metal-organic compounds
(2-Carbamoylethyl-κ2C1,O)triiodidotin(IV)
aDepartamento de Química, Instituto de Cie^ncias Exatas, Universidade Federal de Minas Gerais, Avenida Anto^nio Carlos, 6627 Pampulha, 31270-901 Belo Horizonte, MG, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
Two independent but virtually identical molecules comprise the 3H6NO)I3]. The CI3O coordination geometry around the SnIV atom is defined by a chelating carbamoylethyl ligand (C1,O-bidentate) and three I atoms, and is based on a distorted trigonal bipyramid with the carbonyl O atom occupying a position trans to one of the I atoms which forms the longer of the Sn—I bonds. The independent molecules are linked via N—H⋯O hydrogen bonds, which leads to the formation on an eight-membered amide {⋯HNCO}2 synthon. N—H⋯I hydrogen-bonding interactions are also present between neighbouring molecules.
of the title compound, [Sn(CRelated literature
For background to and for related Sn[OCH(NH2)CH2CH2]Cl3L structures (L = amide), see: Howie et al. (2011a,b); Wardell et al. (2010); Tiekink et al. (2006). For additional geometric analysis, see: Addison et al. (1984); Spek (2009).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811041778/wm2541sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811041778/wm2541Isup2.hkl
A solution of the complex, (H2NCOCH2CH2—C,O)(EtCONH2-O)SnCl3 (0.74 g, 2 mmol), isolated from a reaction mixture containing SnCl2, HCl and H2C═CHCONH2 in Et2O (Howie et al., 2011b), and sodium iodide (10 mmol) in acetone (30 ml) was refluxed for 3 h, filtered to remove sodium chloride and rotary evaporated. The residue was extracted into chloroform (30 ml), the organic solution was rotary evaporated and the resulting residue was recrystallized from ethanol to give the title compound, melting point 461–463 K. IR: ν(C═O) 1660, 1581 cm-1.
The C-bound H atoms were geometrically placed (N—H = 0.88 Å and C—H = 0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(N, C). The maximum and minimum residual electron density peaks of 1.37 and 1.46 e- Å-3, respectively, are located 1.34 Å and 0.85 Å from the I5 and I3 atoms, respectively.
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(C3H6NO)I3] | Z = 4 |
Mr = 571.48 | F(000) = 992 |
Triclinic, P1 | Dx = 3.511 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8530 (1) Å | Cell parameters from 4411 reflections |
b = 10.6264 (1) Å | θ = 2.9–27.5° |
c = 14.1250 (2) Å | µ = 10.87 mm−1 |
α = 98.801 (1)° | T = 120 K |
β = 105.523 (1)° | Plate, yellow |
γ = 102.383 (1)° | 0.20 × 0.20 × 0.02 mm |
V = 1081.22 (2) Å3 |
Bruker–Nonius APEXII CCD diffractometer | 4414 independent reflections |
Radiation source: Bruker-Nonius FR591 rotating anode | 4342 reflections with I > 2σ(I) |
10cm confocal mirrors monochromator | Rint = 0.039 |
Detector resolution: 9.091 pixels mm-1 | θmax = 26.5°, θmin = 3.0° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | k = −13→13 |
Tmin = 0.379, Tmax = 1.000 | l = −17→17 |
14061 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0384P)2 + 3.8857P] where P = (Fo2 + 2Fc2)/3 |
4414 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 1.37 e Å−3 |
0 restraints | Δρmin = −1.46 e Å−3 |
[Sn(C3H6NO)I3] | γ = 102.383 (1)° |
Mr = 571.48 | V = 1081.22 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.8530 (1) Å | Mo Kα radiation |
b = 10.6264 (1) Å | µ = 10.87 mm−1 |
c = 14.1250 (2) Å | T = 120 K |
α = 98.801 (1)° | 0.20 × 0.20 × 0.02 mm |
β = 105.523 (1)° |
Bruker–Nonius APEXII CCD diffractometer | 4414 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 4342 reflections with I > 2σ(I) |
Tmin = 0.379, Tmax = 1.000 | Rint = 0.039 |
14061 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.079 | H-atom parameters constrained |
S = 1.12 | Δρmax = 1.37 e Å−3 |
4414 reflections | Δρmin = −1.46 e Å−3 |
163 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.84744 (4) | 0.81052 (3) | 0.07941 (2) | 0.01343 (9) | |
I1 | 0.79233 (5) | 0.56511 (3) | 0.11465 (2) | 0.02019 (10) | |
I2 | 1.13298 (5) | 0.80096 (3) | −0.00043 (3) | 0.02164 (10) | |
I3 | 0.58439 (4) | 0.79311 (3) | −0.09302 (2) | 0.01808 (9) | |
O1 | 0.6302 (5) | 0.8274 (4) | 0.1636 (3) | 0.0196 (7) | |
N1 | 0.5852 (8) | 0.9523 (5) | 0.2928 (4) | 0.0324 (12) | |
H1N | 0.4849 | 0.8870 | 0.2762 | 0.039* | |
H2N | 0.6529 | 0.9568 | 0.3546 | 0.039* | |
C1 | 0.9830 (7) | 0.9848 (5) | 0.1974 (4) | 0.0190 (10) | |
H1A | 1.0707 | 0.9634 | 0.2533 | 0.023* | |
H1B | 1.0533 | 1.0528 | 0.1714 | 0.023* | |
C2 | 0.8454 (9) | 1.0397 (5) | 0.2370 (4) | 0.0266 (12) | |
H2A | 0.9052 | 1.0874 | 0.3083 | 0.032* | |
H2B | 0.8057 | 1.1037 | 0.1978 | 0.032* | |
C3 | 0.6791 (7) | 0.9313 (5) | 0.2296 (4) | 0.0198 (10) | |
Sn2 | 0.27996 (4) | 0.67003 (3) | 0.46025 (2) | 0.01266 (9) | |
I4 | 0.61233 (4) | 0.84602 (3) | 0.54333 (3) | 0.01904 (10) | |
I5 | 0.02318 (4) | 0.80393 (3) | 0.43118 (2) | 0.01823 (9) | |
I6 | 0.25104 (5) | 0.60910 (3) | 0.64270 (2) | 0.02072 (10) | |
O2 | 0.3235 (5) | 0.6994 (4) | 0.3074 (3) | 0.0208 (8) | |
N2 | 0.3498 (7) | 0.5858 (5) | 0.1668 (4) | 0.0286 (11) | |
H3N | 0.3856 | 0.6666 | 0.1585 | 0.034* | |
H4N | 0.4401 | 0.5480 | 0.1716 | 0.034* | |
C4 | 0.2650 (7) | 0.4737 (5) | 0.3869 (4) | 0.0171 (9) | |
H4A | 0.3835 | 0.4533 | 0.4140 | 0.021* | |
H4B | 0.1684 | 0.4090 | 0.4005 | 0.021* | |
C5 | 0.2215 (7) | 0.4620 (5) | 0.2734 (4) | 0.0213 (11) | |
H5A | 0.2708 | 0.3921 | 0.2449 | 0.026* | |
H5B | 0.0868 | 0.4358 | 0.2414 | 0.026* | |
C6 | 0.3029 (7) | 0.5905 (5) | 0.2496 (4) | 0.0188 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01254 (17) | 0.01471 (17) | 0.01161 (16) | 0.00316 (13) | 0.00254 (13) | 0.00162 (12) |
I1 | 0.02194 (19) | 0.01739 (17) | 0.02113 (18) | 0.00547 (14) | 0.00490 (14) | 0.00694 (13) |
I2 | 0.01880 (18) | 0.02449 (18) | 0.02683 (19) | 0.00877 (14) | 0.01201 (14) | 0.00795 (14) |
I3 | 0.01449 (17) | 0.02295 (18) | 0.01437 (17) | 0.00462 (13) | 0.00081 (13) | 0.00423 (13) |
O1 | 0.0162 (18) | 0.0241 (18) | 0.0176 (17) | 0.0048 (14) | 0.0059 (14) | 0.0023 (14) |
N1 | 0.044 (3) | 0.027 (2) | 0.032 (3) | 0.009 (2) | 0.025 (2) | −0.001 (2) |
C1 | 0.021 (3) | 0.013 (2) | 0.016 (2) | −0.0025 (19) | 0.001 (2) | −0.0023 (18) |
C2 | 0.045 (4) | 0.016 (2) | 0.024 (3) | 0.010 (2) | 0.018 (3) | 0.003 (2) |
C3 | 0.025 (3) | 0.026 (3) | 0.016 (2) | 0.014 (2) | 0.011 (2) | 0.008 (2) |
Sn2 | 0.01234 (17) | 0.01365 (16) | 0.01193 (16) | 0.00425 (12) | 0.00339 (13) | 0.00231 (12) |
I4 | 0.01251 (17) | 0.01815 (17) | 0.02403 (18) | 0.00266 (13) | 0.00420 (13) | 0.00230 (13) |
I5 | 0.01529 (18) | 0.02042 (17) | 0.02122 (18) | 0.00887 (13) | 0.00530 (13) | 0.00606 (13) |
I6 | 0.01956 (18) | 0.02811 (19) | 0.01277 (16) | 0.00340 (14) | 0.00347 (13) | 0.00657 (13) |
O2 | 0.028 (2) | 0.0208 (18) | 0.0155 (17) | 0.0060 (15) | 0.0108 (15) | 0.0032 (14) |
N2 | 0.035 (3) | 0.030 (3) | 0.022 (2) | 0.005 (2) | 0.015 (2) | 0.003 (2) |
C4 | 0.022 (3) | 0.013 (2) | 0.013 (2) | 0.0072 (19) | 0.0009 (19) | 0.0001 (17) |
C5 | 0.022 (3) | 0.021 (2) | 0.016 (2) | 0.002 (2) | 0.004 (2) | −0.0031 (19) |
C6 | 0.014 (2) | 0.029 (3) | 0.016 (2) | 0.009 (2) | 0.0047 (19) | 0.006 (2) |
Sn1—C1 | 2.146 (5) | Sn2—C4 | 2.147 (5) |
Sn1—O1 | 2.347 (3) | Sn2—O2 | 2.330 (3) |
Sn1—I1 | 2.6953 (4) | Sn2—I4 | 2.6987 (4) |
Sn1—I2 | 2.7796 (4) | Sn2—I5 | 2.6880 (4) |
Sn1—I3 | 2.6904 (4) | Sn2—I6 | 2.8060 (4) |
O1—C3 | 1.244 (6) | O2—C6 | 1.262 (6) |
N1—C3 | 1.324 (7) | N2—C6 | 1.313 (6) |
N1—H1N | 0.8800 | N2—H3N | 0.8800 |
N1—H2N | 0.8800 | N2—H4N | 0.8800 |
C1—C2 | 1.521 (7) | C4—C5 | 1.526 (7) |
C1—H1A | 0.9900 | C4—H4A | 0.9900 |
C1—H1B | 0.9900 | C4—H4B | 0.9900 |
C2—C3 | 1.512 (8) | C5—C6 | 1.506 (7) |
C2—H2A | 0.9900 | C5—H5A | 0.9900 |
C2—H2B | 0.9900 | C5—H5B | 0.9900 |
C1—Sn1—O1 | 76.52 (16) | C4—Sn2—O2 | 77.38 (16) |
C1—Sn1—I3 | 125.92 (14) | C4—Sn2—I5 | 129.25 (14) |
O1—Sn1—I3 | 87.71 (9) | O2—Sn2—I5 | 89.69 (9) |
C1—Sn1—I1 | 122.64 (14) | C4—Sn2—I4 | 118.64 (14) |
O1—Sn1—I1 | 83.18 (9) | O2—Sn2—I4 | 84.58 (9) |
I3—Sn1—I1 | 105.788 (15) | I5—Sn2—I4 | 108.400 (14) |
C1—Sn1—I2 | 98.50 (14) | C4—Sn2—I6 | 96.42 (13) |
O1—Sn1—I2 | 173.92 (9) | O2—Sn2—I6 | 172.63 (9) |
I3—Sn1—I2 | 98.106 (14) | I5—Sn2—I6 | 97.373 (13) |
I1—Sn1—I2 | 96.853 (14) | I4—Sn2—I6 | 95.120 (13) |
C3—O1—Sn1 | 112.5 (3) | C6—O2—Sn2 | 111.5 (3) |
C3—N1—H1N | 109.5 | C6—N2—H3N | 109.5 |
C3—N1—H2N | 109.5 | C6—N2—H4N | 109.5 |
H1N—N1—H2N | 109.5 | H3N—N2—H4N | 109.5 |
C2—C1—Sn1 | 111.0 (4) | C5—C4—Sn2 | 110.1 (3) |
C2—C1—H1A | 109.4 | C5—C4—H4A | 109.6 |
Sn1—C1—H1A | 109.4 | Sn2—C4—H4A | 109.6 |
C2—C1—H1B | 109.4 | C5—C4—H4B | 109.6 |
Sn1—C1—H1B | 109.4 | Sn2—C4—H4B | 109.6 |
H1A—C1—H1B | 108.0 | H4A—C4—H4B | 108.1 |
C3—C2—C1 | 111.7 (4) | C6—C5—C4 | 111.5 (4) |
C3—C2—H2A | 109.3 | C6—C5—H5A | 109.3 |
C1—C2—H2A | 109.3 | C4—C5—H5A | 109.3 |
C3—C2—H2B | 109.3 | C6—C5—H5B | 109.3 |
C1—C2—H2B | 109.3 | C4—C5—H5B | 109.3 |
H2A—C2—H2B | 107.9 | H5A—C5—H5B | 108.0 |
O1—C3—N1 | 121.5 (5) | O2—C6—N2 | 121.2 (5) |
O1—C3—C2 | 120.3 (4) | O2—C6—C5 | 120.6 (4) |
N1—C3—C2 | 118.2 (5) | N2—C6—C5 | 118.2 (5) |
C1—Sn1—O1—C3 | 6.4 (4) | C4—Sn2—O2—C6 | 5.8 (3) |
I3—Sn1—O1—C3 | −121.4 (3) | I5—Sn2—O2—C6 | −124.7 (3) |
I1—Sn1—O1—C3 | 132.4 (3) | I4—Sn2—O2—C6 | 126.8 (3) |
O1—Sn1—C1—C2 | −19.9 (3) | O2—Sn2—C4—C5 | −20.4 (3) |
I3—Sn1—C1—C2 | 57.1 (4) | I5—Sn2—C4—C5 | 58.6 (4) |
I1—Sn1—C1—C2 | −92.5 (4) | I4—Sn2—C4—C5 | −97.0 (3) |
I2—Sn1—C1—C2 | 163.6 (3) | I6—Sn2—C4—C5 | 163.6 (3) |
Sn1—C1—C2—C3 | 31.0 (6) | Sn2—C4—C5—C6 | 32.4 (5) |
Sn1—O1—C3—N1 | −172.4 (4) | Sn2—O2—C6—N2 | −169.0 (4) |
Sn1—O1—C3—C2 | 9.8 (6) | Sn2—O2—C6—C5 | 11.7 (6) |
C1—C2—C3—O1 | −27.7 (7) | C4—C5—C6—O2 | −30.2 (7) |
C1—C2—C3—N1 | 154.4 (5) | C4—C5—C6—N2 | 150.5 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O2 | 0.88 | 2.29 | 3.085 (7) | 150 |
N2—H3n···O1 | 0.88 | 2.26 | 3.018 (7) | 145 |
N2—H4n···I1 | 0.88 | 3.06 | 3.784 (6) | 141 |
Experimental details
Crystal data | |
Chemical formula | [Sn(C3H6NO)I3] |
Mr | 571.48 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 7.8530 (1), 10.6264 (1), 14.1250 (2) |
α, β, γ (°) | 98.801 (1), 105.523 (1), 102.383 (1) |
V (Å3) | 1081.22 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 10.87 |
Crystal size (mm) | 0.20 × 0.20 × 0.02 |
Data collection | |
Diffractometer | Bruker–Nonius APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.379, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14061, 4414, 4342 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.079, 1.12 |
No. of reflections | 4414 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.37, −1.46 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Sn1—C1 | 2.146 (5) | Sn2—C4 | 2.147 (5) |
Sn1—O1 | 2.347 (3) | Sn2—O2 | 2.330 (3) |
Sn1—I1 | 2.6953 (4) | Sn2—I4 | 2.6987 (4) |
Sn1—I2 | 2.7796 (4) | Sn2—I5 | 2.6880 (4) |
Sn1—I3 | 2.6904 (4) | Sn2—I6 | 2.8060 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n···O2 | 0.88 | 2.29 | 3.085 (7) | 150 |
N2—H3n···O1 | 0.88 | 2.26 | 3.018 (7) | 145 |
N2—H4n···I1 | 0.88 | 3.06 | 3.784 (6) | 141 |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2011a). Acta Cryst. E67, m1420–m1421. Web of Science CSD CrossRef IUCr Journals Google Scholar
Howie, R. A., de Lima, G. M., Tiekink, E. R. T., Wardell, J. L., Wardell, S. M. S. V. & Welte, W. B. (2011b). Z. Kristallogr. doi:10.1524/zkri.2011.1440. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m971–m973. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wardell, S. M. S. V., Harrison, W. T. A., Tiekink, E. R. T., de Lima, G. M. & Wardell, J. L. (2010). Acta Cryst. E66, m312–m313. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), was studied as a continuation of structural investigations of 2-amidoethyl compounds of stannanes(IV) (Tiekink et al., 2006; Wardell et al., 2010; Howie et al., 2011a,b, and references therein).
Two independent molecules comprise the asymmetric unit of (I), (Fig. 1). The two molecules are virtually identical with the r.m.s. deviations for distances and angles being 0.0132 Å and 3.291°, respectively (Spek, 2009). The greatest difference in equivalent bond lengths is found in the Sn1—I2 and Sn2—I6 bonds (Table 1). The SnIV atom in each molecule is chelated by the amidoethyl ligand and additionally coordinated by three I atoms. Each of the five-membered chelate rings is twisted, with the twist occurring about the CH2—CH2 bond in each case. The resulting CI3O donor set defines a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal, with a leaning towards the latter description. This is quantified by the value of τ = 0.80 [Sn1] which compares to the τ values of 0.0 and 1.0 for ideal square-pyramidal and trigonal-bipyramidal geometries, respectively (Addison et al., 1984). The τ value for the Sn2 atom is 0.72. The disparity in the Sn—I bond lengths (Table 1), shows that the I atoms in the axial positions, each of which is trans to an O atom, form longer bonds than the I atoms occupying equatorial positions.
It is of interest that while (H2NCOCH2CH2-C,O)SnCl3 readily forms six-coordinate complexes, [(H2NCOCH2CH2-C,O)SnCl3.L] with oxygen ligands, L, e.g. L = amide, as illustrated by the isolation of [(H2NCOCH2CH2-C,O)(EtCONH2-O)SnCl3] from reaction mixtures containing SnCl2, HCl and H2C═CHCONH2 in Et2O (Howie et al., 2011b), the triiodido analogue is reluctant to form similar complexes. This is a consequence of the reduced Lewis acidity of the tin atom in iodidostannanes compared to chloridostannanes.
The two molecules comprising the asymmetric unit are linked via N—H···O hydrogen bonds, leading to the formation of an eight-membered {···HNCO}2 synthon (Fig. 1, Table 2). The other H atom on each N forms an interaction with an I atom of the other molecule, in the the case of the N1—H2n atom, this distance is long at 3.14 Å.