metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1478-m1479

Poly[[tetra­aqua­tetra­kis­[μ3-5-(pyridine-4-carboxamido)­isophthalato]cobalt(II)dierbium(III)] tetra­hydrate]

aKey Laboratory of Functional Organometallic Materials, Hengyang Normal University, Department of Chemistry and Materials Science, Hengyang, Hunan 421008, People's Republic of China
*Correspondence e-mail: cmsniu@163.com, zhangchunhua668@163.com

(Received 20 September 2011; accepted 28 September 2011; online 5 October 2011)

In the centrosymmetric polymeric title compound, {[CoEr2(C14H8N2O5)4(H2O)4]·4H2O}n, the ErIII cation has a coordination number of eight and is surrounded by seven carboxyl­ate O atoms from four 5-(pyridine-4-carboxamido)­isophthalate (L) ligands and one water mol­ecule, forming a distorted square-anti­prismatic arrangement. The CoII cation is located on an inversion center and is coordinated by two pyridine N atoms, two carboxyl­ate O atoms and two water mol­ecules in a distorted octa­hedral geometry. The asymmetric unit contains two anionic L ligands. One bridges two ErIII cations and one CoII cation through two carboxyl­ate groups and one pyridine N atom, while the other bridges two ErIII cations and one CoII cation through two carboxyl­ate groups. Extensive O—H⋯O, O—H⋯N and N—H⋯O hydrogen-bonding inter­actions are present in the crystal, involving all uncoordinated water mol­ecules and the uncoordinated pyridine N atom of one of the ligands bonded to an adjacent coordinated water mol­ecule. The title compound is isotypic with the gadolinium analogue.

Related literature

For the isotypic structure of the gadolinium analogue, see: Deng et al. (2011[Deng, Y.-F., Chen, M.-S., Zhang, C.-H. & Kuang, D.-Z. (2011). Acta Cryst. E67, m1431-m1432.]). For related hetero-metallic complexes, see: Chen et al. (2011a[Chen, M. S., Deng, Y. F., Zhang, C. H., Kang, D. Z., Nie, X. & Liu, Y. (2011a). Inorg. Chem. Commun. 14, 944-947.],b[Chen, M. S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2011b). Supramol. Chem. 23, 117-124.]); Gu & Xue (2006[Gu, X. J. & Xue, D. F. (2006). Inorg. Chem. 45, 9257-9261.]); Liang et al. (2000[Liang, Y. C., Cao, R., Su, W. P., Hong, M. C. & Zhang, W. J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.]); Prasad et al. (2007[Prasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851-2854.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934-936.], 2004[Zhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]).

[Scheme 1]

Experimental

Crystal data
  • [CoEr2(C14H8N2O5)4(H2O)4]·4H2O

  • Mr = 1674.47

  • Triclinic, [P \overline 1]

  • a = 10.0816 (9) Å

  • b = 10.7844 (10) Å

  • c = 13.7316 (12) Å

  • α = 79.174 (1)°

  • β = 78.771 (2)°

  • γ = 86.355 (2)°

  • V = 1437.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.560, Tmax = 0.735

  • 7172 measured reflections

  • 4979 independent reflections

  • 4649 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.136

  • S = 1.02

  • 4979 reflections

  • 430 parameters

  • H-atom parameters constrained

  • Δρmax = 3.52 e Å−3

  • Δρmin = −2.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3Wi 0.86 2.16 3.007 (8) 166
O1W—H1WB⋯O4Wii 0.85 2.05 2.769 (9) 142
O1W—H1WA⋯O8iii 0.85 2.22 2.975 (8) 149
O2W—H2WB⋯O4Wiv 0.85 2.32 3.109 (10) 156
O2W—H2WC⋯N2v 0.85 1.94 2.687 (8) 147
O3W—H3WA⋯O7vi 0.85 2.30 3.041 (8) 147
O3W—H3WB⋯O9 0.85 2.30 3.042 (8) 147
O4W—H4WA⋯O3vii 0.85 1.92 2.729 (8) 159
O4W—H4WB⋯O6viii 0.85 1.95 2.762 (8) 159
Symmetry codes: (i) x-1, y, z; (ii) x-1, y, z+1; (iii) -x, -y+1, -z+2; (iv) x-1, y+1, z+1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z-1; (viii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of higher-dimensional transition-lanthanide metal heterometallic networks have attracted increasing attention, which is justified not only by the fascinating structural diversity of the resulting architectures but also by the potential applications of these complexes as important functional solid materials (Chen et al., 2011a,b; Gu & Xue, 2006; Liang et al., 2000; Prasad et al., 2007; Zhao et al., 2003, 2004). In this context, we have synthesized a new 3d-4f coordination polymer, [CoEr2(C14H8O5N2)4(H2O)4].4H2O, or [CoEr2(L)4(H2O)4].4H2O and report its crystal structure here.

The title compound is isotypic with the gadolinium analogue (Deng et al., 2011). The central ErIII ion is eight-coordinated by seven O atoms from four L2- ligands and one water molecule, forming a distorted square antiprismatic arrangement around the metal (Fig. 1). The carboxyl groups of the two unique L2- ligands exhibit different coordination modes: one coordinates to two ErIII and one CoII atom (site symmetry 1) using its two carboxylate groups with bidentate-chelate and bis-monodentate coordination modes while the pyridyl group is free of coordination. The other ligand coordinates to two ErIII ions through the carboxylate groups with a bidentate-chelate coordination mode and to one CoII via the pyridyl group. Based on the coordination modes of the carboxylate and pyridyl groups of the ligands, a three-dimensional network is formed (Fig. 2), which is similar to that of complexes of the type {[LnCo0.5(INAIP)2(H2O)2].2H2O}n (Chen, et al. 2011b). Extensive O—H···O and N—H···O hydrogen bonding interactions are present in the crystal structure (Table 1).

Related literature top

For the isotypic structure of the gadolinium analogue, see: Deng et al. (2011). For related hetero-metallic complexes, see: Chen et al. (2011a,b); Gu & Xue (2006); Liang et al. (2000); Prasad et al. (2007); Zhao et al. (2003, 2004).

Experimental top

A mixture of 0.05 mmol Er(NO3)3.6H2O (22.5 mg. 0.05 mmol), H2L (28.6 mg, 0.1 mmol), Co(OAc)2.4H2O (13.2 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (4 ml) and H2O (6 ml) was heated in a 16 mL capacity Teflon-lined reaction vessel at 433 K for 4 days. The reaction mixture was then cooled to room temperature over a period of 40 h. The product was collected by filtration, washed with water and air-dried.

Refinement top

H atoms bonded to C atoms were placed geometrically and refiined as riding atoms. The pyridyl N atoms were found from a difference Fourier maps and refined as riding, with N—H = 0.8600 Å, and the water H atoms were found from Fourier difference maps and refined with restraints for O—H distances (0.85 Å) with Uiso(H) = 1.2Ueq(O). The highest residual electron density was found at 0.88 Å from Er1 atom and the deepest hole at 0.91 Å from the Er1 atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -1 + x, y, 1 + z (ii) -x, 1 - y, 1 - z (iii) -1 - x, 1 - y, 2 - z (iv) x, 1 + y, z (v)-1 + x, y, z.]
[Figure 2] Fig. 2. Projectionn along [001] showing the three-dimensional structure of the compound. Colour code: Er (pink), Co (light blue), O (red), N (blue), C (grey).
Poly[[tetraaquatetrakis[µ3-5-(pyridine-4- carboxamido)isophthalato]cobalt(II)dierbium(III)] tetrahydrate] top
Crystal data top
[CoEr2(C14H8N2O5)4(H2O)4]·4H2OZ = 1
Mr = 1674.47F(000) = 827
Triclinic, P1Dx = 1.934 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0816 (9) ÅCell parameters from 5230 reflections
b = 10.7844 (10) Åθ = 2.3–28.1°
c = 13.7316 (12) ŵ = 3.28 mm1
α = 79.174 (1)°T = 293 K
β = 78.771 (2)°Block, pink
γ = 86.355 (2)°0.20 × 0.18 × 0.10 mm
V = 1437.7 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4979 independent reflections
Radiation source: fine-focus sealed tube4649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 512
Tmin = 0.560, Tmax = 0.735k = 1212
7172 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1058P)2]
where P = (Fo2 + 2Fc2)/3
4979 reflections(Δ/σ)max = 0.001
430 parametersΔρmax = 3.52 e Å3
0 restraintsΔρmin = 2.99 e Å3
Crystal data top
[CoEr2(C14H8N2O5)4(H2O)4]·4H2Oγ = 86.355 (2)°
Mr = 1674.47V = 1437.7 (2) Å3
Triclinic, P1Z = 1
a = 10.0816 (9) ÅMo Kα radiation
b = 10.7844 (10) ŵ = 3.28 mm1
c = 13.7316 (12) ÅT = 293 K
α = 79.174 (1)°0.20 × 0.18 × 0.10 mm
β = 78.771 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4979 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4649 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.735Rint = 0.096
7172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 3.52 e Å3
4979 reflectionsΔρmin = 2.99 e Å3
430 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50001.00000.0223 (3)
Er10.18176 (2)0.92224 (2)0.796262 (18)0.01355 (14)
C10.2010 (6)0.5274 (6)0.7723 (5)0.0162 (12)
C20.1777 (7)0.5835 (6)0.6709 (5)0.0203 (13)
H2A0.17120.67070.65280.024*
C30.1640 (6)0.5091 (6)0.5959 (5)0.0178 (13)
C40.1655 (6)0.3777 (6)0.6249 (5)0.0187 (13)
H4A0.15430.32660.57620.022*
C50.1833 (6)0.3243 (6)0.7250 (5)0.0165 (12)
C60.2041 (6)0.3972 (6)0.8004 (5)0.0187 (13)
H6A0.21970.35940.86820.022*
C70.1869 (6)0.1837 (6)0.7518 (5)0.0178 (13)
C80.2318 (7)0.6074 (6)0.8526 (5)0.0205 (14)
C90.1651 (7)0.5169 (7)0.4170 (5)0.0264 (15)
C100.1506 (7)0.6000 (7)0.3142 (5)0.0239 (15)
C110.1432 (8)0.5403 (8)0.2318 (5)0.0325 (17)
H11A0.14160.45260.24060.039*
C120.1385 (9)0.6116 (8)0.1383 (5)0.0356 (18)
H12A0.13380.56980.08430.043*
C130.1448 (8)0.7939 (8)0.1996 (6)0.0337 (17)
H13A0.14420.88160.18880.040*
C140.1505 (8)0.7294 (7)0.2963 (5)0.0284 (16)
H14A0.15430.77300.34910.034*
C150.2360 (7)0.8871 (6)0.6690 (5)0.0198 (14)
C160.2649 (6)0.8586 (6)0.5711 (5)0.0188 (13)
H16A0.19460.85270.53750.023*
C170.3943 (6)0.8397 (6)0.5257 (5)0.0182 (13)
C180.5006 (6)0.8521 (6)0.5738 (5)0.0192 (13)
H18A0.58960.84200.54130.023*
C190.4738 (6)0.8796 (6)0.6698 (5)0.0191 (13)
C200.3414 (6)0.8968 (6)0.7185 (5)0.0199 (13)
H20A0.32370.91470.78350.024*
C210.0908 (6)0.9019 (6)0.7170 (5)0.0195 (13)
C220.5927 (6)0.8916 (6)0.7177 (5)0.0181 (13)
C230.5058 (6)0.7065 (7)0.4098 (5)0.0211 (14)
C240.5094 (6)0.6636 (7)0.3100 (5)0.0226 (14)
C250.5104 (7)0.5355 (7)0.3108 (5)0.0258 (15)
H25A0.50770.47830.37090.031*
C260.5155 (7)0.4933 (7)0.2211 (5)0.0274 (15)
H26A0.51500.40680.22250.033*
C270.5258 (8)0.6949 (7)0.1321 (5)0.0300 (16)
H27A0.53540.74970.07030.036*
C280.5172 (7)0.7460 (7)0.2184 (5)0.0262 (15)
H28A0.51670.83300.21510.031*
N10.1457 (5)0.5694 (5)0.4954 (4)0.0197 (11)
H10.11990.64630.48190.024*
N20.1400 (7)0.7376 (7)0.1191 (5)0.0352 (15)
N30.4213 (5)0.8043 (5)0.4280 (4)0.0199 (12)
H30.38310.84600.38060.024*
N40.5212 (6)0.5710 (6)0.1323 (4)0.0243 (13)
O10.3059 (5)0.5656 (5)0.9346 (3)0.0292 (11)
O20.1793 (5)0.7147 (4)0.8335 (4)0.0280 (11)
O30.1703 (6)0.1271 (4)0.8379 (3)0.0325 (12)
O40.2075 (6)0.1200 (5)0.6898 (4)0.0331 (12)
O50.1926 (8)0.4070 (5)0.4251 (4)0.0521 (18)
O60.0561 (5)0.9015 (5)0.8108 (4)0.0279 (12)
O70.0016 (5)0.9159 (6)0.6644 (3)0.0356 (13)
O80.5758 (5)0.9079 (5)0.8090 (4)0.0285 (12)
O90.7095 (4)0.8844 (4)0.6686 (3)0.0214 (10)
O100.5752 (5)0.6497 (6)0.4668 (4)0.0357 (13)
O1W0.4267 (6)0.3145 (5)1.0665 (4)0.0339 (12)
H1WB0.35910.28681.02850.041*
H1WA0.48800.26031.08430.041*
O2W0.2229 (6)0.9033 (5)0.9693 (4)0.0335 (12)
H2WB0.19080.96500.98630.040*
H2WC0.18800.83510.99670.040*
O3W0.9154 (8)0.8418 (6)0.4834 (4)0.0568 (19)
H3WA0.97110.86010.51710.068*
H3WB0.83690.84570.51890.068*
O4W0.8025 (7)0.1615 (8)0.0328 (5)0.066 (2)
H4WA0.82940.14090.02480.079*
H4WB0.85950.13310.07020.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0270 (7)0.0208 (7)0.0212 (6)0.0031 (5)0.0058 (5)0.0071 (5)
Er10.0144 (2)0.0097 (2)0.0188 (2)0.00035 (12)0.00753 (12)0.00390 (12)
C10.017 (3)0.011 (3)0.021 (3)0.001 (2)0.005 (2)0.004 (2)
C20.023 (3)0.012 (3)0.026 (3)0.000 (3)0.004 (3)0.003 (3)
C30.016 (3)0.015 (3)0.023 (3)0.001 (2)0.005 (2)0.003 (2)
C40.017 (3)0.016 (3)0.026 (3)0.002 (2)0.006 (3)0.007 (3)
C50.016 (3)0.012 (3)0.023 (3)0.002 (2)0.007 (2)0.004 (2)
C60.017 (3)0.016 (3)0.023 (3)0.001 (3)0.007 (3)0.001 (3)
C70.014 (3)0.018 (3)0.021 (3)0.000 (3)0.006 (2)0.002 (3)
C80.021 (3)0.017 (3)0.027 (3)0.008 (3)0.013 (3)0.006 (3)
C90.031 (4)0.024 (4)0.026 (3)0.000 (3)0.012 (3)0.005 (3)
C100.018 (3)0.029 (4)0.028 (4)0.001 (3)0.010 (3)0.006 (3)
C110.041 (4)0.029 (4)0.031 (4)0.002 (3)0.011 (3)0.009 (3)
C120.045 (5)0.042 (5)0.022 (4)0.001 (4)0.008 (3)0.011 (3)
C130.040 (4)0.028 (4)0.035 (4)0.007 (3)0.016 (3)0.002 (3)
C140.032 (4)0.030 (4)0.026 (4)0.003 (3)0.014 (3)0.002 (3)
C150.017 (3)0.016 (3)0.028 (3)0.001 (3)0.008 (3)0.006 (3)
C160.016 (3)0.020 (3)0.024 (3)0.002 (3)0.012 (2)0.005 (3)
C170.022 (3)0.014 (3)0.022 (3)0.000 (3)0.010 (3)0.006 (2)
C180.014 (3)0.019 (3)0.025 (3)0.000 (2)0.007 (3)0.003 (3)
C190.013 (3)0.019 (3)0.027 (3)0.003 (3)0.008 (3)0.003 (3)
C200.022 (3)0.023 (3)0.019 (3)0.002 (3)0.009 (3)0.011 (3)
C210.020 (3)0.013 (3)0.028 (3)0.003 (2)0.009 (3)0.006 (3)
C220.018 (3)0.011 (3)0.029 (3)0.006 (2)0.007 (3)0.008 (3)
C230.015 (3)0.031 (4)0.019 (3)0.001 (3)0.005 (3)0.006 (3)
C240.009 (3)0.035 (4)0.026 (3)0.002 (3)0.003 (2)0.011 (3)
C250.031 (4)0.030 (4)0.020 (3)0.002 (3)0.009 (3)0.009 (3)
C260.036 (4)0.027 (4)0.024 (3)0.004 (3)0.012 (3)0.013 (3)
C270.037 (4)0.031 (4)0.022 (3)0.007 (3)0.006 (3)0.002 (3)
C280.026 (4)0.029 (4)0.028 (3)0.003 (3)0.006 (3)0.013 (3)
N10.025 (3)0.013 (3)0.022 (3)0.001 (2)0.009 (2)0.000 (2)
N20.040 (4)0.040 (4)0.027 (3)0.004 (3)0.016 (3)0.001 (3)
N30.022 (3)0.026 (3)0.015 (3)0.002 (2)0.010 (2)0.006 (2)
N40.021 (3)0.029 (3)0.026 (3)0.003 (2)0.003 (2)0.013 (3)
O10.030 (3)0.032 (3)0.025 (2)0.009 (2)0.001 (2)0.009 (2)
O20.043 (3)0.009 (2)0.033 (3)0.005 (2)0.010 (2)0.0046 (19)
O30.069 (4)0.011 (2)0.023 (2)0.004 (2)0.020 (2)0.0013 (19)
O40.062 (4)0.017 (3)0.029 (3)0.002 (2)0.025 (2)0.007 (2)
O50.106 (6)0.021 (3)0.035 (3)0.020 (3)0.028 (3)0.002 (2)
O60.019 (2)0.045 (3)0.024 (2)0.001 (2)0.0048 (19)0.015 (2)
O70.017 (2)0.066 (4)0.024 (2)0.005 (2)0.007 (2)0.005 (2)
O80.022 (3)0.046 (3)0.025 (2)0.002 (2)0.009 (2)0.017 (2)
O90.012 (2)0.026 (3)0.029 (2)0.0022 (18)0.0079 (18)0.010 (2)
O100.034 (3)0.046 (3)0.035 (3)0.018 (3)0.021 (2)0.020 (2)
O1W0.040 (3)0.029 (3)0.033 (3)0.000 (2)0.007 (2)0.007 (2)
O2W0.054 (3)0.021 (3)0.026 (2)0.002 (2)0.016 (2)0.000 (2)
O3W0.104 (6)0.038 (4)0.032 (3)0.018 (4)0.013 (3)0.012 (3)
O4W0.053 (4)0.111 (7)0.034 (3)0.023 (4)0.015 (3)0.014 (4)
Geometric parameters (Å, º) top
Co1—O1i2.095 (5)C15—C161.406 (9)
Co1—O12.095 (5)C15—C211.495 (9)
Co1—N4ii2.152 (5)C16—C171.353 (9)
Co1—N4iii2.152 (5)C16—H16A0.9300
Co1—O1W2.184 (5)C17—C181.390 (9)
Co1—O1Wi2.184 (5)C17—N31.434 (8)
Er1—O22.200 (5)C18—C191.377 (9)
Er1—O2W2.303 (5)C18—H18A0.9300
Er1—O72.330 (5)C19—C201.389 (9)
Er1—O9iv2.348 (4)C19—C221.498 (9)
Er1—O4v2.379 (5)C20—H20A0.9300
Er1—O3v2.398 (5)C21—O71.245 (8)
Er1—O8iv2.429 (5)C21—O61.266 (8)
Er1—O62.438 (5)C22—O91.243 (8)
C1—C61.385 (9)C22—O81.277 (8)
C1—C21.390 (9)C23—O101.207 (8)
C1—C81.500 (8)C23—N31.342 (9)
C2—C31.402 (9)C23—C241.521 (9)
C2—H2A0.9300C24—C251.379 (10)
C3—C41.398 (9)C24—C281.389 (10)
C3—N11.393 (8)C25—C261.382 (9)
C4—C51.368 (9)C25—H25A0.9300
C4—H4A0.9300C26—N41.336 (10)
C5—C61.392 (9)C26—H26A0.9300
C5—C71.492 (9)C27—N41.339 (10)
C6—H6A0.9300C27—C281.384 (10)
C7—O41.244 (8)C27—H27A0.9300
C7—O31.261 (8)C28—H28A0.9300
C8—O11.247 (8)N1—H10.8600
C8—O21.263 (8)N3—H30.8600
C9—O51.214 (9)N4—Co1vi2.152 (5)
C9—N11.358 (8)O3—Er1vii2.398 (5)
C9—C101.509 (10)O4—Er1vii2.379 (5)
C10—C141.371 (11)O8—Er1viii2.429 (5)
C10—C111.391 (10)O9—Er1viii2.348 (4)
C11—C121.362 (11)O1W—H1WB0.8488
C11—H11A0.9300O1W—H1WA0.8469
C12—N21.334 (11)O2W—H2WB0.8474
C12—H12A0.9300O2W—H2WC0.8489
C13—N21.349 (10)O3W—H3WA0.8477
C13—C141.370 (10)O3W—H3WB0.8482
C13—H13A0.9300O4W—H4WA0.8494
C14—H14A0.9300O4W—H4WB0.8487
C15—C201.387 (9)
O1i—Co1—O1180.0O5—C9—C10118.5 (6)
O1i—Co1—N4ii87.4 (2)N1—C9—C10117.9 (6)
O1—Co1—N4ii92.6 (2)C14—C10—C11117.6 (7)
O1i—Co1—N4iii92.6 (2)C14—C10—C9125.2 (6)
O1—Co1—N4iii87.4 (2)C11—C10—C9117.1 (7)
N4ii—Co1—N4iii180.000 (1)C12—C11—C10119.3 (7)
O1i—Co1—O1W85.9 (2)C12—C11—H11A120.4
O1—Co1—O1W94.1 (2)C10—C11—H11A120.4
N4ii—Co1—O1W90.5 (2)N2—C12—C11124.2 (7)
N4iii—Co1—O1W89.5 (2)N2—C12—H12A117.9
O1i—Co1—O1Wi94.1 (2)C11—C12—H12A117.9
O1—Co1—O1Wi85.9 (2)N2—C13—C14123.9 (7)
N4ii—Co1—O1Wi89.5 (2)N2—C13—H13A118.1
N4iii—Co1—O1Wi90.5 (2)C14—C13—H13A118.1
O1W—Co1—O1Wi180.000 (1)C13—C14—C10119.3 (7)
O2—Er1—O2W82.38 (18)C13—C14—H14A120.3
O2—Er1—O790.7 (2)C10—C14—H14A120.3
O2W—Er1—O7138.81 (18)C20—C15—C16119.5 (6)
O2—Er1—O9iv81.92 (18)C20—C15—C21122.5 (6)
O2W—Er1—O9iv139.01 (18)C16—C15—C21118.0 (6)
O7—Er1—O9iv78.93 (16)C17—C16—C15120.4 (6)
O2—Er1—O4v153.92 (18)C17—C16—H16A119.8
O2W—Er1—O4v121.33 (17)C15—C16—H16A119.8
O7—Er1—O4v78.2 (2)C16—C17—C18120.4 (6)
O9iv—Er1—O4v72.87 (16)C16—C17—N3119.6 (6)
O2—Er1—O3v152.42 (18)C18—C17—N3120.0 (6)
O2W—Er1—O3v71.32 (17)C19—C18—C17119.7 (6)
O7—Er1—O3v103.5 (2)C19—C18—H18A120.1
O9iv—Er1—O3v123.62 (17)C17—C18—H18A120.1
O4v—Er1—O3v53.59 (16)C18—C19—C20120.6 (6)
O2—Er1—O8iv85.79 (19)C18—C19—C22117.2 (6)
O2W—Er1—O8iv87.16 (18)C20—C19—C22122.2 (6)
O7—Er1—O8iv132.96 (16)C19—C20—C15119.3 (6)
O9iv—Er1—O8iv54.11 (15)C19—C20—H20A120.4
O4v—Er1—O8iv84.85 (19)C15—C20—H20A120.4
O3v—Er1—O8iv100.68 (19)O7—C21—O6118.8 (6)
O2—Er1—O685.14 (19)O7—C21—C15119.9 (6)
O2W—Er1—O685.04 (18)O6—C21—C15121.3 (6)
O7—Er1—O653.86 (16)O9—C22—O8119.3 (6)
O9iv—Er1—O6130.75 (15)O9—C22—C19120.0 (6)
O4v—Er1—O6106.15 (19)O8—C22—C19120.8 (6)
O3v—Er1—O684.49 (19)O9—C22—Er1viii57.8 (3)
O8iv—Er1—O6168.74 (18)O8—C22—Er1viii61.5 (3)
O2—Er1—C22iv83.91 (19)C19—C22—Er1viii176.9 (4)
O2W—Er1—C22iv113.99 (19)O10—C23—N3125.3 (6)
O7—Er1—C22iv105.45 (18)O10—C23—C24118.6 (6)
O9iv—Er1—C22iv26.61 (17)N3—C23—C24116.1 (6)
O4v—Er1—C22iv76.62 (18)C25—C24—C28118.8 (6)
O3v—Er1—C22iv113.96 (19)C25—C24—C23117.6 (6)
O8iv—Er1—C22iv27.52 (17)C28—C24—C23123.5 (6)
O6—Er1—C22iv156.44 (18)C26—C25—C24119.1 (7)
O2—Er1—C7v179.27 (18)C26—C25—H25A120.4
O2W—Er1—C7v96.94 (18)C24—C25—H25A120.4
O7—Er1—C7v90.0 (2)N4—C26—C25123.0 (7)
O9iv—Er1—C7v98.43 (17)N4—C26—H26A118.5
O4v—Er1—C7v26.59 (17)C25—C26—H26A118.5
O3v—Er1—C7v27.03 (17)N4—C27—C28123.8 (7)
O8iv—Er1—C7v93.89 (19)N4—C27—H27A118.1
O6—Er1—C7v95.10 (19)C28—C27—H27A118.1
C22iv—Er1—C7v96.11 (18)C24—C28—C27118.0 (7)
C6—C1—C2120.6 (6)C24—C28—H28A121.0
C6—C1—C8119.0 (6)C27—C28—H28A121.0
C2—C1—C8120.3 (6)C9—N1—C3125.4 (6)
C1—C2—C3120.3 (6)C9—N1—H1117.3
C1—C2—H2A119.9C3—N1—H1117.3
C3—C2—H2A119.9C12—N2—C13115.7 (6)
C4—C3—N1122.8 (6)C23—N3—C17120.5 (5)
C4—C3—C2118.7 (6)C23—N3—H3119.7
N1—C3—C2118.4 (6)C17—N3—H3119.7
C5—C4—C3120.0 (6)C26—N4—C27117.2 (6)
C5—C4—H4A120.0C26—N4—Co1vi120.6 (5)
C3—C4—H4A120.0C27—N4—Co1vi121.8 (5)
C4—C5—C6121.9 (6)C8—O1—Co1143.4 (4)
C4—C5—C7117.8 (6)C8—O2—Er1154.6 (5)
C6—C5—C7120.3 (6)C7—O3—Er1vii93.2 (4)
C1—C6—C5118.4 (6)C7—O4—Er1vii94.6 (4)
C1—C6—H6A120.8C21—O6—Er190.8 (4)
C5—C6—H6A120.8C21—O7—Er196.5 (4)
O4—C7—O3118.6 (6)C22—O8—Er1viii90.9 (4)
O4—C7—C5120.5 (6)C22—O9—Er1viii95.6 (4)
O3—C7—C5120.9 (6)Co1—O1W—H1WB112.7
O4—C7—Er1vii58.9 (3)Co1—O1W—H1WA112.9
O3—C7—Er1vii59.8 (3)H1WB—O1W—H1WA110.2
C5—C7—Er1vii177.4 (5)Er1—O2W—H2WB110.5
O1—C8—O2123.2 (6)Er1—O2W—H2WC111.1
O1—C8—C1119.2 (6)H2WB—O2W—H2WC109.0
O2—C8—C1117.6 (6)H3WA—O3W—H3WB107.4
O5—C9—N1123.6 (6)H4WA—O4W—H4WB108.9
C6—C1—C2—C33.3 (10)O5—C9—N1—C35.1 (12)
C8—C1—C2—C3172.9 (6)C10—C9—N1—C3175.4 (6)
C1—C2—C3—C44.1 (9)C4—C3—N1—C919.7 (10)
C1—C2—C3—N1177.7 (6)C2—C3—N1—C9162.1 (6)
N1—C3—C4—C5179.7 (6)C11—C12—N2—C130.9 (12)
C2—C3—C4—C51.6 (9)C14—C13—N2—C121.2 (12)
C3—C4—C5—C61.8 (10)O10—C23—N3—C178.0 (11)
C3—C4—C5—C7178.8 (6)C24—C23—N3—C17170.3 (6)
C2—C1—C6—C50.0 (9)C16—C17—N3—C23131.1 (7)
C8—C1—C6—C5176.2 (6)C18—C17—N3—C2347.8 (9)
C4—C5—C6—C12.6 (10)C25—C26—N4—C271.9 (11)
C7—C5—C6—C1179.5 (6)C25—C26—N4—Co1vi171.1 (6)
C4—C5—C7—O417.8 (9)C28—C27—N4—C263.9 (11)
C6—C5—C7—O4159.2 (6)C28—C27—N4—Co1vi169.1 (6)
C4—C5—C7—O3162.8 (6)O2—C8—O1—Co1120.6 (7)
C6—C5—C7—O320.2 (10)C1—C8—O1—Co160.1 (10)
C6—C1—C8—O126.8 (9)N4ii—Co1—O1—C829.9 (8)
C2—C1—C8—O1149.4 (6)N4iii—Co1—O1—C8150.1 (8)
C6—C1—C8—O2152.5 (6)O1W—Co1—O1—C8120.6 (8)
C2—C1—C8—O231.2 (9)O1Wi—Co1—O1—C859.4 (8)
O5—C9—C10—C14164.4 (8)O1—C8—O2—Er174.1 (13)
N1—C9—C10—C1416.0 (11)C1—C8—O2—Er1106.6 (10)
O5—C9—C10—C1112.4 (11)O2W—Er1—O2—C891.1 (11)
N1—C9—C10—C11167.2 (6)O7—Er1—O2—C8129.7 (11)
C14—C10—C11—C121.0 (11)O9iv—Er1—O2—C851.0 (11)
C9—C10—C11—C12176.0 (7)O4v—Er1—O2—C865.8 (12)
C10—C11—C12—N20.2 (13)O3v—Er1—O2—C8108.5 (11)
N2—C13—C14—C100.4 (12)O8iv—Er1—O2—C83.4 (11)
C11—C10—C14—C130.7 (11)O6—Er1—O2—C8176.7 (11)
C9—C10—C14—C13176.0 (7)C22iv—Er1—O2—C824.2 (11)
C20—C15—C16—C170.6 (10)O4—C7—O3—Er1vii3.6 (7)
C21—C15—C16—C17177.6 (6)C5—C7—O3—Er1vii177.1 (5)
C15—C16—C17—C182.1 (10)O3—C7—O4—Er1vii3.6 (7)
C15—C16—C17—N3176.8 (6)C5—C7—O4—Er1vii177.0 (5)
C16—C17—C18—C192.3 (10)O7—C21—O6—Er12.5 (7)
N3—C17—C18—C19176.6 (6)C15—C21—O6—Er1178.0 (6)
C17—C18—C19—C201.0 (10)O2—Er1—O6—C2192.9 (4)
C17—C18—C19—C22179.9 (6)O2W—Er1—O6—C21175.7 (4)
C18—C19—C20—C150.5 (10)O7—Er1—O6—C211.5 (4)
C22—C19—C20—C15178.6 (6)O9iv—Er1—O6—C2117.9 (5)
C16—C15—C20—C190.7 (10)O4v—Er1—O6—C2163.1 (4)
C21—C15—C20—C19178.8 (6)O3v—Er1—O6—C21112.7 (4)
C20—C15—C21—O7166.6 (6)O8iv—Er1—O6—C21129.4 (7)
C16—C15—C21—O715.3 (10)C22iv—Er1—O6—C2130.4 (7)
C20—C15—C21—O612.9 (10)C7v—Er1—O6—C2187.8 (4)
C16—C15—C21—O6165.2 (6)O6—C21—O7—Er12.7 (7)
C18—C19—C22—O94.3 (9)C15—C21—O7—Er1177.8 (5)
C20—C19—C22—O9174.8 (6)O2—Er1—O7—C2182.0 (4)
C18—C19—C22—O8174.9 (6)O2W—Er1—O7—C212.8 (6)
C20—C19—C22—O86.0 (10)O9iv—Er1—O7—C21163.6 (5)
O10—C23—C24—C2541.6 (9)O4v—Er1—O7—C21121.8 (4)
N3—C23—C24—C25136.8 (7)O3v—Er1—O7—C2174.1 (4)
O10—C23—C24—C28135.7 (7)O8iv—Er1—O7—C21166.9 (4)
N3—C23—C24—C2845.9 (9)O6—Er1—O7—C211.5 (4)
C28—C24—C25—C261.7 (10)C22iv—Er1—O7—C21165.9 (4)
C23—C24—C25—C26179.1 (6)C7v—Er1—O7—C2197.8 (4)
C24—C25—C26—N40.8 (11)O9—C22—O8—Er1viii3.2 (6)
C25—C24—C28—C270.1 (10)C19—C22—O8—Er1viii177.6 (5)
C23—C24—C28—C27177.2 (6)O8—C22—O9—Er1viii3.3 (7)
N4—C27—C28—C243.0 (11)C19—C22—O9—Er1viii177.4 (5)
Symmetry codes: (i) x1, y+1, z+2; (ii) x, y+1, z+1; (iii) x1, y, z+1; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y, z1; (vii) x, y1, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wiv0.862.163.007 (8)166
O1W—H1WB···O4Wiii0.852.052.769 (9)142
O1W—H1WA···O8ix0.852.222.975 (8)149
O2W—H2WB···O4Wx0.852.323.109 (10)156
O2W—H2WC···N2xi0.851.942.687 (8)147
O3W—H3WA···O7viii0.852.303.041 (8)147
O3W—H3WB···O90.852.303.042 (8)147
O4W—H4WA···O3vi0.851.922.729 (8)159
O4W—H4WB···O6xii0.851.952.762 (8)159
Symmetry codes: (iii) x1, y, z+1; (iv) x1, y, z; (vi) x+1, y, z1; (viii) x+1, y, z; (ix) x, y+1, z+2; (x) x1, y+1, z+1; (xi) x, y, z+1; (xii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CoEr2(C14H8N2O5)4(H2O)4]·4H2O
Mr1674.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.0816 (9), 10.7844 (10), 13.7316 (12)
α, β, γ (°)79.174 (1), 78.771 (2), 86.355 (2)
V3)1437.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.560, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
7172, 4979, 4649
Rint0.096
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.136, 1.02
No. of reflections4979
No. of parameters430
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.52, 2.99

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3Wi0.862.163.007 (8)166.1
O1W—H1WB···O4Wii0.852.052.769 (9)141.6
O1W—H1WA···O8iii0.852.222.975 (8)148.8
O2W—H2WB···O4Wiv0.852.323.109 (10)155.6
O2W—H2WC···N2v0.851.942.687 (8)146.6
O3W—H3WA···O7vi0.852.303.041 (8)146.8
O3W—H3WB···O90.852.303.042 (8)146.7
O4W—H4WA···O3vii0.851.922.729 (8)159.1
O4W—H4WB···O6viii0.851.952.762 (8)159.4
Symmetry codes: (i) x1, y, z; (ii) x1, y, z+1; (iii) x, y+1, z+2; (iv) x1, y+1, z+1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z1; (viii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Open Fund Project of Key Laboratory in Hunan Universities (11 K009) and the Science Foundation of Hengyang Normal University of China (10B67).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChen, M. S., Deng, Y. F., Zhang, C. H., Kang, D. Z., Nie, X. & Liu, Y. (2011a). Inorg. Chem. Commun. 14, 944–947.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, M. S., Zhao, Y., Okamura, T.-A., Su, Z., Sun, W. Y. & Ueyama, N. (2011b). Supramol. Chem. 23, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeng, Y.-F., Chen, M.-S., Zhang, C.-H. & Kuang, D.-Z. (2011). Acta Cryst. E67, m1431–m1432.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGu, X. J. & Xue, D. F. (2006). Inorg. Chem. 45, 9257–9261.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y. C., Cao, R., Su, W. P., Hong, M. C. & Zhang, W. J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307.  Web of Science CrossRef CAS Google Scholar
First citationPrasad, T. K., Rajasekharan, M. V. & Costes, J. P. (2007). Angew. Chem. Int. Ed. 46, 2851–2854.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, B., Cheng, P., Chen, X. Y., Cheng, C., Shi, W., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Wang, G. L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1478-m1479
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds