inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cu4.35Cd1.65As16: the first polyarsenic compound in the Cu–Cd–As system

aTechnische Universität München, Department Chemie, Lichtenbergstrasse 4, 85747 Garching bei München, Germany
*Correspondence e-mail: tom.nilges@lrz.tum.de

(Received 30 September 2011; accepted 12 October 2011; online 22 October 2011)

The first polyarsenic compound in the Cu–Cd–As system was obtained by solid-state reaction of the elements and has a refined composition of Cu4.35 (2)Cd1.65 (2)As16 (tetra­copper dicadmium hexa­deca­arsenide). It adopts the Cu5InP16 structure type. The asymmetric unit consists of one Cu site, a split Cu/Cd site and four As sites. The polyanionic structure can be described as being composed of As6 rings in chair conformations which are connected in the 1-, 2-, 4- and 5-positions. The resulting layers evolve along the c axis perpendicular to the ab plane. One Cu atom exhibits site symmetry 2 and is tetra­hedrally coordinated by four As atoms. The other Cu atom, representing the split site, and the corresponding Cd atom have different coordination spheres. While the Cu atom is tetra­hedrally coordinated by four As atoms, the Cd atom has a [3 + 1] coordination with a considerably longer Cd—As distance.

Related literature

For Cu5InP16, see: Lange et al. (2008[Lange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654-5657.]). For related polyphosphides, see: Pöttgen et al. (2006[Pöttgen, R., Hönle, W. & von Schnering, H. G. (2006). Phosphides: Solid-State Chemistry. Encyclopedia of Inorganic Chemistry, edited by R. B. King. New York: Wiley.]). For polyarsenides, see: Bauhofer et al. (1981[Bauhofer, W., Wittmann, M. & von Schnering, H. G. (1981). J. Phys. Chem. Solids, 42, 687-695.]); Jeitschko et al. (2000[Jeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch. & Möller, M. H. (2000). Z. Anorg. Allg. Chem. 626, 1112-1120.]); Emmerling & Röhr (2002[Emmerling, F. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 963-975.]); Emmerling et al. (2004[Emmerling, F., Petri, D. & Röhr, C. (2004). Z. Anorg. Allg. Chem. 630, 2490-2501.]); Hönle et al. (2002[Hönle, W., Buresch, J., Wolf, J., Peters, K., Chang, J.-H. & von Schnering, H. G. (2002). Z. Kristallogr. New Cryst. Struct. 217, 489-490.]). For binary Cu–Cd phases, see: Brandon et al. (1974[Brandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K. & Pearson, W. B. (1974). Acta Cryst. B30, 1412-1417.]); Kreiner & Schaepers (1997[Kreiner, G. & Schaepers, M. (1997). J. Alloys Compd, 259, 83-114.]); von Heidenstamm et al. (1968[Heidenstamm, O. von, Johansson, A. & Westmann, S. (1968). Acta Chem. Scand. 22, 653-661.]). For related structures, see: Mansmann (1965[Mansmann, M. (1965). Z. Kristallogr. 122, 399-406.]); Clark & Range (1976[Clark, J. B. & Range, K. J. (1976). Z. Naturforsch. Teil B, 31, 158-162.]). For crystallographic background, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

Experimental

Crystal data
  • Cu4.35Cd1.65As16

  • Mr = 1660.8

  • Monoclinic, C 2/c

  • a = 11.8324 (6) Å

  • b = 10.4423 (4) Å

  • c = 8.0903 (4) Å

  • β = 110.480 (4)°

  • V = 936.44 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 34.73 mm−1

  • T = 293 K

  • 0.030 × 0.020 × 0.004 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical (X-AREA; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.205, Tmax = 0.785

  • 12811 measured reflections

  • 1268 independent reflections

  • 1113 reflections with I > 3σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.072

  • S = 1.83

  • 1268 reflections

  • 56 parameters

  • Δρmax = 1.50 e Å−3

  • Δρmin = −1.67 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—As1 2.4254 (9)
Cu1—As3 2.3931 (9)
Cu2—As2 2.516 (5)
Cu2—As3 2.501 (5)
Cu2—As4i 2.589 (6)
Cu2—As4ii 2.524 (7)
Cd2—As2 2.856 (5)
Cd2—As3 2.516 (5)
Cd2—As4i 2.475 (5)
Cd2—As4ii 2.569 (6)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) embedded in JANA2006 (Petřiček et al., 2006[Petřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); program(s) used to refine structure: JANA2006; molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Besides the plethora of known polyphosphides (Pöttgen et al., 2006) only few polyarsenides are known up to date (Bauhofer et al., 1981; Jeitschko et al., 2000; Emmerling & Röhr, 2002; Emmerling et al., 2004; Hönle et al., 2002).

The title compound Cu4.35 (2)Cd1.65 (2)As16 is the first representative of a polyarsenide adopting the Cu5InP16 structure type (Lange et al., 2008). In accordance to the situation in Cu5InP16 where Cu and In are occupying the same site, a similar behavior is observed for the title compound, but here with a Cu/Cd split position. Mixing of Cu and Cd on one site is a common feature in intermetallic compounds and has been observed for instance for Cd3Cu4 (Kreiner & Schaepers, 1997) and Cd8Cu5 (von Heidenstamm et al., 1968; Brandon et al., 1974).

Cu—As distances in Cu4.35 (2)Cd1.65 (2)As16 range from 2.3931 (9) Å to 2.589 (6) Å and are comparable with the distances of 2.404 (1) Å to 2.590 (1) Å in Cu3As (Mansmann, 1965). The As—As distances in Cu4.35 (2)Cd1.65 (2)As16 are between 2.4242 (8) Å and 2.4644 (10) Å, in good accordance with the As—As distances in NdFe4As12 (2.428 Å - 2.499 Å) (Jeitschko et al., 2000). Cd—As distances are present between 2.475 (5) Å and 2.856 (5) Å which is consistent with values found for CdAs (2.473 (2) Å - 2.868 (2) Å) (Clark & Range, 1976).

Related literature top

For Cu5InP16, see: Lange et al. (2008). For related polyphosphides, see: Pöttgen et al. (2006). For polyarsenides, see: Bauhofer et al. (1981); Jeitschko et al. (2000); Emmerling & Röhr (2002); Emmerling et al. (2004); Hönle et al. (2002). For binary Cu–Cd phases, see: Brandon et al. (1974); Kreiner & Schaepers (1997); von Heidenstamm et al. (1968). For related structures, see: Mansmann (1965); Clark & Range (1976). For crystallographic background, see: Becker & Coppens (1974).

Experimental top

Cu4.35 (2)Cd1.65 (2)As16 was prepared by a solid state reaction from the elements Cu (ChemPur, shot, 99.999%), Cd (ChemPur, granules, 99.9999%) and As (ChemPur, pieces, 99.9999%). Arsenic was purified by sublimation in evacuated silica ampoules using a temperature gradient of 573 K to room temperature to separate As2O3 from the bulk-As and at 873 K to 573 K to sublimate As directly. The purified As was stored under protection gas atmosphere prior to use. The starting materials were reacted in stoichiometric amounts according the reported composition at 753 K for 7 days followed by a homogenization step by grinding. The procedure was repeated two times to finalize the formation of the title compound. Single crystals of suitable size could be separated from the bulk phase.

Refinement top

The highest peak is 0.99 Å away from As3 and the deepest hole is 0.81 Å away from As4. We have tested two different structure models to describe the Cu/Cd distribution in the title compound. In the first model, Cu and Cd were refined on one common position restricting the coordinates and displacement parameters while keeping an overall full occupancy. In the second model, the coordinates were not restricted, leading to a split position for Cu and Cd. Comparable to the first model the sum of occupancy factors of both split position were set to one. After an evaluation of the refinement results for both models we decided the second model for structure description due to better and more reliable displacement and statistical parameters.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-AREA (Stoe & Cie, 2011); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006); program(s) used to refine structure: JANA2006 (Petřiček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of Cu4.35 (2)Cd1.65 (2)As16, viewed along the c axis. Displacement ellipsoids are shown at the 90% probability level.
tetracopper dicadmium hexadecaarsenide top
Crystal data top
Cu4.35Cd1.65As16F(000) = 1467
Mr = 1660.8Dx = 5.888 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12419 reflections
a = 11.8324 (6) Åθ = 3.7–29.7°
b = 10.4423 (4) ŵ = 34.73 mm1
c = 8.0903 (4) ÅT = 293 K
β = 110.480 (4)°Plate, black
V = 936.44 (8) Å30.03 × 0.02 × 0.004 mm
Z = 2
Data collection top
Stoe IPDS 2T
diffractometer
1268 independent reflections
Radiation source: X-ray tube1113 reflections with I > 3σ(I)
Plane graphite monochromatorRint = 0.053
Detector resolution: 6.67 pixels mm-1θmax = 29.3°, θmin = 3.7°
ω scansh = 1616
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2011)
k = 1414
Tmin = 0.205, Tmax = 0.785l = 1111
12811 measured reflections
Refinement top
Refinement on F26 constraints
R[F2 > 2σ(F2)] = 0.036Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0004I2]
wR(F2) = 0.072(Δ/σ)max = 0.007
S = 1.83Δρmax = 1.50 e Å3
1268 reflectionsΔρmin = 1.67 e Å3
56 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 0.021 (2)
Crystal data top
Cu4.35Cd1.65As16V = 936.44 (8) Å3
Mr = 1660.8Z = 2
Monoclinic, C2/cMo Kα radiation
a = 11.8324 (6) ŵ = 34.73 mm1
b = 10.4423 (4) ÅT = 293 K
c = 8.0903 (4) Å0.03 × 0.02 × 0.004 mm
β = 110.480 (4)°
Data collection top
Stoe IPDS 2T
diffractometer
1268 independent reflections
Absorption correction: numerical
(X-AREA; Stoe & Cie, 2011)
1113 reflections with I > 3σ(I)
Tmin = 0.205, Tmax = 0.785Rint = 0.053
12811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03656 parameters
wR(F2) = 0.0720 restraints
S = 1.83Δρmax = 1.50 e Å3
1268 reflectionsΔρmin = 1.67 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu100.41450 (10)0.250.0156 (3)
Cu20.0942 (5)0.1309 (5)0.0886 (9)0.0198 (9)0.587 (6)
Cd20.0713 (4)0.1064 (5)0.0867 (7)0.0198 (9)0.413 (6)
As10.15337 (5)0.56586 (5)0.08461 (8)0.01309 (19)
As20.23875 (5)0.30964 (6)0.22826 (8)0.01406 (19)
As30.07426 (6)0.27955 (6)0.07165 (9)0.0171 (2)
As40.33882 (6)0.48506 (7)0.13511 (9)0.0232 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0132 (5)0.0182 (5)0.0157 (5)00.0055 (4)0
Cu20.0171 (16)0.0237 (16)0.0194 (4)0.0067 (9)0.0076 (10)0.0062 (10)
Cd20.0171 (16)0.0237 (16)0.0194 (4)0.0067 (9)0.0076 (10)0.0062 (10)
As10.0115 (3)0.0139 (3)0.0130 (3)0.0003 (2)0.0033 (2)0.0001 (2)
As20.0126 (3)0.0143 (3)0.0143 (3)0.0015 (2)0.0034 (2)0.0016 (2)
As30.0153 (3)0.0172 (3)0.0198 (3)0.0025 (2)0.0074 (2)0.0046 (2)
As40.0128 (3)0.0296 (3)0.0265 (4)0.0031 (3)0.0061 (3)0.0155 (3)
Geometric parameters (Å, º) top
Cu1—As12.4254 (9)Cd2—As22.856 (5)
Cu1—As1i2.4254 (9)Cd2—As32.516 (5)
Cu1—As32.3931 (9)Cd2—As4ii2.475 (5)
Cu1—As3i2.3931 (9)Cd2—As4iii2.569 (6)
Cu2—Cd20.370 (8)As1—As2v2.4644 (10)
Cu2—As22.516 (5)As1—As3vi2.4307 (10)
Cu2—As32.501 (5)As1—As42.4408 (8)
Cu2—As4ii2.589 (6)As2—As3vii2.4242 (8)
Cu2—As4iii2.524 (7)As2—As42.4392 (10)
Cd2—Cd2iv2.845 (7)
As1—Cu1—As1i98.67 (4)As3vi—As1—As4105.22 (3)
As1—Cu1—As3114.38 (2)Cu2—As2—Cd23.1 (2)
As1—Cu1—As3i110.77 (2)Cu2—As2—As1viii107.87 (17)
As1i—Cu1—As3110.77 (2)Cu2—As2—As3vii109.44 (12)
As1i—Cu1—As3i114.38 (2)Cu2—As2—As4138.19 (17)
As3—Cu1—As3i107.85 (4)Cd2—As2—As1viii105.21 (13)
Cd2—Cu2—As2155.1 (16)Cd2—As2—As3vii108.99 (10)
Cd2—Cu2—As388.1 (11)Cd2—As2—As4141.07 (12)
Cd2—Cu2—As4ii68.2 (12)As1viii—As2—As3vii105.49 (3)
Cd2—Cu2—As4iii92.7 (15)As1viii—As2—As498.12 (3)
As2—Cu2—As393.76 (19)As3vii—As2—As493.81 (3)
As2—Cu2—As4ii95.40 (19)Cu1—As3—Cu2106.49 (17)
As2—Cu2—As4iii110.1 (3)Cu1—As3—Cd2113.57 (14)
As3—Cu2—As4ii139.5 (3)Cu1—As3—As1vi102.24 (3)
As3—Cu2—As4iii108.6 (2)Cu1—As3—As2ix105.39 (3)
As4ii—Cu2—As4iii105.0 (2)Cu2—As3—Cd28.44 (18)
Cu2—Cd2—Cd2iv149.6 (16)Cu2—As3—As1vi121.65 (17)
Cu2—Cd2—As221.8 (14)Cu2—As3—As2ix118.91 (13)
Cu2—Cd2—As383.5 (11)Cd2—As3—As1vi122.14 (14)
Cu2—Cd2—As4ii103.9 (12)Cd2—As3—As2ix111.47 (11)
Cu2—Cd2—As4iii79.0 (15)As1vi—As3—As2ix100.07 (3)
Cd2iv—Cd2—As2170.7 (3)Cu2x—As4—Cu2iii145.40 (19)
Cd2iv—Cd2—As397.37 (17)Cu2x—As4—Cd2x7.97 (17)
Cd2iv—Cd2—As4ii92.32 (19)Cu2x—As4—Cd2iii138.18 (18)
Cd2iv—Cd2—As4iii71.60 (19)Cu2x—As4—As1110.54 (12)
As2—Cd2—As385.72 (15)Cu2x—As4—As2102.12 (16)
As2—Cd2—As4ii89.91 (14)Cu2iii—As4—Cd2x138.99 (18)
As2—Cd2—As4iii99.07 (19)Cu2iii—As4—Cd2iii8.26 (17)
As3—Cd2—As4ii146.1 (3)Cu2iii—As4—As194.09 (12)
As3—Cd2—As4iii106.8 (2)Cu2iii—As4—As299.75 (14)
As4ii—Cd2—As4iii107.07 (19)Cd2x—As4—Cd2iii132.39 (17)
Cu1—As1—As2v113.16 (3)Cd2x—As4—As1118.43 (12)
Cu1—As1—As3vi111.70 (3)Cd2x—As4—As2101.77 (14)
Cu1—As1—As4119.01 (3)Cd2iii—As4—As196.10 (10)
As2v—As1—As3vi106.52 (3)Cd2iii—As4—As2107.52 (12)
As2v—As1—As499.93 (3)As1—As4—As294.29 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y1/2, z1/2; (iii) x1/2, y+1/2, z; (iv) x, y, z; (v) x, y+1, z+1/2; (vi) x, y+1, z; (vii) x1/2, y+1/2, z1/2; (viii) x, y+1, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaCu4.35Cd1.65As16
Mr1660.8
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.8324 (6), 10.4423 (4), 8.0903 (4)
β (°) 110.480 (4)
V3)936.44 (8)
Z2
Radiation typeMo Kα
µ (mm1)34.73
Crystal size (mm)0.03 × 0.02 × 0.004
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
(X-AREA; Stoe & Cie, 2011)
Tmin, Tmax0.205, 0.785
No. of measured, independent and
observed [I > 3σ(I)] reflections
12811, 1268, 1113
Rint0.053
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.83
No. of reflections1268
No. of parameters56
Δρmax, Δρmin (e Å3)1.50, 1.67

Computer programs: X-AREA (Stoe & Cie, 2011), Superflip (Palatinus & Chapuis, 2007) embedded in JANA2006 (Petřiček et al., 2006), JANA2006 (Petřiček et al., 2006), DIAMOND (Brandenburg & Putz, 2005), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—As12.4254 (9)Cu2—As4ii2.524 (7)
Cu1—As32.3931 (9)Cd2—As22.856 (5)
Cu2—As22.516 (5)Cd2—As32.516 (5)
Cu2—As32.501 (5)Cd2—As4i2.475 (5)
Cu2—As4i2.589 (6)Cd2—As4ii2.569 (6)
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the German Science Foundation (DFG) for the kind support of this project within the SPP 1415.

References

First citationBauhofer, W., Wittmann, M. & von Schnering, H. G. (1981). J. Phys. Chem. Solids, 42, 687–695.  CrossRef CAS Web of Science Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrandon, J. K., Brizard, R. Y., Chieh, P. C., McMillan, R. K. & Pearson, W. B. (1974). Acta Cryst. B30, 1412–1417.  CrossRef IUCr Journals Web of Science Google Scholar
First citationClark, J. B. & Range, K. J. (1976). Z. Naturforsch. Teil B, 31, 158–162.  Google Scholar
First citationEmmerling, F., Petri, D. & Röhr, C. (2004). Z. Anorg. Allg. Chem. 630, 2490–2501.  Web of Science CrossRef CAS Google Scholar
First citationEmmerling, F. & Röhr, C. (2002). Z. Naturforsch. Teil B, 57, 963–975.  CAS Google Scholar
First citationHeidenstamm, O. von, Johansson, A. & Westmann, S. (1968). Acta Chem. Scand. 22, 653–661.  Google Scholar
First citationHönle, W., Buresch, J., Wolf, J., Peters, K., Chang, J.-H. & von Schnering, H. G. (2002). Z. Kristallogr. New Cryst. Struct. 217, 489–490.  Google Scholar
First citationJeitschko, W., Foecker, A. J., Paschke, D., Dewalsky, M. V., Evers, Ch. B. H., Künnen, B., Lang, A., Kotzyba, G., Rodewald, U. Ch. & Möller, M. H. (2000). Z. Anorg. Allg. Chem. 626, 1112–1120.  CrossRef CAS Google Scholar
First citationKreiner, G. & Schaepers, M. (1997). J. Alloys Compd, 259, 83–114.  CrossRef CAS Web of Science Google Scholar
First citationLange, S., Bawohl, M., Weihrich, R. & Nilges, T. (2008). Angew. Chem. Int. Ed. 47, 5654–5657.  Web of Science CrossRef CAS Google Scholar
First citationMansmann, M. (1965). Z. Kristallogr. 122, 399–406.  CrossRef Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetřiček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationPöttgen, R., Hönle, W. & von Schnering, H. G. (2006). Phosphides: Solid-State Chemistry. Encyclopedia of Inorganic Chemistry, edited by R. B. King. New York: Wiley.  Google Scholar
First citationStoe & Cie (2011). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds