inorganic compounds
Cu4.35Cd1.65As16: the first polyarsenic compound in the Cu–Cd–As system
aTechnische Universität München, Department Chemie, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
*Correspondence e-mail: tom.nilges@lrz.tum.de
The first polyarsenic compound in the Cu–Cd–As system was obtained by solid-state reaction of the elements and has a refined composition of Cu4.35 (2)Cd1.65 (2)As16 (tetracopper dicadmium hexadecaarsenide). It adopts the Cu5InP16 structure type. The consists of one Cu site, a split Cu/Cd site and four As sites. The polyanionic structure can be described as being composed of As6 rings in chair conformations which are connected in the 1-, 2-, 4- and 5-positions. The resulting layers evolve along the c axis perpendicular to the ab plane. One Cu atom exhibits 2 and is tetrahedrally coordinated by four As atoms. The other Cu atom, representing the split site, and the corresponding Cd atom have different coordination spheres. While the Cu atom is tetrahedrally coordinated by four As atoms, the Cd atom has a [3 + 1] coordination with a considerably longer Cd—As distance.
Related literature
For Cu5InP16, see: Lange et al. (2008). For related polyphosphides, see: Pöttgen et al. (2006). For polyarsenides, see: Bauhofer et al. (1981); Jeitschko et al. (2000); Emmerling & Röhr (2002); Emmerling et al. (2004); Hönle et al. (2002). For binary Cu–Cd phases, see: Brandon et al. (1974); Kreiner & Schaepers (1997); von Heidenstamm et al. (1968). For related structures, see: Mansmann (1965); Clark & Range (1976). For crystallographic background, see: Becker & Coppens (1974).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2011); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006); program(s) used to refine structure: JANA2006; molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811042127/wm2539sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811042127/wm2539Isup2.hkl
Cu4.35 (2)Cd1.65 (2)As16 was prepared by a solid state reaction from the elements Cu (ChemPur, shot, 99.999%), Cd (ChemPur, granules, 99.9999%) and As (ChemPur, pieces, 99.9999%). Arsenic was purified by
in evacuated silica ampoules using a temperature gradient of 573 K to room temperature to separate As2O3 from the bulk-As and at 873 K to 573 K to sublimate As directly. The purified As was stored under protection gas atmosphere prior to use. The starting materials were reacted in stoichiometric amounts according the reported composition at 753 K for 7 days followed by a homogenization step by grinding. The procedure was repeated two times to finalize the formation of the title compound. Single crystals of suitable size could be separated from the bulk phase.The highest peak is 0.99 Å away from As3 and the deepest hole is 0.81 Å away from As4. We have tested two different structure models to describe the Cu/Cd distribution in the title compound. In the first model, Cu and Cd were refined on one common position restricting the coordinates and displacement parameters while keeping an overall full occupancy. In the second model, the coordinates were not restricted, leading to a split position for Cu and Cd. Comparable to the first model the sum of occupancy factors of both split position were set to one. After an evaluation of the
results for both models we decided the second model for structure description due to better and more reliable displacement and statistical parameters.Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-AREA (Stoe & Cie, 2011); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006); program(s) used to refine structure: JANA2006 (Petřiček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. Crystal structure of Cu4.35 (2)Cd1.65 (2)As16, viewed along the c axis. Displacement ellipsoids are shown at the 90% probability level. |
Cu4.35Cd1.65As16 | F(000) = 1467 |
Mr = 1660.8 | Dx = 5.888 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 12419 reflections |
a = 11.8324 (6) Å | θ = 3.7–29.7° |
b = 10.4423 (4) Å | µ = 34.73 mm−1 |
c = 8.0903 (4) Å | T = 293 K |
β = 110.480 (4)° | Plate, black |
V = 936.44 (8) Å3 | 0.03 × 0.02 × 0.004 mm |
Z = 2 |
Stoe IPDS 2T diffractometer | 1268 independent reflections |
Radiation source: X-ray tube | 1113 reflections with I > 3σ(I) |
Plane graphite monochromator | Rint = 0.053 |
Detector resolution: 6.67 pixels mm-1 | θmax = 29.3°, θmin = 3.7° |
ω scans | h = −16→16 |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) | k = −14→14 |
Tmin = 0.205, Tmax = 0.785 | l = −11→11 |
12811 measured reflections |
Refinement on F2 | 6 constraints |
R[F2 > 2σ(F2)] = 0.036 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2] |
wR(F2) = 0.072 | (Δ/σ)max = 0.007 |
S = 1.83 | Δρmax = 1.50 e Å−3 |
1268 reflections | Δρmin = −1.67 e Å−3 |
56 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 0.021 (2) |
Cu4.35Cd1.65As16 | V = 936.44 (8) Å3 |
Mr = 1660.8 | Z = 2 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.8324 (6) Å | µ = 34.73 mm−1 |
b = 10.4423 (4) Å | T = 293 K |
c = 8.0903 (4) Å | 0.03 × 0.02 × 0.004 mm |
β = 110.480 (4)° |
Stoe IPDS 2T diffractometer | 1268 independent reflections |
Absorption correction: numerical (X-AREA; Stoe & Cie, 2011) | 1113 reflections with I > 3σ(I) |
Tmin = 0.205, Tmax = 0.785 | Rint = 0.053 |
12811 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 56 parameters |
wR(F2) = 0.072 | 0 restraints |
S = 1.83 | Δρmax = 1.50 e Å−3 |
1268 reflections | Δρmin = −1.67 e Å−3 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0 | 0.41450 (10) | 0.25 | 0.0156 (3) | |
Cu2 | −0.0942 (5) | 0.1309 (5) | −0.0886 (9) | 0.0198 (9) | 0.587 (6) |
Cd2 | −0.0713 (4) | 0.1064 (5) | −0.0867 (7) | 0.0198 (9) | 0.413 (6) |
As1 | −0.15337 (5) | 0.56586 (5) | 0.08461 (8) | 0.01309 (19) | |
As2 | −0.23875 (5) | 0.30964 (6) | −0.22826 (8) | 0.01406 (19) | |
As3 | 0.07426 (6) | 0.27955 (6) | 0.07165 (9) | 0.0171 (2) | |
As4 | −0.33882 (6) | 0.48506 (7) | −0.13511 (9) | 0.0232 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0132 (5) | 0.0182 (5) | 0.0157 (5) | 0 | 0.0055 (4) | 0 |
Cu2 | 0.0171 (16) | 0.0237 (16) | 0.0194 (4) | −0.0067 (9) | 0.0076 (10) | −0.0062 (10) |
Cd2 | 0.0171 (16) | 0.0237 (16) | 0.0194 (4) | −0.0067 (9) | 0.0076 (10) | −0.0062 (10) |
As1 | 0.0115 (3) | 0.0139 (3) | 0.0130 (3) | −0.0003 (2) | 0.0033 (2) | 0.0001 (2) |
As2 | 0.0126 (3) | 0.0143 (3) | 0.0143 (3) | 0.0015 (2) | 0.0034 (2) | 0.0016 (2) |
As3 | 0.0153 (3) | 0.0172 (3) | 0.0198 (3) | 0.0025 (2) | 0.0074 (2) | 0.0046 (2) |
As4 | 0.0128 (3) | 0.0296 (3) | 0.0265 (4) | −0.0031 (3) | 0.0061 (3) | −0.0155 (3) |
Cu1—As1 | 2.4254 (9) | Cd2—As2 | 2.856 (5) |
Cu1—As1i | 2.4254 (9) | Cd2—As3 | 2.516 (5) |
Cu1—As3 | 2.3931 (9) | Cd2—As4ii | 2.475 (5) |
Cu1—As3i | 2.3931 (9) | Cd2—As4iii | 2.569 (6) |
Cu2—Cd2 | 0.370 (8) | As1—As2v | 2.4644 (10) |
Cu2—As2 | 2.516 (5) | As1—As3vi | 2.4307 (10) |
Cu2—As3 | 2.501 (5) | As1—As4 | 2.4408 (8) |
Cu2—As4ii | 2.589 (6) | As2—As3vii | 2.4242 (8) |
Cu2—As4iii | 2.524 (7) | As2—As4 | 2.4392 (10) |
Cd2—Cd2iv | 2.845 (7) | ||
As1—Cu1—As1i | 98.67 (4) | As3vi—As1—As4 | 105.22 (3) |
As1—Cu1—As3 | 114.38 (2) | Cu2—As2—Cd2 | 3.1 (2) |
As1—Cu1—As3i | 110.77 (2) | Cu2—As2—As1viii | 107.87 (17) |
As1i—Cu1—As3 | 110.77 (2) | Cu2—As2—As3vii | 109.44 (12) |
As1i—Cu1—As3i | 114.38 (2) | Cu2—As2—As4 | 138.19 (17) |
As3—Cu1—As3i | 107.85 (4) | Cd2—As2—As1viii | 105.21 (13) |
Cd2—Cu2—As2 | 155.1 (16) | Cd2—As2—As3vii | 108.99 (10) |
Cd2—Cu2—As3 | 88.1 (11) | Cd2—As2—As4 | 141.07 (12) |
Cd2—Cu2—As4ii | 68.2 (12) | As1viii—As2—As3vii | 105.49 (3) |
Cd2—Cu2—As4iii | 92.7 (15) | As1viii—As2—As4 | 98.12 (3) |
As2—Cu2—As3 | 93.76 (19) | As3vii—As2—As4 | 93.81 (3) |
As2—Cu2—As4ii | 95.40 (19) | Cu1—As3—Cu2 | 106.49 (17) |
As2—Cu2—As4iii | 110.1 (3) | Cu1—As3—Cd2 | 113.57 (14) |
As3—Cu2—As4ii | 139.5 (3) | Cu1—As3—As1vi | 102.24 (3) |
As3—Cu2—As4iii | 108.6 (2) | Cu1—As3—As2ix | 105.39 (3) |
As4ii—Cu2—As4iii | 105.0 (2) | Cu2—As3—Cd2 | 8.44 (18) |
Cu2—Cd2—Cd2iv | 149.6 (16) | Cu2—As3—As1vi | 121.65 (17) |
Cu2—Cd2—As2 | 21.8 (14) | Cu2—As3—As2ix | 118.91 (13) |
Cu2—Cd2—As3 | 83.5 (11) | Cd2—As3—As1vi | 122.14 (14) |
Cu2—Cd2—As4ii | 103.9 (12) | Cd2—As3—As2ix | 111.47 (11) |
Cu2—Cd2—As4iii | 79.0 (15) | As1vi—As3—As2ix | 100.07 (3) |
Cd2iv—Cd2—As2 | 170.7 (3) | Cu2x—As4—Cu2iii | 145.40 (19) |
Cd2iv—Cd2—As3 | 97.37 (17) | Cu2x—As4—Cd2x | 7.97 (17) |
Cd2iv—Cd2—As4ii | 92.32 (19) | Cu2x—As4—Cd2iii | 138.18 (18) |
Cd2iv—Cd2—As4iii | 71.60 (19) | Cu2x—As4—As1 | 110.54 (12) |
As2—Cd2—As3 | 85.72 (15) | Cu2x—As4—As2 | 102.12 (16) |
As2—Cd2—As4ii | 89.91 (14) | Cu2iii—As4—Cd2x | 138.99 (18) |
As2—Cd2—As4iii | 99.07 (19) | Cu2iii—As4—Cd2iii | 8.26 (17) |
As3—Cd2—As4ii | 146.1 (3) | Cu2iii—As4—As1 | 94.09 (12) |
As3—Cd2—As4iii | 106.8 (2) | Cu2iii—As4—As2 | 99.75 (14) |
As4ii—Cd2—As4iii | 107.07 (19) | Cd2x—As4—Cd2iii | 132.39 (17) |
Cu1—As1—As2v | 113.16 (3) | Cd2x—As4—As1 | 118.43 (12) |
Cu1—As1—As3vi | 111.70 (3) | Cd2x—As4—As2 | 101.77 (14) |
Cu1—As1—As4 | 119.01 (3) | Cd2iii—As4—As1 | 96.10 (10) |
As2v—As1—As3vi | 106.52 (3) | Cd2iii—As4—As2 | 107.52 (12) |
As2v—As1—As4 | 99.93 (3) | As1—As4—As2 | 94.29 (3) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x−1/2, y−1/2, −z−1/2; (iii) −x−1/2, −y+1/2, −z; (iv) −x, −y, −z; (v) x, −y+1, z+1/2; (vi) −x, −y+1, −z; (vii) x−1/2, −y+1/2, z−1/2; (viii) x, −y+1, z−1/2; (ix) x+1/2, −y+1/2, z+1/2; (x) −x−1/2, y+1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | Cu4.35Cd1.65As16 |
Mr | 1660.8 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.8324 (6), 10.4423 (4), 8.0903 (4) |
β (°) | 110.480 (4) |
V (Å3) | 936.44 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 34.73 |
Crystal size (mm) | 0.03 × 0.02 × 0.004 |
Data collection | |
Diffractometer | Stoe IPDS 2T diffractometer |
Absorption correction | Numerical (X-AREA; Stoe & Cie, 2011) |
Tmin, Tmax | 0.205, 0.785 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 12811, 1268, 1113 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.072, 1.83 |
No. of reflections | 1268 |
No. of parameters | 56 |
Δρmax, Δρmin (e Å−3) | 1.50, −1.67 |
Computer programs: X-AREA (Stoe & Cie, 2011), Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006), JANA2006 (Petřiček et al., 2006), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).
Cu1—As1 | 2.4254 (9) | Cu2—As4ii | 2.524 (7) |
Cu1—As3 | 2.3931 (9) | Cd2—As2 | 2.856 (5) |
Cu2—As2 | 2.516 (5) | Cd2—As3 | 2.516 (5) |
Cu2—As3 | 2.501 (5) | Cd2—As4i | 2.475 (5) |
Cu2—As4i | 2.589 (6) | Cd2—As4ii | 2.569 (6) |
Symmetry codes: (i) −x−1/2, y−1/2, −z−1/2; (ii) −x−1/2, −y+1/2, −z. |
Acknowledgements
The authors thank the German Science Foundation (DFG) for the kind support of this project within the SPP 1415.
References
Bauhofer, W., Wittmann, M. & von Schnering, H. G. (1981). J. Phys. Chem. Solids, 42, 687–695. CrossRef CAS Web of Science Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K. & Pearson, W. B. (1974). Acta Cryst. B30, 1412–1417. CrossRef IUCr Journals Web of Science Google Scholar
Clark, J. B. & Range, K. J. (1976). Z. Naturforsch. Teil B, 31, 158–162. Google Scholar
Emmerling, F., Petri, D. & Röhr, C. (2004). Z. Anorg. Allg. Chem. 630, 2490–2501. Web of Science CrossRef CAS Google Scholar
Emmerling, F. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 963–975. CAS Google Scholar
Heidenstamm, O. von, Johansson, A. & Westmann, S. (1968). Acta Chem. Scand. 22, 653–661. Google Scholar
Hönle, W., Buresch, J., Wolf, J., Peters, K., Chang, J.-H. & von Schnering, H. G. (2002). Z. Kristallogr. New Cryst. Struct. 217, 489–490. Google Scholar
Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch. & Möller, M. H. (2000). Z. Anorg. Allg. Chem. 626, 1112–1120. CrossRef CAS Google Scholar
Kreiner, G. & Schaepers, M. (1997). J. Alloys Compd, 259, 83–114. CrossRef CAS Web of Science Google Scholar
Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654–5657. Web of Science CrossRef CAS Google Scholar
Mansmann, M. (1965). Z. Kristallogr. 122, 399–406. CrossRef Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic. Google Scholar
Pöttgen, R., Hönle, W. & von Schnering, H. G. (2006). Phosphides: Solid-State Chemistry. Encyclopedia of Inorganic Chemistry, edited by R. B. King. New York: Wiley. Google Scholar
Stoe & Cie (2011). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Besides the plethora of known polyphosphides (Pöttgen et al., 2006) only few polyarsenides are known up to date (Bauhofer et al., 1981; Jeitschko et al., 2000; Emmerling & Röhr, 2002; Emmerling et al., 2004; Hönle et al., 2002).
The title compound Cu4.35 (2)Cd1.65 (2)As16 is the first representative of a polyarsenide adopting the Cu5InP16 structure type (Lange et al., 2008). In accordance to the situation in Cu5InP16 where Cu and In are occupying the same site, a similar behavior is observed for the title compound, but here with a Cu/Cd split position. Mixing of Cu and Cd on one site is a common feature in intermetallic compounds and has been observed for instance for Cd3Cu4 (Kreiner & Schaepers, 1997) and Cd8Cu5 (von Heidenstamm et al., 1968; Brandon et al., 1974).
Cu—As distances in Cu4.35 (2)Cd1.65 (2)As16 range from 2.3931 (9) Å to 2.589 (6) Å and are comparable with the distances of 2.404 (1) Å to 2.590 (1) Å in Cu3As (Mansmann, 1965). The As—As distances in Cu4.35 (2)Cd1.65 (2)As16 are between 2.4242 (8) Å and 2.4644 (10) Å, in good accordance with the As—As distances in NdFe4As12 (2.428 Å - 2.499 Å) (Jeitschko et al., 2000). Cd—As distances are present between 2.475 (5) Å and 2.856 (5) Å which is consistent with values found for CdAs (2.473 (2) Å - 2.868 (2) Å) (Clark & Range, 1976).