)0.012 (3)
C230.047 (4)0.062 (4)0.067 (4)0.010 (3)0.014 (3)0.011 (3)
C80.052 (4)0.053 (4)0.084 (5)0.017 (3)0.005 (4)0.010 (3)
C240.037 (4)0.075 (5)0.088 (5)0.003 (3)0.013 (3)0.020 (4)
C10.052 (4)0.048 (4)0.058 (4)0.010 (3)0.020 (3)0.004 (3)
C30.047 (3)0.046 (3)0.056 (4)0.010 (3)0.012 (3)0.005 (3)
C120.064 (4)0.044 (3)0.037 (3)0.006 (3)0.011 (3)0.006 (2)
C190.062 (4)0.059 (4)0.067 (5)0.014 (3)0.006 (3)0.020 (3)
C330.070 (5)0.057 (4)0.058 (4)0.006 (4)0.002 (4)0.005 (3)
C180.077 (5)0.054 (4)0.098 (6)0.011 (4)0.025 (5)0.033 (4)
C310.060 (4)0.051 (4)0.067 (4)0.021 (3)0.005 (3)0.001 (3)
C370.061 (4)0.055 (4)0.063 (4)0.008 (3)0.001 (3)0.014 (3)
C130.062 (4)0.055 (4)0.039 (3)0.016 (3)0.007 (3)0.000 (3)
C150.141 (8)0.077 (5)0.061 (5)0.063 (6)0.045 (5)0.014 (4)
C300.064 (5)0.054 (4)0.088 (5)0.028 (4)0.004 (4)0.003 (4)
C100.067 (5)0.079 (6)0.120 (7)0.034 (4)0.029 (5)0.016 (5)
C90.054 (4)0.065 (5)0.110 (7)0.019 (4)0.010 (4)0.007 (4)
C170.143 (9)0.048 (4)0.122 (8)0.049 (5)0.061 (7)0.013 (5)
C360.044 (4)0.060 (4)0.088 (6)0.008 (3)0.006 (4)0.009 (4)
C340.086 (6)0.079 (6)0.052 (4)0.012 (5)0.022 (4)0.008 (4)
C350.070 (5)0.051 (4)0.089 (6)0.017 (4)0.029 (4)0.017 (4)
C160.189 (11)0.083 (6)0.095 (7)0.090 (7)0.075 (7)0.027 (5)
O40.085 (4)0.035 (2)0.087 (4)0.004 (2)0.012 (3)0.021 (2)
C40.060 (4)0.047 (4)0.048 (4)0.015 (3)0.008 (3)0.009 (3)
Geometric parameters (Å, º) top
Fe2—C41.766 (7)C6—H6A0.9700
Fe2—P12.224 (2)C6—H6B0.9700
Fe2—P22.265 (2)O1—C11.155 (7)
Fe2—S12.282 (2)O3—C31.165 (7)
Fe2—S22.289 (2)C14—C151.375 (9)
Fe2—Fe12.583 (2)C14—C191.405 (8)
Fe1—C31.786 (6)C22—C231.376 (9)
Fe1—C11.791 (7)C22—H220.9300
Fe1—C21.814 (7)C23—C241.398 (9)
Fe1—S12.281 (2)C23—H230.9300
Fe1—S22.286 (2)C8—C91.540 (9)
S2—C61.840 (6)C8—H8A0.9700
P1—C201.854 (6)C8—H8B0.9700
P1—C141.857 (6)C24—H240.9300
P1—C131.869 (6)C12—C131.555 (8)
S1—C51.847 (6)C12—H12A0.9700
P2—C121.842 (6)C12—H12B0.9700
P2—C321.848 (6)C19—C181.405 (9)
P2—C261.859 (6)C19—H190.9300
N1—C61.458 (7)C33—C341.385 (10)
N1—C51.467 (7)C33—H330.9300
N1—C71.501 (7)C18—C171.355 (12)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C31—C301.413 (9)
C21—C201.398 (8)C31—H310.9300
C21—C221.409 (8)C37—C361.385 (9)
C21—H210.9300C37—H370.9300
C7—C81.540 (8)C13—H13A0.9700
C7—C111.562 (8)C13—H13B0.9700
C7—H70.9800C15—C161.385 (10)
C26—C311.394 (8)C15—H150.9300
C26—C271.408 (8)C30—H300.9300
C20—C251.406 (8)C10—C91.502 (11)
C11—C101.533 (9)C10—H10A0.9700
C11—H11A0.9700C10—H10B0.9700
C11—H11B0.9700C9—H9A0.9700
C29—C281.386 (9)C9—H9B0.9700
C29—C301.392 (10)C17—C161.368 (11)
C29—H290.9300C17—H170.9300
C2—O21.160 (8)C36—C351.407 (10)
C27—C281.408 (8)C36—H360.9300
C27—H270.9300C34—C351.383 (11)
C28—H280.9300C34—H340.9300
C32—C371.405 (9)C35—H350.9300
C32—C331.408 (9)C16—H160.9300
C25—C241.390 (9)O4—C41.172 (7)
C25—H250.9300
C4—Fe2—P190.5 (2)C24—C25—C20120.1 (6)
C4—Fe2—P289.5 (2)C24—C25—H25120.0
P1—Fe2—P288.06 (9)C20—C25—H25120.0
C4—Fe2—S1162.7 (2)N1—C6—S2114.6 (4)
P1—Fe2—S1105.84 (8)N1—C6—H6A108.6
P2—Fe2—S196.46 (9)S2—C6—H6A108.6
C4—Fe2—S285.6 (2)N1—C6—H6B108.6
P1—Fe2—S2113.34 (8)S2—C6—H6B108.6
P2—Fe2—S2158.03 (7)H6A—C6—H6B107.6
S1—Fe2—S282.84 (9)C15—C14—C19118.7 (6)
C4—Fe2—Fe1107.3 (2)C15—C14—P1118.3 (5)
P1—Fe2—Fe1157.03 (6)C19—C14—P1123.0 (5)
P2—Fe2—Fe1106.10 (8)C23—C22—C21120.4 (6)
S1—Fe2—Fe155.51 (6)C23—C22—H22119.8
S2—Fe2—Fe155.57 (7)C21—C22—H22119.8
C3—Fe1—C197.4 (3)C22—C23—C24119.1 (6)
C3—Fe1—C291.7 (3)C22—C23—H23120.4
C1—Fe1—C2102.5 (3)C24—C23—H23120.4
C3—Fe1—S188.7 (2)C7—C8—C9102.7 (5)
C1—Fe1—S1101.9 (2)C7—C8—H8A111.2
C2—Fe1—S1155.3 (2)C9—C8—H8A111.2
C3—Fe1—S2158.3 (2)C7—C8—H8B111.2
C1—Fe1—S2103.9 (2)C9—C8—H8B111.2
C2—Fe1—S287.8 (2)H8A—C8—H8B109.1
S1—Fe1—S282.92 (9)C25—C24—C23121.2 (6)
C3—Fe1—Fe2103.2 (2)C25—C24—H24119.4
C1—Fe1—Fe2148.4 (2)C23—C24—H24119.4
C2—Fe1—Fe2100.5 (2)O1—C1—Fe1177.8 (6)
S1—Fe1—Fe255.53 (6)O3—C3—Fe1178.7 (6)
S2—Fe1—Fe255.67 (5)C13—C12—P2110.7 (4)
C6—S2—Fe1109.0 (2)C13—C12—H12A109.5
C6—S2—Fe2114.97 (19)P2—C12—H12A109.5
Fe1—S2—Fe268.76 (6)C13—C12—H12B109.5
C20—P1—C14101.9 (3)P2—C12—H12B109.5
C20—P1—C13100.5 (3)H12A—C12—H12B108.1
C14—P1—C13103.1 (3)C14—C19—C18119.2 (7)
C20—P1—Fe2123.06 (19)C14—C19—H19120.4
C14—P1—Fe2119.4 (2)C18—C19—H19120.4
C13—P1—Fe2105.7 (2)C34—C33—C32122.0 (7)
C5—S1—Fe1110.9 (2)C34—C33—H33119.0
C5—S1—Fe2112.53 (19)C32—C33—H33119.0
Fe1—S1—Fe268.96 (7)C17—C18—C19120.5 (7)
C12—P2—C32105.5 (3)C17—C18—H18119.7
C12—P2—C26100.2 (3)C19—C18—H18119.7
C32—P2—C26102.5 (3)C26—C31—C30120.8 (6)
C12—P2—Fe2106.9 (2)C26—C31—H31119.6
C32—P2—Fe2112.7 (2)C30—C31—H31119.6
C26—P2—Fe2126.9 (2)C36—C37—C32122.6 (7)
C6—N1—C5110.3 (4)C36—C37—H37118.7
C6—N1—C7112.1 (4)C32—C37—H37118.7
C5—N1—C7110.1 (4)C12—C13—P1107.3 (4)
N1—C5—S1117.3 (4)C12—C13—H13A110.3
N1—C5—H5A108.0P1—C13—H13A110.3
S1—C5—H5A108.0C12—C13—H13B110.3
N1—C5—H5B108.0P1—C13—H13B110.3
S1—C5—H5B108.0H13A—C13—H13B108.5
H5A—C5—H5B107.2C14—C15—C16121.0 (7)
C20—C21—C22120.7 (6)C14—C15—H15119.5
C20—C21—H21119.6C16—C15—H15119.5
C22—C21—H21119.6C29—C30—C31120.1 (6)
N1—C7—C8114.5 (5)C29—C30—H30120.0
N1—C7—C11112.5 (5)C31—C30—H30120.0
C8—C7—C11106.1 (5)C9—C10—C11106.8 (6)
N1—C7—H7107.8C9—C10—H10A110.4
C8—C7—H7107.8C11—C10—H10A110.4
C11—C7—H7107.8C9—C10—H10B110.4
C31—C26—C27118.4 (6)C11—C10—H10B110.4
C31—C26—P2122.2 (5)H10A—C10—H10B108.6
C27—C26—P2119.4 (5)C10—C9—C8103.3 (6)
C21—C20—C25118.4 (6)C10—C9—H9A111.1
C21—C20—P1121.1 (4)C8—C9—H9A111.1
C25—C20—P1120.4 (4)C10—C9—H9B111.1
C10—C11—C7104.6 (5)C8—C9—H9B111.1
C10—C11—H11A110.8H9A—C9—H9B109.1
C7—C11—H11A110.8C18—C17—C16120.5 (7)
C10—C11—H11B110.8C18—C17—H17119.7
C7—C11—H11B110.8C16—C17—H17119.7
H11A—C11—H11B108.9C37—C36—C35118.2 (7)
C28—C29—C30119.7 (6)C37—C36—H36120.9
C28—C29—H29120.1C35—C36—H36120.9
C30—C29—H29120.1C35—C34—C33119.4 (7)
O2—C2—Fe1179.6 (7)C35—C34—H34120.3
C26—C27—C28120.6 (6)C33—C34—H34120.3
C26—C27—H27119.7C34—C35—C36121.0 (7)
C28—C27—H27119.7C34—C35—H35119.5
C29—C28—C27120.4 (6)C36—C35—H35119.5
C29—C28—H28119.8C17—C16—C15120.0 (8)
C27—C28—H28119.8C17—C16—H16120.0
C37—C32—C33116.8 (6)C15—C16—H16120.0
C37—C32—P2119.0 (5)O4—C4—Fe2176.2 (6)
C33—C32—P2124.2 (5)
C4—Fe2—Fe1—C3102.4 (3)S1—Fe2—P2—C32140.4 (2)
P1—Fe2—Fe1—C3118.4 (2)S2—Fe2—P2—C3253.6 (3)
P2—Fe2—Fe1—C37.8 (2)Fe1—Fe2—P2—C3284.5 (2)
S1—Fe2—Fe1—C379.0 (2)C4—Fe2—P2—C26150.6 (3)
S2—Fe2—Fe1—C3174.3 (2)P1—Fe2—P2—C26118.9 (3)
C4—Fe2—Fe1—C1128.3 (4)S1—Fe2—P2—C2613.2 (3)
P1—Fe2—Fe1—C110.9 (4)S2—Fe2—P2—C2673.7 (3)
P2—Fe2—Fe1—C1137.1 (4)Fe1—Fe2—P2—C2642.8 (3)
S1—Fe2—Fe1—C150.3 (4)C6—N1—C5—S166.0 (5)
S2—Fe2—Fe1—C156.4 (4)C7—N1—C5—S1169.8 (4)
C4—Fe2—Fe1—C28.1 (3)Fe1—S1—C5—N167.2 (4)
P1—Fe2—Fe1—C2147.3 (3)Fe2—S1—C5—N17.9 (5)
P2—Fe2—Fe1—C286.5 (2)C6—N1—C7—C849.3 (7)
S1—Fe2—Fe1—C2173.3 (2)C5—N1—C7—C8172.5 (5)
S2—Fe2—Fe1—C280.0 (2)C6—N1—C7—C11170.6 (5)
C4—Fe2—Fe1—S1178.6 (2)C5—N1—C7—C1166.2 (6)
P1—Fe2—Fe1—S139.43 (14)C12—P2—C26—C31104.1 (6)
P2—Fe2—Fe1—S186.77 (9)C32—P2—C26—C314.5 (6)
S2—Fe2—Fe1—S1106.72 (9)Fe2—P2—C26—C31135.7 (5)
C4—Fe2—Fe1—S271.9 (2)C12—P2—C26—C2773.5 (6)
P1—Fe2—Fe1—S267.29 (15)C32—P2—C26—C27177.9 (5)
P2—Fe2—Fe1—S2166.50 (7)Fe2—P2—C26—C2746.7 (6)
S1—Fe2—Fe1—S2106.72 (9)C22—C21—C20—C252.0 (9)
C3—Fe1—S2—C6125.4 (6)C22—C21—C20—P1174.9 (5)
C1—Fe1—S2—C643.1 (3)C14—P1—C20—C21166.1 (5)
C2—Fe1—S2—C6145.5 (3)C13—P1—C20—C2187.9 (5)
S1—Fe1—S2—C657.5 (2)Fe2—P1—C20—C2128.7 (6)
Fe2—Fe1—S2—C6110.2 (2)C14—P1—C20—C2517.0 (6)
C3—Fe1—S2—Fe215.2 (5)C13—P1—C20—C2588.9 (5)
C1—Fe1—S2—Fe2153.3 (2)Fe2—P1—C20—C25154.4 (4)
C2—Fe1—S2—Fe2104.3 (2)N1—C7—C11—C10134.1 (6)
S1—Fe1—S2—Fe252.71 (5)C8—C7—C11—C108.2 (7)
C4—Fe2—S2—C6143.8 (3)C31—C26—C27—C282.4 (9)
P1—Fe2—S2—C655.1 (2)P2—C26—C27—C28179.9 (5)
P2—Fe2—S2—C6138.6 (3)C30—C29—C28—C270.5 (10)
S1—Fe2—S2—C649.1 (2)C26—C27—C28—C290.5 (10)
Fe1—Fe2—S2—C6101.8 (2)C12—P2—C32—C37170.4 (5)
C4—Fe2—S2—Fe1114.4 (2)C26—P2—C32—C3785.1 (5)
P1—Fe2—S2—Fe1156.91 (6)Fe2—P2—C32—C3754.2 (5)
P2—Fe2—S2—Fe136.82 (17)C12—P2—C32—C336.4 (6)
S1—Fe2—S2—Fe152.71 (7)C26—P2—C32—C3398.0 (6)
C4—Fe2—P1—C20178.1 (3)Fe2—P2—C32—C33122.7 (5)
P2—Fe2—P1—C2092.4 (2)C21—C20—C25—C241.0 (10)
S1—Fe2—P1—C203.8 (2)P1—C20—C25—C24175.9 (5)
S2—Fe2—P1—C2092.7 (2)C5—N1—C6—S270.1 (5)
Fe1—Fe2—P1—C2036.8 (3)C7—N1—C6—S2166.8 (4)
C4—Fe2—P1—C1447.7 (3)Fe1—S2—C6—N175.7 (4)
P2—Fe2—P1—C14137.2 (2)Fe2—S2—C6—N10.9 (5)
S1—Fe2—P1—C14126.7 (2)C20—P1—C14—C1589.2 (6)
S2—Fe2—P1—C1437.7 (2)C13—P1—C14—C15166.9 (6)
Fe1—Fe2—P1—C1493.7 (3)Fe2—P1—C14—C1550.2 (7)
C4—Fe2—P1—C1367.7 (3)C20—P1—C14—C1988.1 (6)
P2—Fe2—P1—C1321.8 (2)C13—P1—C14—C1915.8 (6)
S1—Fe2—P1—C13118.0 (2)Fe2—P1—C14—C19132.5 (5)
S2—Fe2—P1—C13153.1 (2)C20—C21—C22—C232.1 (9)
Fe1—Fe2—P1—C13150.9 (2)C21—C22—C23—C241.0 (10)
C3—Fe1—S1—C5145.9 (3)N1—C7—C8—C9154.6 (6)
C1—Fe1—S1—C548.6 (3)C11—C7—C8—C929.9 (7)
C2—Fe1—S1—C5123.0 (5)C32—P2—C12—C1389.4 (5)
S2—Fe1—S1—C554.2 (2)C26—P2—C12—C13164.5 (4)
Fe2—Fe1—S1—C5107.0 (2)Fe2—P2—C12—C1330.8 (5)
C3—Fe1—S1—Fe2107.1 (2)C15—C14—C19—C181.9 (10)
C1—Fe1—S1—Fe2155.6 (2)P1—C14—C19—C18175.4 (5)
C2—Fe1—S1—Fe215.9 (5)C37—C32—C33—C341.3 (10)
S2—Fe1—S1—Fe252.84 (6)P2—C32—C33—C34178.2 (6)
C4—Fe2—S1—C5100.3 (7)C14—C19—C18—C170.5 (11)
P1—Fe2—S1—C560.3 (2)C27—C26—C31—C303.3 (10)
P2—Fe2—S1—C5150.2 (2)P2—C26—C31—C30179.1 (5)
S2—Fe2—S1—C552.0 (2)C33—C32—C37—C361.6 (10)
Fe1—Fe2—S1—C5104.7 (2)P2—C32—C37—C36178.7 (5)
C4—Fe2—S1—Fe14.5 (7)P2—C12—C13—P149.0 (5)
P1—Fe2—S1—Fe1165.07 (6)C20—P1—C13—C1283.2 (5)
P2—Fe2—S1—Fe1105.12 (8)C14—P1—C13—C12171.8 (4)
S2—Fe2—S1—Fe152.76 (6)Fe2—P1—C13—C1245.8 (4)
C4—Fe2—P2—C1292.2 (3)C19—C14—C15—C162.8 (13)
P1—Fe2—P2—C121.6 (2)P1—C14—C15—C16174.6 (8)
S1—Fe2—P2—C12104.1 (2)C28—C29—C30—C310.5 (11)
S2—Fe2—P2—C12169.1 (2)C26—C31—C30—C292.4 (11)
Fe1—Fe2—P2—C12160.0 (2)C7—C11—C10—C917.5 (8)
C4—Fe2—P2—C3223.3 (3)C11—C10—C9—C836.4 (9)
P1—Fe2—P2—C32113.8 (2)C7—C8—C9—C1040.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···S10.932.773.490 (7)135
C27—H27···S10.932.843.416 (7)122

Experimental details

Crystal data
Chemical formula[Fe2(C7H13NS2)(C26H24P2)(CO)4]
Mr797.44
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)11.763 (10), 12.402 (12), 13.284 (13)
α, β, γ (°)84.66 (3), 78.19 (3), 76.33 (3)
V3)1841 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.12 × 0.09 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.840, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13988, 8063, 4461
Rint0.046
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.209, 1.07
No. of reflections8058
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.66

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe2—C41.766 (7)Fe1—C31.786 (6)
Fe2—P12.224 (2)Fe1—C11.791 (7)
Fe2—P22.265 (2)Fe1—C21.814 (7)
Fe2—S12.282 (2)Fe1—S12.281 (2)
Fe2—S22.289 (2)Fe1—S22.286 (2)
Fe2—Fe12.583 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···S10.932.773.490 (7)135
C27—H27···S10.932.843.416 (7)122
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (21071145) for financial support.

References

First citationDarensbourg, M. Y., Lyon, E. J. & Smee, J. J. (2000). Coord. Chem. Rev. 206, 533–561.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLawrence, J. D., Li, H. X., Rauchfuss, T. B., Benard, M. & Rohmer, M. M. (2001). Angew. Chem. Int. Ed. Eng. 40, 1768–1771.  CrossRef CAS Google Scholar
First citationLi, H. & Rauchfuss, T. B. (2002). J. Am. Chem. Soc. 124, 726–727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1500-m1501
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds