metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1587-m1588

Poly[(μ2-4,4′-bi­pyridine-κ2N:N′)bis­­(μ2-2-phen­­oxy­propionato-κ2O:O′)cobalt(II)]

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 29 September 2011; accepted 17 October 2011; online 22 October 2011)

In the polymeric title compound, [Co(C9H9O3)2(C10H8N2)]n, the CoII ion is located on a twofold rotation axis and is six-coordinated by two N atoms from two 4,4′-bipyridine (4,4′-bipy) ligands in axial positions and by four O atoms from four 2-phen­oxy­propionate (POPA) anions in equatorial positions, defining a slightly distorted octa­hedral geometry. The carboxyl­ate group of the POPA anion displays a bis-monodentate mode, linking pairs of CoII ions into a chain parallel to [001]. Adjacent chains are connected in a perpendicular manner through 4,4′-bipy ligands into layers parallel to (100). The 4,4′-bipy ligand is likewise located on a twofold rotation axis, with a dihedral angle between the two pyridine rings of 57.05 (7)°. C—H⋯O hydrogen-bonding inter­actions are present within the layers. ππ stacking inter­actions between the POPA benzene rings of neighbouring layers [centroid-to-centroid distance = 3.976 (3) Å and plane-to-plane distance = 3.618 (3) Å] stabilize the packing of the structure.

Related literature

For background to phen­oxy­alkanoic acids, see: Müller & Buser (1997[Müller, M. D. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953-1959.]). For other metal complexes derived from phen­oxy­propionic acid, see: Shen et al. (2011a[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.],b[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1319.],c[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.],d[Shen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1321.]). For a related cobalt complex, see: Zhuang et al. (2007[Zhuang, W.-J., Zheng, X.-J., Li, L.-C., Liao, D.-Z., Ma, H. & Jin, L.-P. (2007). CrystEngComm, 9, 653-667.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H9O3)2(C10H8N2)]

  • Mr = 545.44

  • Monoclinic, C 2/c

  • a = 23.6748 (14) Å

  • b = 11.6289 (7) Å

  • c = 9.6440 (6) Å

  • β = 96.353 (4)°

  • V = 2638.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 296 K

  • 0.41 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.847, Tmax = 0.879

  • 8421 measured reflections

  • 2319 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.06

  • 2319 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 2.0357 (12)
Co1—O2i 2.1275 (11)
Co1—N1 2.1989 (19)
Co1—N2 2.2051 (19)
Symmetry code: (i) -x+1, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.93 2.51 3.079 (2) 120
C15—H15A⋯O3i 0.93 2.38 3.272 (2) 159
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The group of phenoxyalkanoic acids include important herbicides. The desired biological activity is largely dependent on the length of the carbon chain of the alkanoic acid, the nature of the phenoxy group, and the position of its attachment to the carbon chain (Müller & Buser, 1997). Therefore the structures of metal complexes of 2-phenoxypropionic acid became interesting for us. Recently, we have reported some results in this regard (Shen et al., 2011a,b,c,d). Here, we describe a new CoII complex with 4,4'-bipyridine (4,4'-bipy) as a co-ligand.

The structure of the polymeric title complex is shown in Fig. 1. The CoII ion is located on a twofold rotation axis and is six-coordinated by four carboxylate O atoms from four POPA ligands and two N atoms of two 4,4'-bipy ligands in an octahedral geometry. The Co—O distances are 2.0357 (12) and 2.1275 (11) Å, and the Co—N distances are 2.1989 (19) and 2.2051 (19) Å, all of which are similar to related structures (Zhuang et al., 2007). The 4,4'-bipy ligand exhibits symmetry 2, with a dihedral angle between the two pyridine rings of 57.05 (7)°. The carboxylate groups of the POPA anions display a bis-monodentate mode, bridging pairs of CoII ions into chains parallel to [001]. The 4,4'-bipy molecules connect these chains perpendicularly, resulting in a layered arrangement parallel to (100) (Fig. 2).

As also shown in Fig. 2, intra-layer C—H···O hydrogen bonds between the C atoms of 4,4'-bipy ligands and carboxylate O atoms are present. Adjacent layers are stacked along [100] through ππ interactions between benzene rings of the POPA anions, with centroid–centroid and plane to plane distance of 3.976 (3) Å and 3.618 (3) Å, respectively.

Related literature top

For background to phenoxyalkanoic acids, see: Müller & Buser (1997). For other metal complexes derived from phenoxypropionic acid, see: Shen et al. (2011a,b,c,d). For a related cobalt complex, see: Zhuang et al. (2007).

Experimental top

Reagents and solvents used were of commercially available quality and were not further purified before using. 2-Phenoxyproionic acid (0.332 g, 2 mmol), 4,4'-bipy (0.156 g, 1 mmol) were mixed in distilled water (30 ml), NaOH (1 M) was added dropwise to the solution to adjust a pH of 5–6, then CoCl2.6H2O (0.238 g, 1 mmol) was added and the mixture sealed in a 50 ml stainless steel reactor and kept at 433 K for 3 d. The reactor was then cooled to room temperature at a speed of 5 K h-1. Red single crystals were obtained in high yield and filtered off from the solution.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H = 0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C))].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The atoms labelled with the suffix A, B, C, D, E, F, G are related by the symmetry operations (-x + 1, y, -z + 1.5), (-x + 1, -y + 1, -z + 2), (x, -y + 1, z - 1/2), (x, y + 1, z), (-x + 1, 1 + y, -z + 1.5), (x, y - 1, z), (-x + 1, y - 1, -z + 1.5), respectively.
[Figure 2] Fig. 2. The layered arrangement of title compound, showing intralayer C—H···O interactions.
Poly[(µ2-4,4'-bipyridine-κ2N:N')bis(µ2-2- phenoxypropionato-κ2O:O')cobalt(II)] top
Crystal data top
[Co(C9H9O3)2(C10H8N2)]F(000) = 1132
Mr = 545.44Dx = 1.373 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3897 reflections
a = 23.6748 (14) Åθ = 1.7–25.0°
b = 11.6289 (7) ŵ = 0.70 mm1
c = 9.6440 (6) ÅT = 296 K
β = 96.353 (4)°Block, red
V = 2638.8 (3) Å30.41 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2319 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2826
Tmin = 0.847, Tmax = 0.879k = 1311
8421 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.1007P]
where P = (Fo2 + 2Fc2)/3
2319 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Co(C9H9O3)2(C10H8N2)]V = 2638.8 (3) Å3
Mr = 545.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 23.6748 (14) ŵ = 0.70 mm1
b = 11.6289 (7) ÅT = 296 K
c = 9.6440 (6) Å0.41 × 0.20 × 0.19 mm
β = 96.353 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2319 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2053 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.879Rint = 0.023
8421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2319 reflectionsΔρmin = 0.19 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.52263 (3)0.75000.02374 (11)
O30.55380 (5)0.53098 (11)0.92961 (11)0.0393 (3)
C90.58754 (7)0.49847 (13)1.02991 (16)0.0281 (4)
N10.50000.71171 (16)0.75000.0290 (4)
C80.67426 (10)0.6225 (2)1.0358 (3)0.0794 (8)
H8A0.71360.62521.01990.119*
H8B0.67080.64231.13120.119*
H8C0.65300.67620.97510.119*
C70.65102 (8)0.50059 (19)1.0060 (2)0.0493 (5)
H70.65480.48050.90880.059*
C110.45124 (8)0.89365 (15)0.76775 (19)0.0384 (4)
H110.41770.93150.78120.046*
O10.68453 (5)0.42260 (14)1.09706 (14)0.0555 (4)
C100.45282 (7)0.77274 (15)0.76537 (19)0.0367 (4)
H100.41940.73280.77490.044*
C60.64660 (10)0.2551 (2)0.9605 (3)0.0699 (7)
H60.62460.30100.89650.084*
C10.64664 (11)0.1349 (3)0.9439 (3)0.0883 (9)
H10.62510.10270.86710.106*
C50.67937 (8)0.3048 (2)1.0721 (2)0.0536 (6)
C40.71055 (10)0.2322 (2)1.1675 (2)0.0651 (7)
H40.73240.26411.24400.078*
C30.70968 (11)0.1124 (3)1.1507 (3)0.0810 (8)
H30.73080.06611.21580.097*
C20.67765 (12)0.0629 (3)1.0379 (4)0.0906 (9)
H20.67700.01641.02560.109*
C120.50000.95685 (19)0.75000.0307 (5)
O20.57552 (5)0.47394 (10)1.14927 (11)0.0339 (3)
C130.50000.08758 (19)0.75000.0294 (5)
N20.50000.33300 (16)0.75000.0311 (4)
C140.48321 (8)0.15074 (14)0.86106 (17)0.0390 (4)
H14A0.47080.11300.93710.047*
C150.48508 (8)0.27175 (15)0.85836 (17)0.0380 (4)
H15A0.47540.31150.93600.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03125 (19)0.01885 (18)0.02070 (16)0.0000.00108 (12)0.000
O30.0410 (7)0.0518 (8)0.0235 (6)0.0044 (6)0.0037 (5)0.0006 (5)
C90.0328 (9)0.0268 (10)0.0250 (8)0.0021 (7)0.0040 (7)0.0023 (6)
N10.0354 (11)0.0228 (11)0.0283 (10)0.0000.0020 (8)0.000
C80.0486 (14)0.088 (2)0.1002 (19)0.0260 (13)0.0020 (13)0.0290 (16)
C70.0350 (11)0.0761 (16)0.0378 (10)0.0012 (10)0.0077 (8)0.0059 (10)
C110.0383 (10)0.0266 (10)0.0519 (10)0.0060 (8)0.0123 (8)0.0033 (8)
O10.0366 (8)0.0757 (11)0.0525 (8)0.0119 (7)0.0024 (6)0.0041 (8)
C100.0350 (10)0.0263 (10)0.0497 (10)0.0025 (8)0.0088 (8)0.0017 (8)
C60.0475 (14)0.096 (2)0.0644 (15)0.0133 (13)0.0001 (11)0.0174 (14)
C10.0584 (17)0.102 (2)0.103 (2)0.0051 (16)0.0024 (15)0.0423 (19)
C50.0315 (10)0.0771 (17)0.0535 (12)0.0076 (10)0.0104 (9)0.0093 (11)
C40.0461 (13)0.086 (2)0.0623 (14)0.0115 (12)0.0026 (11)0.0031 (13)
C30.0592 (16)0.084 (2)0.101 (2)0.0153 (15)0.0129 (15)0.0090 (17)
C20.0567 (17)0.079 (2)0.139 (3)0.0018 (16)0.0263 (18)0.024 (2)
C120.0462 (15)0.0207 (14)0.0255 (11)0.0000.0046 (10)0.000
O20.0351 (7)0.0398 (7)0.0276 (6)0.0029 (5)0.0070 (5)0.0071 (5)
C130.0388 (14)0.0197 (13)0.0294 (11)0.0000.0022 (10)0.000
N20.0419 (12)0.0229 (11)0.0282 (10)0.0000.0019 (9)0.000
C140.0627 (12)0.0250 (10)0.0312 (9)0.0026 (9)0.0133 (8)0.0049 (7)
C150.0605 (12)0.0258 (10)0.0292 (8)0.0051 (9)0.0119 (8)0.0018 (7)
Geometric parameters (Å, º) top
Co1—O3i2.0357 (12)C6—C51.382 (3)
Co1—O32.0357 (12)C6—C11.407 (4)
Co1—O2ii2.1275 (11)C6—H60.9300
Co1—O2iii2.1275 (11)C1—C21.384 (4)
Co1—N12.1989 (19)C1—H10.9300
Co1—N22.2051 (19)C5—C41.398 (3)
O3—C91.243 (2)C4—C31.402 (4)
C9—O21.2489 (18)C4—H40.9300
C9—C71.546 (2)C3—C21.381 (4)
N1—C101.3453 (19)C3—H30.9300
N1—C10i1.3453 (19)C2—H20.9300
C8—C71.537 (3)C12—C11i1.395 (2)
C8—H8A0.9600C12—C13iv1.520 (3)
C8—H8B0.9600O2—Co1iii2.1275 (11)
C8—H8C0.9600C13—C141.3924 (19)
C7—O11.438 (2)C13—C14i1.392 (2)
C7—H70.9800C13—C12v1.520 (3)
C11—C121.395 (2)N2—C15i1.3439 (19)
C11—C101.407 (2)N2—C151.3439 (19)
C11—H110.9300C14—C151.408 (2)
O1—C51.394 (3)C14—H14A0.9300
C10—H100.9300C15—H15A0.9300
O3i—Co1—O3174.53 (7)N1—C10—C11123.57 (16)
O3i—Co1—O2ii95.10 (5)N1—C10—H10118.2
O3—Co1—O2ii84.80 (5)C11—C10—H10118.2
O3i—Co1—O2iii84.80 (5)C5—C6—C1119.8 (3)
O3—Co1—O2iii95.10 (5)C5—C6—H6120.1
O2ii—Co1—O2iii177.85 (6)C1—C6—H6120.1
O3i—Co1—N187.26 (4)C2—C1—C6122.3 (3)
O3—Co1—N187.26 (4)C2—C1—H1118.9
O2ii—Co1—N188.93 (3)C6—C1—H1118.9
O2iii—Co1—N188.93 (3)C6—C5—O1125.2 (2)
O3i—Co1—N292.74 (4)C6—C5—C4118.1 (2)
O3—Co1—N292.74 (4)O1—C5—C4116.7 (2)
O2ii—Co1—N291.07 (3)C5—C4—C3121.6 (2)
O2iii—Co1—N291.07 (3)C5—C4—H4119.2
N1—Co1—N2180.0C3—C4—H4119.2
C9—O3—Co1159.26 (12)C2—C3—C4120.4 (3)
O3—C9—O2126.46 (16)C2—C3—H3119.8
O3—C9—C7115.51 (14)C4—C3—H3119.8
O2—C9—C7117.75 (15)C3—C2—C1118.0 (3)
C10—N1—C10i116.3 (2)C3—C2—H2121.0
C10—N1—Co1121.84 (10)C1—C2—H2121.0
C10i—N1—Co1121.84 (10)C11—C12—C11i116.4 (2)
C7—C8—H8A109.5C11—C12—C13iv121.80 (10)
C7—C8—H8B109.5C11i—C12—C13iv121.80 (10)
H8A—C8—H8B109.5C9—O2—Co1iii134.85 (11)
C7—C8—H8C109.5C14—C13—C14i116.3 (2)
H8A—C8—H8C109.5C14—C13—C12v121.84 (10)
H8B—C8—H8C109.5C14i—C13—C12v121.84 (10)
O1—C7—C8107.80 (18)C15i—N2—C15116.0 (2)
O1—C7—C9112.24 (15)C15i—N2—Co1122.01 (10)
C8—C7—C9108.70 (17)C15—N2—Co1122.01 (10)
O1—C7—H7109.4C13—C14—C15120.04 (15)
C8—C7—H7109.4C13—C14—H14A120.0
C9—C7—H7109.4C15—C14—H14A120.0
C12—C11—C10120.05 (16)N2—C15—C14123.75 (15)
C12—C11—H11120.0N2—C15—H15A118.1
C10—C11—H11120.0C14—C15—H15A118.1
C5—O1—C7118.84 (16)
O2ii—Co1—O3—C981.2 (3)C1—C6—C5—C41.7 (3)
O2iii—Co1—O3—C9101.0 (3)C7—O1—C5—C64.0 (3)
N1—Co1—O3—C9170.3 (3)C7—O1—C5—C4176.79 (16)
N2—Co1—O3—C99.7 (3)C6—C5—C4—C30.9 (3)
Co1—O3—C9—O296.6 (3)O1—C5—C4—C3178.37 (19)
Co1—O3—C9—C789.7 (3)C5—C4—C3—C20.1 (4)
O3i—Co1—N1—C1065.25 (10)C4—C3—C2—C10.3 (4)
O3—Co1—N1—C10114.75 (10)C6—C1—C2—C30.4 (4)
O2ii—Co1—N1—C10160.41 (10)C10—C11—C12—C11i0.79 (12)
O2iii—Co1—N1—C1019.59 (10)C10—C11—C12—C13iv179.21 (12)
O3i—Co1—N1—C10i114.75 (10)O3—C9—O2—Co1iii2.7 (3)
O3—Co1—N1—C10i65.25 (10)C7—C9—O2—Co1iii170.92 (12)
O2ii—Co1—N1—C10i19.59 (10)O3i—Co1—N2—C15i56.44 (11)
O2iii—Co1—N1—C10i160.41 (10)O3—Co1—N2—C15i123.56 (11)
O3—C9—C7—O1156.70 (16)O2ii—Co1—N2—C15i38.72 (10)
O2—C9—C7—O129.0 (2)O2iii—Co1—N2—C15i141.28 (10)
O3—C9—C7—C884.2 (2)O3i—Co1—N2—C15123.56 (11)
O2—C9—C7—C890.2 (2)O3—Co1—N2—C1556.44 (11)
C8—C7—O1—C5167.58 (16)O2ii—Co1—N2—C15141.28 (11)
C9—C7—O1—C572.7 (2)O2iii—Co1—N2—C1538.72 (11)
C10i—N1—C10—C110.85 (13)C14i—C13—C14—C151.47 (13)
Co1—N1—C10—C11179.15 (13)C12v—C13—C14—C15178.53 (13)
C12—C11—C10—N11.7 (3)C15i—N2—C15—C141.59 (14)
C5—C6—C1—C21.5 (4)Co1—N2—C15—C14178.41 (14)
C1—C6—C5—O1177.6 (2)C13—C14—C15—N23.2 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2; (iii) x+1, y+1, z+2; (iv) x, y+1, z; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2iii0.932.513.079 (2)120
C15—H15A···O3iii0.932.383.272 (2)159
Symmetry code: (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C9H9O3)2(C10H8N2)]
Mr545.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)23.6748 (14), 11.6289 (7), 9.6440 (6)
β (°) 96.353 (4)
V3)2638.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.41 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.847, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
8421, 2319, 2053
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.06
No. of reflections2319
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O32.0357 (12)Co1—N12.1989 (19)
Co1—O2i2.1275 (11)Co1—N22.2051 (19)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.513.079 (2)119.5
C15—H15A···O3i0.932.383.272 (2)158.8
Symmetry code: (i) x+1, y+1, z+2.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMüller, M. D. & Buser, H. R. (1997). Environ. Sci. Technol. 31, 1953–1959.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011a). Acta Cryst. E67, m1234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011b). Acta Cryst. E67, m1319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011c). Acta Cryst. E67, m1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, J.-B., Liu, J.-L. & Zhao, G.-L. (2011d). Acta Cryst. E67, m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, W.-J., Zheng, X.-J., Li, L.-C., Liao, D.-Z., Ma, H. & Jin, L.-P. (2007). CrystEngComm, 9, 653–667.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1587-m1588
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds