metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1536-m1537

(2-Carbamoylethyl-κ2C1,O)tri­iodidotin(IV)

aDepartamento de Química, Instituto de Cie^ncias Exatas, Universidade Federal de Minas Gerais, Avenida Anto^nio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 October 2011; accepted 10 October 2011; online 12 October 2011)

Two independent but virtually identical mol­ecules comprise the asymmetric unit of the title compound, [Sn(C3H6NO)I3]. The CI3O coordination geometry around the SnIV atom is defined by a chelating carbamoylethyl ligand (C1,O-bidentate) and three I atoms, and is based on a distorted trigonal bipyramid with the carbonyl O atom occupying a position trans to one of the I atoms which forms the longer of the Sn—I bonds. The independent mol­ecules are linked via N—H⋯O hydrogen bonds, which leads to the formation on an eight-membered amide {⋯HNCO}2 synthon. N—H⋯I hydrogen-bonding inter­actions are also present between neighbouring mol­ecules.

Related literature

For background to and for related Sn[OCH(NH2)CH2CH2]Cl3L structures (L = amide), see: Howie et al. (2011a[Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2011a). Acta Cryst. E67, m1420-m1421.],b[Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011b). Z. Kristallogr. doi:10.1524/zkri.2011.1440.]); Wardell et al. (2010[Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312-m313.]); Tiekink et al. (2006[Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971-m973.]). For additional geometric analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C3H6NO)I3]

  • Mr = 571.48

  • Triclinic, [P \overline 1]

  • a = 7.8530 (1) Å

  • b = 10.6264 (1) Å

  • c = 14.1250 (2) Å

  • α = 98.801 (1)°

  • β = 105.523 (1)°

  • γ = 102.383 (1)°

  • V = 1081.22 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.87 mm−1

  • T = 120 K

  • 0.20 × 0.20 × 0.02 mm

Data collection
  • Bruker–Nonius APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.379, Tmax = 1.000

  • 14061 measured reflections

  • 4414 independent reflections

  • 4342 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.079

  • S = 1.12

  • 4414 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.46 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.146 (5)
Sn1—O1 2.347 (3)
Sn1—I1 2.6953 (4)
Sn1—I2 2.7796 (4)
Sn1—I3 2.6904 (4)
Sn2—C4 2.147 (5)
Sn2—O2 2.330 (3)
Sn2—I4 2.6987 (4)
Sn2—I5 2.6880 (4)
Sn2—I6 2.8060 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.88 2.29 3.085 (7) 150
N2—H3n⋯O1 0.88 2.26 3.018 (7) 145
N2—H4n⋯I1 0.88 3.06 3.784 (6) 141

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was studied as a continuation of structural investigations of 2-amidoethyl compounds of stannanes(IV) (Tiekink et al., 2006; Wardell et al., 2010; Howie et al., 2011a,b, and references therein).

Two independent molecules comprise the asymmetric unit of (I), (Fig. 1). The two molecules are virtually identical with the r.m.s. deviations for distances and angles being 0.0132 Å and 3.291°, respectively (Spek, 2009). The greatest difference in equivalent bond lengths is found in the Sn1—I2 and Sn2—I6 bonds (Table 1). The SnIV atom in each molecule is chelated by the amidoethyl ligand and additionally coordinated by three I atoms. Each of the five-membered chelate rings is twisted, with the twist occurring about the CH2—CH2 bond in each case. The resulting CI3O donor set defines a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal, with a leaning towards the latter description. This is quantified by the value of τ = 0.80 [Sn1] which compares to the τ values of 0.0 and 1.0 for ideal square-pyramidal and trigonal-bipyramidal geometries, respectively (Addison et al., 1984). The τ value for the Sn2 atom is 0.72. The disparity in the Sn—I bond lengths (Table 1), shows that the I atoms in the axial positions, each of which is trans to an O atom, form longer bonds than the I atoms occupying equatorial positions.

It is of interest that while (H2NCOCH2CH2-C,O)SnCl3 readily forms six-coordinate complexes, [(H2NCOCH2CH2-C,O)SnCl3.L] with oxygen ligands, L, e.g. L = amide, as illustrated by the isolation of [(H2NCOCH2CH2-C,O)(EtCONH2-O)SnCl3] from reaction mixtures containing SnCl2, HCl and H2CCHCONH2 in Et2O (Howie et al., 2011b), the triiodido analogue is reluctant to form similar complexes. This is a consequence of the reduced Lewis acidity of the tin atom in iodidostannanes compared to chloridostannanes.

The two molecules comprising the asymmetric unit are linked via N—H···O hydrogen bonds, leading to the formation of an eight-membered {···HNCO}2 synthon (Fig. 1, Table 2). The other H atom on each N forms an interaction with an I atom of the other molecule, in the the case of the N1—H2n atom, this distance is long at 3.14 Å.

Related literature top

For background to and for related Sn[OCH(NH2)CH2CH2]Cl3L structures (L = amide), see: Howie et al. (2011a,b); Wardell et al. (2010); Tiekink et al. (2006). For additional geometric analysis, see: Addison et al. (1984); Spek (2009).

Experimental top

A solution of the complex, (H2NCOCH2CH2—C,O)(EtCONH2-O)SnCl3 (0.74 g, 2 mmol), isolated from a reaction mixture containing SnCl2, HCl and H2CCHCONH2 in Et2O (Howie et al., 2011b), and sodium iodide (10 mmol) in acetone (30 ml) was refluxed for 3 h, filtered to remove sodium chloride and rotary evaporated. The residue was extracted into chloroform (30 ml), the organic solution was rotary evaporated and the resulting residue was recrystallized from ethanol to give the title compound, melting point 461–463 K. IR: ν(CO) 1660, 1581 cm-1.

Refinement top

The C-bound H atoms were geometrically placed (N—H = 0.88 Å and C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C). The maximum and minimum residual electron density peaks of 1.37 and 1.46 e- Å-3, respectively, are located 1.34 Å and 0.85 Å from the I5 and I3 atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules comprising the asymmetric unit in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. The N—H···O hydrogen bonds are shown as dashed lines.
(2-Carbamoylethyl-κ2C1,O)triiodidotin(IV) top
Crystal data top
[Sn(C3H6NO)I3]Z = 4
Mr = 571.48F(000) = 992
Triclinic, P1Dx = 3.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8530 (1) ÅCell parameters from 4411 reflections
b = 10.6264 (1) Åθ = 2.9–27.5°
c = 14.1250 (2) ŵ = 10.87 mm1
α = 98.801 (1)°T = 120 K
β = 105.523 (1)°Plate, yellow
γ = 102.383 (1)°0.20 × 0.20 × 0.02 mm
V = 1081.22 (2) Å3
Data collection top
Bruker–Nonius APEXII CCD
diffractometer
4414 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode4342 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.039
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1313
Tmin = 0.379, Tmax = 1.000l = 1717
14061 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0384P)2 + 3.8857P]
where P = (Fo2 + 2Fc2)/3
4414 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.46 e Å3
Crystal data top
[Sn(C3H6NO)I3]γ = 102.383 (1)°
Mr = 571.48V = 1081.22 (2) Å3
Triclinic, P1Z = 4
a = 7.8530 (1) ÅMo Kα radiation
b = 10.6264 (1) ŵ = 10.87 mm1
c = 14.1250 (2) ÅT = 120 K
α = 98.801 (1)°0.20 × 0.20 × 0.02 mm
β = 105.523 (1)°
Data collection top
Bruker–Nonius APEXII CCD
diffractometer
4414 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4342 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 1.000Rint = 0.039
14061 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.12Δρmax = 1.37 e Å3
4414 reflectionsΔρmin = 1.46 e Å3
163 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.84744 (4)0.81052 (3)0.07941 (2)0.01343 (9)
I10.79233 (5)0.56511 (3)0.11465 (2)0.02019 (10)
I21.13298 (5)0.80096 (3)0.00043 (3)0.02164 (10)
I30.58439 (4)0.79311 (3)0.09302 (2)0.01808 (9)
O10.6302 (5)0.8274 (4)0.1636 (3)0.0196 (7)
N10.5852 (8)0.9523 (5)0.2928 (4)0.0324 (12)
H1N0.48490.88700.27620.039*
H2N0.65290.95680.35460.039*
C10.9830 (7)0.9848 (5)0.1974 (4)0.0190 (10)
H1A1.07070.96340.25330.023*
H1B1.05331.05280.17140.023*
C20.8454 (9)1.0397 (5)0.2370 (4)0.0266 (12)
H2A0.90521.08740.30830.032*
H2B0.80571.10370.19780.032*
C30.6791 (7)0.9313 (5)0.2296 (4)0.0198 (10)
Sn20.27996 (4)0.67003 (3)0.46025 (2)0.01266 (9)
I40.61233 (4)0.84602 (3)0.54333 (3)0.01904 (10)
I50.02318 (4)0.80393 (3)0.43118 (2)0.01823 (9)
I60.25104 (5)0.60910 (3)0.64270 (2)0.02072 (10)
O20.3235 (5)0.6994 (4)0.3074 (3)0.0208 (8)
N20.3498 (7)0.5858 (5)0.1668 (4)0.0286 (11)
H3N0.38560.66660.15850.034*
H4N0.44010.54800.17160.034*
C40.2650 (7)0.4737 (5)0.3869 (4)0.0171 (9)
H4A0.38350.45330.41400.021*
H4B0.16840.40900.40050.021*
C50.2215 (7)0.4620 (5)0.2734 (4)0.0213 (11)
H5A0.27080.39210.24490.026*
H5B0.08680.43580.24140.026*
C60.3029 (7)0.5905 (5)0.2496 (4)0.0188 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01254 (17)0.01471 (17)0.01161 (16)0.00316 (13)0.00254 (13)0.00162 (12)
I10.02194 (19)0.01739 (17)0.02113 (18)0.00547 (14)0.00490 (14)0.00694 (13)
I20.01880 (18)0.02449 (18)0.02683 (19)0.00877 (14)0.01201 (14)0.00795 (14)
I30.01449 (17)0.02295 (18)0.01437 (17)0.00462 (13)0.00081 (13)0.00423 (13)
O10.0162 (18)0.0241 (18)0.0176 (17)0.0048 (14)0.0059 (14)0.0023 (14)
N10.044 (3)0.027 (2)0.032 (3)0.009 (2)0.025 (2)0.001 (2)
C10.021 (3)0.013 (2)0.016 (2)0.0025 (19)0.001 (2)0.0023 (18)
C20.045 (4)0.016 (2)0.024 (3)0.010 (2)0.018 (3)0.003 (2)
C30.025 (3)0.026 (3)0.016 (2)0.014 (2)0.011 (2)0.008 (2)
Sn20.01234 (17)0.01365 (16)0.01193 (16)0.00425 (12)0.00339 (13)0.00231 (12)
I40.01251 (17)0.01815 (17)0.02403 (18)0.00266 (13)0.00420 (13)0.00230 (13)
I50.01529 (18)0.02042 (17)0.02122 (18)0.00887 (13)0.00530 (13)0.00606 (13)
I60.01956 (18)0.02811 (19)0.01277 (16)0.00340 (14)0.00347 (13)0.00657 (13)
O20.028 (2)0.0208 (18)0.0155 (17)0.0060 (15)0.0108 (15)0.0032 (14)
N20.035 (3)0.030 (3)0.022 (2)0.005 (2)0.015 (2)0.003 (2)
C40.022 (3)0.013 (2)0.013 (2)0.0072 (19)0.0009 (19)0.0001 (17)
C50.022 (3)0.021 (2)0.016 (2)0.002 (2)0.004 (2)0.0031 (19)
C60.014 (2)0.029 (3)0.016 (2)0.009 (2)0.0047 (19)0.006 (2)
Geometric parameters (Å, º) top
Sn1—C12.146 (5)Sn2—C42.147 (5)
Sn1—O12.347 (3)Sn2—O22.330 (3)
Sn1—I12.6953 (4)Sn2—I42.6987 (4)
Sn1—I22.7796 (4)Sn2—I52.6880 (4)
Sn1—I32.6904 (4)Sn2—I62.8060 (4)
O1—C31.244 (6)O2—C61.262 (6)
N1—C31.324 (7)N2—C61.313 (6)
N1—H1N0.8800N2—H3N0.8800
N1—H2N0.8800N2—H4N0.8800
C1—C21.521 (7)C4—C51.526 (7)
C1—H1A0.9900C4—H4A0.9900
C1—H1B0.9900C4—H4B0.9900
C2—C31.512 (8)C5—C61.506 (7)
C2—H2A0.9900C5—H5A0.9900
C2—H2B0.9900C5—H5B0.9900
C1—Sn1—O176.52 (16)C4—Sn2—O277.38 (16)
C1—Sn1—I3125.92 (14)C4—Sn2—I5129.25 (14)
O1—Sn1—I387.71 (9)O2—Sn2—I589.69 (9)
C1—Sn1—I1122.64 (14)C4—Sn2—I4118.64 (14)
O1—Sn1—I183.18 (9)O2—Sn2—I484.58 (9)
I3—Sn1—I1105.788 (15)I5—Sn2—I4108.400 (14)
C1—Sn1—I298.50 (14)C4—Sn2—I696.42 (13)
O1—Sn1—I2173.92 (9)O2—Sn2—I6172.63 (9)
I3—Sn1—I298.106 (14)I5—Sn2—I697.373 (13)
I1—Sn1—I296.853 (14)I4—Sn2—I695.120 (13)
C3—O1—Sn1112.5 (3)C6—O2—Sn2111.5 (3)
C3—N1—H1N109.5C6—N2—H3N109.5
C3—N1—H2N109.5C6—N2—H4N109.5
H1N—N1—H2N109.5H3N—N2—H4N109.5
C2—C1—Sn1111.0 (4)C5—C4—Sn2110.1 (3)
C2—C1—H1A109.4C5—C4—H4A109.6
Sn1—C1—H1A109.4Sn2—C4—H4A109.6
C2—C1—H1B109.4C5—C4—H4B109.6
Sn1—C1—H1B109.4Sn2—C4—H4B109.6
H1A—C1—H1B108.0H4A—C4—H4B108.1
C3—C2—C1111.7 (4)C6—C5—C4111.5 (4)
C3—C2—H2A109.3C6—C5—H5A109.3
C1—C2—H2A109.3C4—C5—H5A109.3
C3—C2—H2B109.3C6—C5—H5B109.3
C1—C2—H2B109.3C4—C5—H5B109.3
H2A—C2—H2B107.9H5A—C5—H5B108.0
O1—C3—N1121.5 (5)O2—C6—N2121.2 (5)
O1—C3—C2120.3 (4)O2—C6—C5120.6 (4)
N1—C3—C2118.2 (5)N2—C6—C5118.2 (5)
C1—Sn1—O1—C36.4 (4)C4—Sn2—O2—C65.8 (3)
I3—Sn1—O1—C3121.4 (3)I5—Sn2—O2—C6124.7 (3)
I1—Sn1—O1—C3132.4 (3)I4—Sn2—O2—C6126.8 (3)
O1—Sn1—C1—C219.9 (3)O2—Sn2—C4—C520.4 (3)
I3—Sn1—C1—C257.1 (4)I5—Sn2—C4—C558.6 (4)
I1—Sn1—C1—C292.5 (4)I4—Sn2—C4—C597.0 (3)
I2—Sn1—C1—C2163.6 (3)I6—Sn2—C4—C5163.6 (3)
Sn1—C1—C2—C331.0 (6)Sn2—C4—C5—C632.4 (5)
Sn1—O1—C3—N1172.4 (4)Sn2—O2—C6—N2169.0 (4)
Sn1—O1—C3—C29.8 (6)Sn2—O2—C6—C511.7 (6)
C1—C2—C3—O127.7 (7)C4—C5—C6—O230.2 (7)
C1—C2—C3—N1154.4 (5)C4—C5—C6—N2150.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.882.293.085 (7)150
N2—H3n···O10.882.263.018 (7)145
N2—H4n···I10.883.063.784 (6)141

Experimental details

Crystal data
Chemical formula[Sn(C3H6NO)I3]
Mr571.48
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.8530 (1), 10.6264 (1), 14.1250 (2)
α, β, γ (°)98.801 (1), 105.523 (1), 102.383 (1)
V3)1081.22 (2)
Z4
Radiation typeMo Kα
µ (mm1)10.87
Crystal size (mm)0.20 × 0.20 × 0.02
Data collection
DiffractometerBruker–Nonius APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.379, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14061, 4414, 4342
Rint0.039
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.079, 1.12
No. of reflections4414
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.46

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.146 (5)Sn2—C42.147 (5)
Sn1—O12.347 (3)Sn2—O22.330 (3)
Sn1—I12.6953 (4)Sn2—I42.6987 (4)
Sn1—I22.7796 (4)Sn2—I52.6880 (4)
Sn1—I32.6904 (4)Sn2—I62.8060 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.882.293.085 (7)150
N2—H3n···O10.882.263.018 (7)145
N2—H4n···I10.883.063.784 (6)141
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHowie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2011a). Acta Cryst. E67, m1420–m1421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHowie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011b). Z. Kristallogr. doi:10.1524/zkri.2011.1440.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1536-m1537
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds