metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1594-m1595

Poly[tetra-μ-aqua-di­aqua­tetra­kis­[μ-(E)-2-nitro­cinnamato]tetra­rubidium]

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 10 October 2011; accepted 19 October 2011; online 29 October 2011)

In the structure of the title compound, [Rb4(C9H6NO4)4(H2O)6]n, the asymmetric unit comprises four rubidium cations, two of which have an RbO7 coordination polyhedron with a monocapped distorted octa­hedral stereochemistry and two of which have a distorted RbO6 octa­hedral coordination. The bonding about both the seven-coordinate cations is similar, comprising one monodentate water mol­ecule together with three bridging water mol­ecules and three carboxyl­ate O-atom donors, two of which are bridging. The environments around the six-coordinate cations are also similar, comprising a monodentate nitro O-atom donor, a bridging water mol­ecule and four bridging carboxyl­ate O-atom donors [overall Rb—O range = 2.849 (2)–3.190 (2) Å]. The coordination leads to a two-dimensional polymeric structure extending parallel to (001), which is stabilized by inter­layer water O—H⋯O hydrogen-bonding associations to water, carboxyl and nitro O-atom acceptors, together with weak inter-ring ππ inter­actions [minimum ring centroid–centroid separation = 3.5319 (19) Å].

Related literature

For the structures of some Rb complexes with aromatic carb­oxy­lic acids, see: Dinnebier et al. (2002[Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363-368.]); Wiesbrock & Schmidbaur (2003[Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.]); Smith et al. (2007[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645-3652.]). For the structures of the two 2-nitro­cinnamic acid polymorphs, see: Schmidt (1964[Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.]); Smith et al. (2006[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024-o2026.]). For the structure of the Na salt of the acid, see: Smith & Wermuth (2009[Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb4(C9H6NO4)4(H2O)6]

  • Mr = 1218.57

  • Triclinic, [P \overline 1]

  • a = 7.02312 (14) Å

  • b = 7.77072 (15) Å

  • c = 41.1902 (8) Å

  • α = 89.5447 (15)°

  • β = 88.6733 (16)°

  • γ = 84.8679 (16)°

  • V = 2238.29 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.44 mm−1

  • T = 200 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.591, Tmax = 0.980

  • 26954 measured reflections

  • 8812 independent reflections

  • 6333 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.064

  • S = 1.05

  • 8812 reflections

  • 595 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O13Bi 0.87 1.94 2.795 (3) 167
O1W—H12W⋯O13Di 0.86 1.91 2.753 (3) 167
O2W—H21W⋯O4Wii 0.82 1.97 2.788 (3) 170
O2W—H22W⋯O14Cii 0.85 1.93 2.716 (3) 153
O3W—H31W⋯O14Di 0.91 1.80 2.695 (3) 169
O3W—H32W⋯O6Wiii 0.88 1.86 2.728 (3) 170
O4W—H41W⋯O1W 0.84 2.02 2.852 (3) 178
O4W—H42W⋯O14A 0.84 1.91 2.758 (3) 180
O5W—H51W⋯O3Wiv 0.94 1.82 2.734 (3) 163
O5W—H52W⋯O14Bv 0.83 2.07 2.893 (3) 170
O6W—H61W⋯O13Cii 0.86 1.88 2.742 (3) 179
O6W—H62W⋯O13A 0.85 2.00 2.834 (3) 165
Symmetry codes: (i) x+1, y-1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x-1, y-1, z; (v) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of alkali metal complexes with aromatic carboxylic acids are of interest, particularly with the heavier metals Rb and Cs, because of their expanded and usually irregular coordination spheres, and their ability to form polymeric systems, commonly having carboxylate and water O bridges, e.g. rubidium salicylate with a [RbO7] coordination polyhedron (Dinnebier et al., 2002), rubidium anthranilate monohydrate ([RbO8]) (Wiesbrock & Schmidbaur, 2003), or rubidium 5-sulfosalicylate 1.33 hydrate ([RbO7]) (Smith et al., 2007).

We obtained crystals of the title compound [Rb4(C9H6NO4)4(H2O)6]n from the reaction of trans-4-nitrocinnamic acid with rubidium hydroxide and the structure is reported here. There is only one example of a structure of an alkali metal complex with this ligand, sodium trans-2-nitrocinnamate dihydrate, a one-dimensional coordination polymer (Smith & Wermuth, 2009). In the structure of the title compound, the asymmetric unit comprises four rubidium cations, two of which are associated with [RbO7] cordination polyhedra [Rb1—O, 2.849 (2)–3.106 (2) Å; Rb2—O, 2.908 (2)–3.132 (2) Å] and two [RbO6] coordination polyhedra [Rb3—O, 2.901 (2)–2.975 (2) Å; Rb4—O, 2.883 (2)–3.190 (2) Å] (Fig. 1). The stereochemistry about both 7-coordinate cations is monocapped distorted octahedral while it is distorted octahedral for the 6-coordinate cations. The coordination spheres of both Rb1 and Rb2 comprise one monodentate water (O1W and O6W, respectively) and three bridging water molecules together with three carboxyl O-donors, two of which are bridging. The coordination spheres about both Rb3 and Rb4 are also similar in having the same distribution of donor types: a monodentate nitro O atom [O21D (Rb3) and O21A (Rb4)], one water and four carboxylate donors, all bridging. The overall complex has apparent pseudo-twofold rotational symmetry but no reasonable higher crystallographic symmetry could be invoked for the structure.

The two-dimensional polymeric structure (Figs. 2, 3) is expanding parallel to (001) and is stabilized by intra-layer and intermolecular water O—H···O hydrogen-bonding interactions to water, carboxyl and nitro O-acceptors (Table 1). Present also in the structure are inter-ring ππ interactions [minimum ring centroid–centroid separation, 3.5319 (19) Å]. The four 2-nitrocinnamate anions have minor conformational variations: the comparative side chain torsion angles (C2–C1–C11–C12), -146.6 (4), -157.3 (3), 147.8 (4) and -150.3 (4)° for AD and the nitro group torsion angles (C1–C2–N2–O22), 161.9 (4), -146.7 (3), 150.4 (3) and -146.3 (3)° for AD. This stereochemistry is similar to that found in both polymorphs of the parent acid (Schmidt, 1964; Smith et al., 2006).

Related literature top

For the structures of some Rb complexes with aromatic carboxylic acids, see: Dinnebier et al. (2002); Wiesbrock & Schmidbaur (2003); Smith et al. (2007). For the structures of the two 2-nitrocinnamic acid polymorphs, see: Schmidt (1964); Smith et al. (2006). For the structure of the Na salt of the acid, see: Smith & Wermuth (2009).

Experimental top

The title compound was synthesized by heating together under reflux for 15 minutes, 2 mmol of trans-cinnamic acid with 1 mmol of rubidium hydroxide in 50 ml of a 1:9 ethanol–water mixture. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless flat prisms of the title compound, from which a suitable specimen was cleaved for the X-ray analysis. The crystals were found to deteriorate when exposed to air.

Refinement top

The water H atoms were located in difference-Fourier syntheses but in the final cycles of refinement their positional parameters were constrained with their isotropic displacement parameters allowed to ride on the parent O atom, with Uiso(H) = 1.2Ueq(O). Other hydrogen atoms were included in calculated positions with C—H = 0.95 Å, also with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the coordination of the four rubidium cations in the title complex, with non-H atoms drawn as 40% probability ellipsoids. [Symmetry codes: (i) x, y, z -1; (ii) -x, -y, -z.]
[Figure 2] Fig. 2. A view of a part of the structure showing structure extensions and intra-layer hydrogen bonds (as dashed lines). Non-associative H atoms were omitted. For symmetry codes, see Fig. 1 and Table 1.
[Figure 3] Fig. 3. The two-dimensional polymeric structure viewed down the b axis of the unit cell, with hydrogen bonds shown as dashed lines.
Poly[tetra-µ-aqua-diaquatetrakis[µ-(E)-2-nitrocinnamato]tetrarubidium] top
Crystal data top
[Rb4(C9H6NO4)4(H2O)6]Z = 2
Mr = 1218.57F(000) = 1208
Triclinic, P1Dx = 1.808 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.02312 (14) ÅCell parameters from 10977 reflections
b = 7.77072 (15) Åθ = 3.2–28.7°
c = 41.1902 (8) ŵ = 4.44 mm1
α = 89.5447 (15)°T = 200 K
β = 88.6733 (16)°Plate, colourless
γ = 84.8679 (16)°0.40 × 0.30 × 0.15 mm
V = 2238.29 (8) Å3
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
8812 independent reflections
Radiation source: Enhance (Mo) X-ray source6333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 99
Tmin = 0.591, Tmax = 0.980l = 5050
26954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0237P)2
where P = (Fo2 + 2Fc2)/3
8812 reflections(Δ/σ)max = 0.001
595 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Rb4(C9H6NO4)4(H2O)6]γ = 84.8679 (16)°
Mr = 1218.57V = 2238.29 (8) Å3
Triclinic, P1Z = 2
a = 7.02312 (14) ÅMo Kα radiation
b = 7.77072 (15) ŵ = 4.44 mm1
c = 41.1902 (8) ÅT = 200 K
α = 89.5447 (15)°0.40 × 0.30 × 0.15 mm
β = 88.6733 (16)°
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
8812 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
6333 reflections with I > 2σ(I)
Tmin = 0.591, Tmax = 0.980Rint = 0.036
26954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
8812 reflectionsΔρmin = 0.53 e Å3
595 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.94219 (5)0.91218 (4)0.26938 (1)0.0212 (1)
Rb20.44642 (5)0.56962 (4)0.23154 (1)0.0234 (1)
Rb30.55354 (5)1.25576 (4)0.31407 (1)0.0245 (1)
Rb41.05994 (5)1.23024 (4)0.18677 (1)0.0283 (1)
O1W1.0765 (3)0.6063 (3)0.30690 (6)0.0309 (9)
O2W0.7203 (3)1.2134 (3)0.24727 (6)0.0257 (8)
O3W1.3448 (3)0.9459 (3)0.25016 (6)0.0279 (8)
O4W0.8527 (3)0.5397 (3)0.25226 (6)0.0253 (8)
O5W0.2304 (3)0.2898 (3)0.25649 (6)0.0357 (9)
O6W0.5407 (3)0.9000 (3)0.19248 (6)0.0327 (9)
O13A0.9422 (3)0.8720 (3)0.20024 (6)0.0278 (8)
O13B0.1694 (3)1.3122 (3)0.34482 (6)0.0269 (9)
O13C0.4344 (3)0.1885 (3)0.15619 (6)0.0310 (9)
O13D0.4657 (3)1.6262 (3)0.30273 (6)0.0276 (8)
O14A1.0819 (3)0.6021 (3)0.19896 (6)0.0240 (8)
O14B0.0257 (3)1.2087 (3)0.30933 (6)0.0263 (8)
O14C0.6508 (3)0.3115 (3)0.18492 (6)0.0328 (9)
O14D0.5749 (3)1.8879 (3)0.30129 (6)0.0262 (8)
O21A0.9548 (5)1.2102 (3)0.11758 (8)0.0596 (13)
O21B0.0040 (4)1.1619 (3)0.44788 (7)0.0485 (10)
O21C0.4963 (5)0.3392 (3)0.05074 (7)0.0547 (13)
O21D0.6288 (4)1.2701 (3)0.38398 (7)0.0417 (10)
O22A0.9983 (6)1.2938 (4)0.06947 (8)0.0849 (16)
O22B0.1989 (4)1.0405 (3)0.48277 (7)0.0500 (11)
O22C0.2977 (4)0.4607 (4)0.01645 (7)0.0518 (11)
O22D0.4952 (4)1.1955 (3)0.42886 (7)0.0549 (11)
N2A0.9558 (4)1.1848 (4)0.08879 (9)0.0326 (11)
N2B0.1058 (5)1.0377 (4)0.45818 (8)0.0307 (11)
N2C0.3938 (5)0.4642 (4)0.04070 (8)0.0330 (11)
N2D0.5696 (5)1.3004 (4)0.41170 (9)0.0325 (11)
C1A0.9166 (4)0.8696 (4)0.09601 (8)0.0186 (11)
C1B0.0955 (4)0.8707 (4)0.40683 (8)0.0181 (11)
C1C0.4229 (4)0.6317 (4)0.09139 (8)0.0173 (11)
C1D0.5767 (4)1.6189 (4)0.40592 (8)0.0197 (11)
C2A0.9142 (5)1.0156 (4)0.07599 (9)0.0223 (11)
C2B0.1075 (5)0.8722 (4)0.44044 (8)0.0189 (11)
C2C0.3957 (5)0.6294 (4)0.05795 (8)0.0200 (11)
C2D0.5912 (5)1.4718 (4)0.42573 (9)0.0215 (11)
C3A0.8869 (5)1.0081 (5)0.04283 (9)0.0309 (12)
C3B0.1138 (5)0.7251 (4)0.45964 (9)0.0262 (12)
C3C0.3784 (5)0.7768 (4)0.03888 (9)0.0285 (12)
C3D0.6245 (5)1.4756 (5)0.45856 (9)0.0289 (12)
C4A0.8646 (5)0.8536 (5)0.02851 (9)0.0351 (14)
C4B0.1017 (5)0.5681 (4)0.44488 (9)0.0291 (14)
C4C0.3917 (5)0.9349 (4)0.05312 (10)0.0297 (14)
C4D0.6441 (5)1.6309 (5)0.47308 (9)0.0342 (14)
C5A0.8730 (5)0.7050 (5)0.04737 (9)0.0311 (12)
C5B0.0846 (5)0.5598 (4)0.41148 (9)0.0250 (11)
C5C0.4179 (5)0.9423 (4)0.08630 (10)0.0285 (14)
C5D0.6280 (5)1.7808 (5)0.45456 (9)0.0314 (14)
C6A0.8985 (5)0.7140 (4)0.08026 (9)0.0241 (12)
C6B0.0848 (4)0.7098 (4)0.39309 (9)0.0222 (12)
C6C0.4306 (4)0.7938 (4)0.10475 (9)0.0231 (11)
C6D0.5926 (5)1.7743 (4)0.42188 (9)0.0257 (12)
C11A0.9285 (5)0.8678 (4)0.13174 (8)0.0197 (11)
C11B0.1094 (5)1.0249 (4)0.38621 (8)0.0208 (11)
C11C0.4337 (5)0.4762 (4)0.11246 (8)0.0202 (11)
C11D0.5346 (5)1.6215 (4)0.37112 (9)0.0219 (11)
C12A1.0164 (5)0.7420 (4)0.14909 (9)0.0229 (11)
C12B0.0410 (5)1.0461 (4)0.35657 (8)0.0244 (11)
C12C0.5385 (5)0.4579 (4)0.13842 (9)0.0250 (12)
C12D0.5965 (5)1.7343 (4)0.35014 (9)0.0257 (12)
C13A1.0123 (5)0.7401 (4)0.18519 (9)0.0200 (11)
C13B0.0642 (5)1.2009 (4)0.33608 (8)0.0192 (11)
C13C0.5404 (5)0.3069 (4)0.16126 (9)0.0248 (12)
C13D0.5417 (5)1.7488 (4)0.31544 (8)0.0205 (11)
H3A0.883601.110700.030100.0370*
H3B0.126300.732200.482500.0310*
H3C0.357500.769100.016300.0340*
H3D0.633701.371800.471000.0350*
H4A0.843600.848100.005900.0420*
H4B0.105100.465400.457600.0340*
H4C0.383101.037500.040400.0360*
H4D0.668601.635600.495600.0410*
H5A0.861100.596400.037500.0370*
H5B0.072800.452200.401300.0300*
H5C0.427101.050800.096400.0340*
H5D0.641501.888900.464500.0380*
H6A0.904100.610400.092700.0290*
H6B0.077300.702000.370200.0270*
H6C0.445300.802600.127500.0280*
H6D0.578501.879200.409800.0310*
H11A0.868400.964500.143100.0240*
H11B0.172601.116900.394900.0250*
H11C0.360500.384200.106900.0240*
H11D0.458101.536800.363200.0260*
H12A1.085300.648600.138000.0270*
H12B0.026900.957000.348000.0290*
H12C0.618600.546400.143000.0300*
H12D0.682301.811900.357700.0310*
H11W1.08700.51700.32000.0370*
H12W1.19400.63000.30600.0370*
H21W0.76261.30640.25110.0310*
H22W0.69901.20860.22700.0310*
H31W1.43250.91930.26560.0340*
H32W1.40510.94430.23120.0340*
H41W0.92000.56000.26800.0300*
H42W0.92300.55900.23600.0300*
H51W0.26300.17500.25000.0430*
H52W0.15500.28000.27200.0430*
H61W0.50800.99000.18100.0390*
H62W0.65800.91000.19600.0390*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0262 (2)0.0171 (2)0.0204 (2)0.0019 (1)0.0002 (2)0.0002 (2)
Rb20.0249 (2)0.0198 (2)0.0253 (2)0.0007 (2)0.0048 (2)0.0018 (2)
Rb30.0277 (2)0.0211 (2)0.0246 (2)0.0010 (2)0.0015 (2)0.0025 (2)
Rb40.0295 (2)0.0267 (2)0.0293 (2)0.0062 (2)0.0006 (2)0.0025 (2)
O1W0.0374 (16)0.0230 (13)0.0327 (16)0.0024 (11)0.0112 (13)0.0077 (12)
O2W0.0365 (15)0.0207 (13)0.0206 (14)0.0041 (11)0.0079 (11)0.0017 (11)
O3W0.0296 (15)0.0294 (14)0.0244 (15)0.0006 (11)0.0013 (12)0.0019 (11)
O4W0.0239 (14)0.0321 (14)0.0205 (15)0.0067 (11)0.0000 (11)0.0007 (11)
O5W0.0396 (16)0.0243 (14)0.0410 (18)0.0054 (11)0.0109 (13)0.0038 (13)
O6W0.0340 (16)0.0355 (15)0.0281 (16)0.0022 (12)0.0020 (12)0.0073 (12)
O13A0.0419 (16)0.0232 (13)0.0177 (15)0.0012 (11)0.0007 (12)0.0018 (11)
O13B0.0371 (16)0.0263 (14)0.0193 (15)0.0130 (12)0.0037 (12)0.0003 (11)
O13C0.0326 (16)0.0296 (14)0.0321 (17)0.0088 (12)0.0080 (12)0.0096 (12)
O13D0.0395 (16)0.0211 (13)0.0236 (15)0.0104 (11)0.0004 (12)0.0002 (11)
O14A0.0231 (14)0.0243 (13)0.0240 (15)0.0021 (10)0.0040 (11)0.0073 (11)
O14B0.0322 (15)0.0301 (14)0.0172 (15)0.0058 (11)0.0049 (12)0.0007 (11)
O14C0.0398 (17)0.0380 (15)0.0211 (15)0.0043 (12)0.0105 (13)0.0050 (12)
O14D0.0345 (15)0.0229 (13)0.0223 (15)0.0099 (11)0.0053 (11)0.0050 (11)
O21A0.111 (3)0.0417 (18)0.030 (2)0.0270 (17)0.0076 (18)0.0036 (16)
O21B0.080 (2)0.0224 (15)0.0413 (19)0.0054 (15)0.0028 (16)0.0052 (14)
O21C0.102 (3)0.0254 (16)0.0350 (19)0.0044 (16)0.0021 (17)0.0048 (14)
O21D0.063 (2)0.0326 (16)0.0276 (18)0.0078 (14)0.0054 (15)0.0039 (14)
O22A0.171 (4)0.0407 (19)0.048 (2)0.039 (2)0.001 (2)0.0168 (18)
O22B0.070 (2)0.0582 (19)0.0254 (18)0.0220 (16)0.0124 (16)0.0147 (15)
O22C0.069 (2)0.064 (2)0.0262 (18)0.0232 (16)0.0142 (16)0.0139 (15)
O22D0.080 (2)0.0337 (17)0.054 (2)0.0240 (16)0.0004 (17)0.0134 (16)
N2A0.039 (2)0.0297 (19)0.029 (2)0.0024 (15)0.0024 (17)0.0106 (17)
N2B0.043 (2)0.0255 (18)0.025 (2)0.0122 (16)0.0077 (16)0.0063 (15)
N2C0.050 (2)0.0299 (19)0.021 (2)0.0138 (16)0.0002 (17)0.0022 (16)
N2D0.036 (2)0.0257 (18)0.036 (2)0.0021 (15)0.0112 (17)0.0012 (17)
C1A0.0126 (18)0.0249 (19)0.018 (2)0.0005 (15)0.0001 (15)0.0033 (16)
C1B0.0114 (18)0.0205 (18)0.023 (2)0.0037 (14)0.0024 (15)0.0007 (16)
C1C0.0125 (18)0.0206 (18)0.019 (2)0.0029 (14)0.0006 (15)0.0003 (16)
C1D0.0155 (19)0.0248 (19)0.019 (2)0.0026 (15)0.0006 (15)0.0004 (16)
C2A0.0169 (19)0.027 (2)0.023 (2)0.0024 (15)0.0009 (16)0.0035 (17)
C2B0.0195 (19)0.0168 (18)0.021 (2)0.0050 (14)0.0026 (16)0.0031 (16)
C2C0.020 (2)0.0184 (18)0.022 (2)0.0045 (15)0.0009 (16)0.0026 (16)
C2D0.0162 (19)0.0226 (19)0.026 (2)0.0039 (15)0.0000 (16)0.0004 (17)
C3A0.025 (2)0.044 (2)0.024 (2)0.0049 (18)0.0043 (17)0.0118 (19)
C3B0.027 (2)0.029 (2)0.023 (2)0.0048 (17)0.0016 (17)0.0025 (18)
C3C0.029 (2)0.034 (2)0.023 (2)0.0042 (17)0.0060 (17)0.0082 (18)
C3D0.027 (2)0.037 (2)0.023 (2)0.0041 (17)0.0032 (17)0.0080 (19)
C4A0.030 (2)0.059 (3)0.017 (2)0.007 (2)0.0052 (18)0.000 (2)
C4B0.030 (2)0.020 (2)0.037 (3)0.0017 (16)0.0011 (19)0.0083 (18)
C4C0.029 (2)0.023 (2)0.037 (3)0.0025 (16)0.0012 (19)0.0110 (19)
C4D0.032 (2)0.047 (3)0.024 (2)0.0042 (19)0.0071 (19)0.002 (2)
C5A0.026 (2)0.041 (2)0.027 (2)0.0059 (18)0.0018 (18)0.0081 (19)
C5B0.024 (2)0.0181 (19)0.033 (2)0.0024 (15)0.0013 (17)0.0047 (17)
C5C0.021 (2)0.0195 (19)0.045 (3)0.0028 (16)0.0013 (18)0.0041 (18)
C5D0.029 (2)0.035 (2)0.031 (3)0.0053 (17)0.0042 (19)0.0110 (19)
C6A0.022 (2)0.028 (2)0.022 (2)0.0002 (16)0.0016 (16)0.0006 (17)
C6B0.019 (2)0.026 (2)0.022 (2)0.0042 (15)0.0010 (16)0.0046 (16)
C6C0.0179 (19)0.028 (2)0.024 (2)0.0050 (15)0.0030 (16)0.0039 (17)
C6D0.025 (2)0.024 (2)0.028 (2)0.0018 (16)0.0015 (17)0.0020 (17)
C11A0.0198 (19)0.0247 (19)0.015 (2)0.0050 (15)0.0008 (15)0.0017 (16)
C11B0.022 (2)0.0200 (19)0.021 (2)0.0055 (15)0.0020 (16)0.0028 (16)
C11C0.0167 (19)0.0192 (18)0.025 (2)0.0026 (14)0.0002 (16)0.0025 (16)
C11D0.021 (2)0.0195 (19)0.025 (2)0.0005 (15)0.0016 (16)0.0037 (16)
C12A0.022 (2)0.0242 (19)0.022 (2)0.0004 (15)0.0022 (16)0.0004 (17)
C12B0.032 (2)0.0235 (19)0.019 (2)0.0099 (16)0.0027 (17)0.0006 (16)
C12C0.022 (2)0.028 (2)0.026 (2)0.0066 (16)0.0055 (17)0.0029 (17)
C12D0.026 (2)0.030 (2)0.023 (2)0.0122 (16)0.0017 (17)0.0004 (18)
C13A0.0158 (19)0.024 (2)0.021 (2)0.0053 (15)0.0011 (15)0.0006 (17)
C13B0.021 (2)0.0200 (19)0.016 (2)0.0002 (15)0.0043 (16)0.0019 (16)
C13C0.024 (2)0.030 (2)0.019 (2)0.0055 (17)0.0007 (17)0.0018 (17)
C13D0.0162 (19)0.024 (2)0.021 (2)0.0009 (15)0.0035 (15)0.0013 (17)
Geometric parameters (Å, º) top
Rb1—O1W2.922 (2)C1A—C6A1.394 (5)
Rb1—O2W2.849 (2)C1A—C2A1.396 (5)
Rb1—O3W2.952 (2)C1B—C6B1.385 (4)
Rb1—O4W3.106 (2)C1B—C2B1.389 (5)
Rb1—O13A2.867 (2)C1B—C11B1.472 (4)
Rb1—O14Di2.889 (2)C1C—C11C1.480 (4)
Rb1—O14Bii2.870 (2)C1C—C2C1.395 (5)
Rb2—O4W2.986 (2)C1C—C6C1.385 (4)
Rb2—O5W2.927 (2)C1D—C2D1.397 (5)
Rb2—O6W3.132 (2)C1D—C6D1.394 (5)
Rb2—O14C3.031 (2)C1D—C11D1.470 (5)
Rb2—O3Wiii3.047 (2)C2A—C3A1.386 (5)
Rb2—O14Aiii2.908 (2)C2B—C3B1.383 (5)
Rb2—O13Di2.977 (2)C2C—C3C1.382 (5)
Rb3—O2W2.975 (2)C2D—C3D1.379 (5)
Rb3—O13B2.952 (2)C3A—C4A1.365 (5)
Rb3—O13D2.926 (2)C3B—C4B1.378 (5)
Rb3—O21D2.944 (3)C3C—C4C1.377 (5)
Rb3—O14Di2.901 (2)C3D—C4D1.370 (5)
Rb3—O14Bii2.947 (2)C4A—C5A1.384 (5)
Rb4—O13A3.018 (2)C4B—C5B1.386 (5)
Rb4—O21A2.969 (3)C4C—C5C1.386 (6)
Rb4—O14Aiv2.955 (2)C4D—C5D1.385 (5)
Rb4—O14Civ2.889 (2)C5A—C6A1.374 (5)
Rb4—O5Wv3.190 (2)C5B—C6B1.385 (5)
Rb4—O13Cv2.883 (2)C5C—C6C1.374 (5)
O13A—C13A1.258 (4)C5D—C6D1.377 (5)
O13B—C13B1.247 (4)C11A—C12A1.322 (5)
O13C—C13C1.256 (4)C11B—C12B1.326 (5)
O13D—C13D1.256 (4)C11C—C12C1.312 (5)
O14A—C13A1.273 (4)C11D—C12D1.320 (5)
O14B—C13B1.281 (4)C12A—C13A1.487 (5)
O14C—C13C1.262 (4)C12B—C13B1.483 (4)
O14D—C13D1.261 (4)C12C—C13C1.497 (5)
O21A—N2A1.204 (5)C12D—C13D1.490 (5)
O21B—N2B1.228 (4)C3A—H3A0.9500
O21C—N2C1.231 (4)C3B—H3B0.9500
O21D—N2D1.223 (5)C3C—H3C0.9500
O22A—N2A1.210 (5)C3D—H3D0.9500
O22B—N2B1.220 (4)C4A—H4A0.9500
O22C—N2C1.220 (4)C4B—H4B0.9500
O22D—N2D1.219 (4)C4C—H4C0.9500
O1W—H12W0.8600C4D—H4D0.9500
O1W—H11W0.8700C5A—H5A0.9500
O2W—H21W0.8200C5B—H5B0.9500
O2W—H22W0.8500C5C—H5C0.9500
O3W—H32W0.8800C5D—H5D0.9500
O3W—H31W0.9100C6A—H6A0.9500
O4W—H42W0.8400C6B—H6B0.9500
O4W—H41W0.8400C6C—H6C0.9500
O5W—H51W0.9400C6D—H6D0.9500
O5W—H52W0.8300C11A—H11A0.9500
O6W—H61W0.8600C11B—H11B0.9500
O6W—H62W0.8500C11C—H11C0.9500
N2A—C2A1.476 (5)C11D—H11D0.9500
N2B—C2B1.483 (4)C12A—H12A0.9500
N2C—C2C1.473 (4)C12B—H12B0.9500
N2D—C2D1.478 (5)C12C—H12C0.9500
C1A—C11A1.476 (5)C12D—H12D0.9500
O1W—Rb1—O2W162.58 (7)O21C—N2C—O22C123.6 (3)
O1W—Rb1—O3W87.71 (6)O21D—N2D—C2D119.0 (3)
O1W—Rb1—O4W56.37 (6)O22D—N2D—C2D117.5 (3)
O1W—Rb1—O13A116.20 (7)O21D—N2D—O22D123.6 (3)
O1W—Rb1—O14Di86.68 (6)C2A—C1A—C6A115.6 (3)
O1W—Rb1—O14Bii107.58 (7)C6A—C1A—C11A118.4 (3)
O2W—Rb1—O3W107.75 (6)C2A—C1A—C11A126.0 (3)
O2W—Rb1—O4W123.12 (6)C2B—C1B—C6B115.6 (3)
O2W—Rb1—O13A76.13 (7)C6B—C1B—C11B120.7 (3)
O2W—Rb1—O14Di76.65 (7)C2B—C1B—C11B123.5 (3)
O2W—Rb1—O14Bii66.82 (7)C2C—C1C—C11C124.2 (3)
O3W—Rb1—O4W107.40 (6)C6C—C1C—C11C120.3 (3)
O3W—Rb1—O13A77.01 (6)C2C—C1C—C6C115.5 (3)
O3W—Rb1—O14Di168.43 (7)C6D—C1D—C11D119.4 (3)
O3W—Rb1—O14Bii85.81 (6)C2D—C1D—C6D115.2 (3)
O4W—Rb1—O13A70.06 (7)C2D—C1D—C11D125.4 (3)
O4W—Rb1—O14Di77.69 (6)N2A—C2A—C3A116.2 (3)
O4W—Rb1—O14Bii157.51 (7)C1A—C2A—C3A122.4 (3)
O13A—Rb1—O14Di114.55 (6)N2A—C2A—C1A121.3 (3)
O13A—Rb1—O14Bii131.78 (7)N2B—C2B—C1B120.7 (3)
O14Bii—Rb1—O14Di86.25 (6)C1B—C2B—C3B123.8 (3)
O4W—Rb2—O5W113.24 (6)N2B—C2B—C3B115.5 (3)
O4W—Rb2—O6W87.01 (6)N2C—C2C—C1C120.5 (3)
O4W—Rb2—O14C75.46 (6)C1C—C2C—C3C123.4 (3)
O3Wiii—Rb2—O4W97.87 (6)N2C—C2C—C3C116.1 (3)
O4W—Rb2—O14Aiii169.11 (7)N2D—C2D—C3D116.4 (3)
O4W—Rb2—O13Di69.65 (6)N2D—C2D—C1D120.0 (3)
O5W—Rb2—O6W159.69 (6)C1D—C2D—C3D123.6 (3)
O5W—Rb2—O14C87.92 (6)C2A—C3A—C4A120.1 (3)
O3Wiii—Rb2—O5W122.39 (6)C2B—C3B—C4B118.5 (3)
O5W—Rb2—O14Aiii73.41 (6)C2C—C3C—C4C119.1 (3)
O5W—Rb2—O13Di79.29 (7)C2D—C3D—C4D119.2 (3)
O6W—Rb2—O14C96.02 (6)C3A—C4A—C5A119.3 (3)
O3Wiii—Rb2—O6W52.37 (6)C3B—C4B—C5B120.1 (3)
O6W—Rb2—O14Aiii86.33 (6)C3C—C4C—C5C119.1 (3)
O6W—Rb2—O13Di111.05 (6)C3D—C4D—C5D119.4 (3)
O3Wiii—Rb2—O14C148.30 (6)C4A—C5A—C6A120.2 (3)
O14Aiii—Rb2—O14C96.69 (6)C4B—C5B—C6B119.5 (3)
O13Di—Rb2—O14C133.82 (6)C4C—C5C—C6C120.4 (3)
O3Wiii—Rb2—O14Aiii84.84 (6)C4D—C5D—C6D120.5 (3)
O3Wiii—Rb2—O13Di67.50 (6)C1A—C6A—C5A122.4 (3)
O13Di—Rb2—O14Aiii120.90 (6)C1B—C6B—C5B122.6 (3)
O2W—Rb3—O13B137.47 (6)C1C—C6C—C5C122.5 (3)
O2W—Rb3—O13D90.66 (7)C1D—C6D—C5D122.2 (3)
O2W—Rb3—O21D146.59 (7)C1A—C11A—C12A125.0 (3)
O2W—Rb3—O14Di74.53 (7)C1B—C11B—C12B125.4 (3)
O2W—Rb3—O14Bii64.25 (6)C1C—C11C—C12C123.8 (3)
O13B—Rb3—O13D78.95 (6)C1D—C11D—C12D124.1 (3)
O13B—Rb3—O21D75.95 (7)C11A—C12A—C13A123.0 (3)
O13B—Rb3—O14Di100.93 (6)C11B—C12B—C13B123.8 (3)
O13B—Rb3—O14Bii158.27 (7)C11C—C12C—C13C124.4 (3)
O13D—Rb3—O21D98.02 (7)C11D—C12D—C13D124.8 (3)
O13D—Rb3—O14Di158.10 (7)O14A—C13A—C12A116.7 (3)
O13D—Rb3—O14Bii103.66 (6)O13A—C13A—O14A124.0 (3)
O14Di—Rb3—O21D103.21 (7)O13A—C13A—C12A119.2 (3)
O14Bii—Rb3—O21D82.34 (7)O14B—C13B—C12B115.9 (3)
O14Bii—Rb3—O14Di84.63 (6)O13B—C13B—O14B123.7 (3)
O13A—Rb4—O21A91.50 (7)O13B—C13B—C12B120.3 (3)
O13A—Rb4—O14Aiv156.07 (7)O14C—C13C—C12C115.5 (3)
O13A—Rb4—O14Civ82.00 (6)O13C—C13C—C12C119.6 (3)
O5Wv—Rb4—O13A96.67 (6)O13C—C13C—O14C124.9 (3)
O13A—Rb4—O13Cv106.82 (6)O13D—C13D—C12D119.0 (3)
O14Aiv—Rb4—O21A105.01 (7)O14D—C13D—C12D115.7 (3)
O14Civ—Rb4—O21A73.64 (8)O13D—C13D—O14D125.3 (3)
O5Wv—Rb4—O21A170.09 (7)C2A—C3A—H3A120.00
O13Cv—Rb4—O21A79.63 (8)C4A—C3A—H3A120.00
O14Aiv—Rb4—O14Civ86.13 (6)C2B—C3B—H3B121.00
O5Wv—Rb4—O14Aiv69.04 (6)C4B—C3B—H3B121.00
O13Cv—Rb4—O14Aiv93.32 (6)C2C—C3C—H3C120.00
O5Wv—Rb4—O14Civ112.98 (6)C4C—C3C—H3C121.00
O13Cv—Rb4—O14Civ152.12 (7)C2D—C3D—H3D120.00
O5Wv—Rb4—O13Cv92.60 (6)C4D—C3D—H3D120.00
Rb1—O2W—Rb388.47 (7)C3A—C4A—H4A120.00
Rb1—O3W—Rb2ii96.96 (6)C5A—C4A—H4A120.00
Rb1—O4W—Rb2105.80 (7)C3B—C4B—H4B120.00
Rb2—O5W—Rb4vi91.75 (7)C5B—C4B—H4B120.00
Rb1—O13A—Rb493.79 (7)C3C—C4C—H4C121.00
Rb1—O13A—C13A124.9 (2)C5C—C4C—H4C120.00
Rb4—O13A—C13A123.3 (2)C3D—C4D—H4D120.00
Rb3—O13B—C13B111.2 (2)C5D—C4D—H4D120.00
Rb4vi—O13C—C13C115.8 (2)C4A—C5A—H5A120.00
Rb3—O13D—C13D127.7 (2)C6A—C5A—H5A120.00
Rb2iv—O13D—Rb391.02 (7)C4B—C5B—H5B120.00
Rb2iv—O13D—C13D124.6 (2)C6B—C5B—H5B120.00
Rb4i—O14A—C13A134.0 (2)C4C—C5C—H5C120.00
Rb2ii—O14A—C13A123.9 (2)C6C—C5C—H5C120.00
Rb2ii—O14A—Rb4i97.10 (7)C4D—C5D—H5D120.00
Rb1iii—O14B—C13B122.85 (19)C6D—C5D—H5D120.00
Rb3iii—O14B—C13B116.9 (2)C1A—C6A—H6A119.00
Rb1iii—O14B—Rb3iii88.60 (6)C5A—C6A—H6A119.00
Rb2—O14C—C13C104.89 (19)C1B—C6B—H6B119.00
Rb2—O14C—Rb4i121.16 (8)C5B—C6B—H6B119.00
Rb4i—O14C—C13C129.2 (2)C1C—C6C—H6C119.00
Rb1iv—O14D—C13D119.1 (2)C5C—C6C—H6C119.00
Rb3iv—O14D—C13D139.7 (2)C1D—C6D—H6D119.00
Rb1iv—O14D—Rb3iv89.15 (6)C5D—C6D—H6D119.00
Rb4—O21A—N2A164.5 (3)C1A—C11A—H11A117.00
Rb3—O21D—N2D149.2 (2)C12A—C11A—H11A118.00
H11W—O1W—H12W100.00C1B—C11B—H11B117.00
H21W—O2W—H22W109.00C12B—C11B—H11B117.00
H31W—O3W—H32W108.00C1C—C11C—H11C118.00
H41W—O4W—H42W103.00C12C—C11C—H11C118.00
H51W—O5W—H52W103.00C1D—C11D—H11D118.00
H61W—O6W—H62W103.00C12D—C11D—H11D118.00
O22A—N2A—C2A117.8 (3)C11A—C12A—H12A119.00
O21A—N2A—O22A121.4 (3)C13A—C12A—H12A118.00
O21A—N2A—C2A120.8 (3)C11B—C12B—H12B118.00
O22B—N2B—C2B118.3 (3)C13B—C12B—H12B118.00
O21B—N2B—C2B117.7 (3)C11C—C12C—H12C118.00
O21B—N2B—O22B124.0 (3)C13C—C12C—H12C118.00
O21C—N2C—C2C118.0 (3)C11D—C12D—H12D118.00
O22C—N2C—C2C118.3 (3)C13D—C12D—H12D118.00
O3W—Rb1—O2W—Rb3128.58 (6)O14Civ—Rb4—O13A—C13A130.7 (3)
O4W—Rb1—O2W—Rb3105.70 (7)O5Wv—Rb4—O13A—C13A116.9 (3)
O13A—Rb1—O2W—Rb3160.21 (7)O14Aiv—Rb4—O13A—Rb131.47 (18)
O14Di—Rb1—O2W—Rb340.31 (6)O13Cv—Rb4—O13A—Rb1114.66 (7)
O14Bii—Rb1—O2W—Rb351.33 (6)O14Aiii—Rb4vi—O5W—Rb238.40 (6)
O1Wiv—Rb1iv—O14D—C13D16.4 (2)O13Avi—Rb4vi—O5W—Rb2161.44 (6)
O2Wiv—Rb1iv—O14D—C13D168.7 (2)O5Wii—Rb4i—O14A—C13A166.8 (3)
O4Wiv—Rb1iv—O14D—C13D39.9 (2)O13Cii—Rb4i—O14A—C13A101.7 (3)
O13Aiv—Rb1iv—O14D—C13D101.0 (2)O14Civ—Rb4—O13A—Rb192.46 (7)
O14Bv—Rb1iv—O14D—C13D124.3 (2)O5W—Rb4vi—O13C—C13C52.3 (2)
O1W—Rb1—O3W—Rb2ii47.34 (7)O13Avi—Rb4vi—O13C—C13C150.1 (2)
O2W—Rb1—O3W—Rb2ii140.82 (7)O13Ai—Rb4i—O14A—C13A110.6 (3)
O4W—Rb1—O3W—Rb2ii6.26 (8)O14Aiii—Rb4vi—O13C—C13C16.8 (2)
O13A—Rb1—O3W—Rb2ii70.21 (7)O21Ai—Rb4i—O14A—C13A21.6 (3)
O14Bii—Rb1—O3W—Rb2ii155.16 (7)O14C—Rb4i—O14A—Rb2ii155.45 (8)
O14Bii—Rb1—O13A—Rb49.85 (10)O13Cii—Rb4i—O14C—Rb2129.00 (13)
O1W—Rb1—O13A—C13A7.4 (3)O21A—Rb4—O13A—Rb1165.71 (8)
O2W—Rb1—O13A—C13A174.2 (3)O14A—Rb4i—O14C—Rb239.22 (9)
O3W—Rb1—O13A—C13A73.5 (2)O13C—Rb4vi—O5W—Rb254.16 (7)
O4W—Rb1—O13A—C13A40.7 (2)O14C—Rb4i—O14A—C13A50.4 (3)
O1W—Rb1—O4W—Rb2140.01 (10)Rb4—O13A—C13A—O14A128.4 (3)
O2W—Rb1—O4W—Rb219.11 (11)Rb1—O13A—C13A—O14A4.7 (5)
O3W—Rb1—O4W—Rb2144.98 (7)Rb1—O13A—C13A—C12A175.1 (2)
O13A—Rb1—O4W—Rb276.35 (8)Rb4—O13A—C13A—C12A51.5 (4)
O14Di—Rb1—O4W—Rb245.77 (7)Rb3—O13B—C13B—O14B81.9 (3)
O14Bii—Rb1—O4W—Rb291.20 (17)Rb3—O13B—C13B—C12B96.5 (3)
O1W—Rb1—O13A—Rb4143.14 (6)Rb4vi—O13C—C13C—O14C88.2 (4)
O2W—Rb1—O13A—Rb450.00 (6)Rb4vi—O13C—C13C—C12C90.9 (3)
O14Dvi—Rb1iii—O14B—C13B96.4 (2)Rb2iv—O13D—C13D—C12D161.1 (2)
O1Wiii—Rb1iii—O14B—C13B11.1 (2)Rb3—O13D—C13D—O14D143.9 (3)
O2Wiii—Rb1iii—O14B—C13B173.5 (3)Rb3—O13D—C13D—C12D37.1 (4)
O3Wiii—Rb1iii—O14B—C13B75.2 (2)Rb2iv—O13D—C13D—O14D19.8 (5)
O4Wiii—Rb1iii—O14B—C13B52.2 (3)Rb2ii—O14A—C13A—C12A106.7 (3)
O13Aiii—Rb1iii—O14B—C13B143.6 (2)Rb2ii—O14A—C13A—O13A73.1 (4)
O14Bii—Rb1—O13A—C13A145.6 (2)Rb4i—O14A—C13A—O13A138.2 (3)
O14Di—Rb1—O13A—Rb4118.02 (6)Rb4i—O14A—C13A—C12A41.9 (4)
O14Di—Rb1—O13A—C13A106.2 (2)Rb3iii—O14B—C13B—C12B67.8 (3)
O3W—Rb1—O13A—Rb462.29 (6)Rb3iii—O14B—C13B—O13B113.8 (3)
O4W—Rb1—O13A—Rb4176.51 (7)Rb1iii—O14B—C13B—O13B139.1 (3)
O6W—Rb2—O14C—C13C76.6 (2)Rb1iii—O14B—C13B—C12B39.3 (4)
O3Wiii—Rb2—O5W—Rb4vi110.48 (7)Rb4i—O14C—C13C—O13C101.8 (4)
O14Aiii—Rb2—O5W—Rb4vi37.95 (6)Rb2—O14C—C13C—O13C103.0 (3)
O6W—Rb2—O4W—Rb142.82 (7)Rb2—O14C—C13C—C12C76.2 (3)
O3Wiii—Rb2—O14C—C13C80.6 (2)Rb4i—O14C—C13C—C12C79.1 (3)
O5W—Rb2—O4W—Rb1138.91 (7)Rb1iv—O14D—C13D—O13D91.9 (4)
O5W—Rb2—O14C—C13C83.5 (2)Rb1iv—O14D—C13D—C12D89.0 (3)
O14A—Rb2ii—O3W—Rb144.45 (7)Rb3iv—O14D—C13D—O13D139.2 (3)
O4Wii—Rb2ii—O3W—Rb1146.17 (7)Rb3iv—O14D—C13D—C12D39.9 (5)
O5Wii—Rb2ii—O3W—Rb122.17 (10)Rb3—O21D—N2D—O22D85.3 (5)
O6Wii—Rb2ii—O3W—Rb1133.79 (9)Rb3—O21D—N2D—C2D95.8 (5)
O14Cii—Rb2ii—O3W—Rb1138.82 (9)O21A—N2A—C2A—C1A15.1 (5)
O14Civ—Rb2iv—O13D—Rb332.16 (10)O21A—N2A—C2A—C3A169.4 (3)
O4W—Rb2—O14C—C13C161.9 (2)O22A—N2A—C2A—C1A161.9 (4)
O14Cii—Rb2ii—O14A—C13A114.0 (3)O22A—N2A—C2A—C3A13.5 (5)
O3W—Rb2ii—O14A—Rb4i167.99 (7)O21B—N2B—C2B—C1B36.3 (5)
O6Wiv—Rb2iv—O13D—C13D14.8 (3)O21B—N2B—C2B—C3B141.2 (3)
O14Civ—Rb2iv—O13D—C13D106.9 (2)O22B—N2B—C2B—C1B146.7 (3)
O14C—Rb2—O5W—Rb4vi59.66 (6)O22B—N2B—C2B—C3B35.8 (5)
O5Wiv—Rb2iv—O13D—Rb344.39 (6)O21C—N2C—C2C—C1C32.8 (5)
O14C—Rb2—O4W—Rb1139.84 (8)O21C—N2C—C2C—C3C144.2 (4)
O3Wiii—Rb2—O4W—Rb18.54 (8)O22C—N2C—C2C—C1C150.4 (3)
O13Di—Rb2—O4W—Rb170.94 (7)O22C—N2C—C2C—C3C32.5 (5)
O4W—Rb2—O5W—Rb4vi132.86 (6)O21D—N2D—C2D—C1D34.7 (5)
O6W—Rb2—O5W—Rb4vi42.1 (2)O21D—N2D—C2D—C3D145.6 (4)
O13Di—Rb2—O5W—Rb4vi164.94 (7)O22D—N2D—C2D—C1D146.3 (3)
O3Wiii—Rb2—O14C—Rb4i77.21 (15)O22D—N2D—C2D—C3D33.4 (5)
O6Wiv—Rb2iv—O13D—Rb3153.83 (5)C6A—C1A—C2A—N2A172.4 (3)
O3W—Rb2ii—O14A—C13A34.2 (3)C6A—C1A—C2A—C3A2.8 (5)
O4Wiv—Rb2iv—O13D—C13D63.5 (2)C11A—C1A—C2A—N2A10.3 (5)
O5Wiv—Rb2iv—O13D—C13D176.6 (2)C11A—C1A—C2A—C3A174.6 (3)
O5W—Rb2—O14C—Rb4i118.77 (10)C2A—C1A—C6A—C5A2.3 (5)
O6W—Rb2—O14C—Rb4i81.21 (9)C11A—C1A—C6A—C5A175.3 (3)
O13Di—Rb2—O14C—C13C156.45 (19)C2A—C1A—C11A—C12A146.6 (4)
O14Aiii—Rb2—O14C—Rb4i168.21 (9)C6A—C1A—C11A—C12A36.1 (5)
O14Aiii—Rb2—O14C—C13C10.5 (2)C6B—C1B—C2B—N2B175.6 (3)
O13Di—Rb2—O14C—Rb4i45.79 (13)C6B—C1B—C2B—C3B1.7 (5)
O4W—Rb2—O14C—Rb4i4.11 (9)C11B—C1B—C2B—N2B9.5 (5)
O6Wii—Rb2ii—O14A—C13A18.3 (3)C11B—C1B—C2B—C3B173.3 (3)
O4Wiv—Rb2iv—O13D—Rb375.51 (6)C2B—C1B—C6B—C5B0.5 (4)
O5Wii—Rb2ii—O14A—C13A160.2 (3)C11B—C1B—C6B—C5B175.5 (3)
O14Di—Rb3—O13D—Rb2iv20.70 (19)C2B—C1B—C11B—C12B157.3 (3)
O21D—Rb3—O13D—Rb2iv173.56 (7)C6B—C1B—C11B—C12B28.0 (5)
O14Di—Rb3—O2W—Rb140.57 (6)C6C—C1C—C2C—N2C177.2 (3)
O14Bii—Rb3—O2W—Rb150.90 (6)C6C—C1C—C2C—C3C0.4 (5)
O2W—Rb3—O13D—Rb2iv25.92 (6)C11C—C1C—C2C—N2C5.8 (5)
O13B—Rb3—O2W—Rb1129.95 (8)C11C—C1C—C2C—C3C177.3 (3)
O13B—Rb3—O13D—Rb2iv112.55 (7)C2C—C1C—C6C—C5C1.8 (4)
O14Bii—Rb3—O13B—C13B128.4 (2)C11C—C1C—C6C—C5C178.9 (3)
O14Bii—Rb3—O13D—C13D47.4 (3)C2C—C1C—C11C—C12C147.8 (4)
O14Dvi—Rb3iii—O14B—C13B101.5 (2)C6C—C1C—C11C—C12C35.4 (5)
O14Bii—Rb3—O13D—Rb2iv89.54 (7)C6D—C1D—C2D—N2D177.8 (3)
O13Biv—Rb3iv—O14D—C13D46.4 (3)C6D—C1D—C2D—C3D1.9 (5)
O13Div—Rb3iv—O14D—C13D134.0 (3)C11D—C1D—C2D—N2D2.0 (5)
O21Div—Rb3iv—O14D—C13D31.5 (3)C11D—C1D—C2D—C3D177.7 (3)
O14Bv—Rb3iv—O14D—C13D112.3 (3)C2D—C1D—C6D—C5D2.6 (5)
O21D—Rb3—O2W—Rb150.06 (13)C11D—C1D—C6D—C5D178.7 (3)
O13D—Rb3—O2W—Rb1155.77 (6)C2D—C1D—C11D—C12D150.3 (4)
O2Wiii—Rb3iii—O14B—C13B176.9 (2)C6D—C1D—C11D—C12D34.1 (5)
O2W—Rb3—O13B—C13B53.7 (2)N2A—C2A—C3A—C4A174.2 (3)
O13D—Rb3—O13B—C13B132.4 (2)C1A—C2A—C3A—C4A1.2 (5)
O21D—Rb3—O13B—C13B126.3 (2)N2B—C2B—C3B—C4B175.4 (3)
O13Diii—Rb3iii—O14B—C13B99.0 (2)C1B—C2B—C3B—C4B2.1 (5)
O14Di—Rb3—O13B—C13B25.3 (2)N2C—C2C—C3C—C4C175.8 (3)
O2W—Rb3—O21D—N2D170.1 (4)C1C—C2C—C3C—C4C1.2 (5)
O13B—Rb3—O21D—N2D9.9 (4)N2D—C2D—C3D—C4D179.4 (3)
O2Wiv—Rb3iv—O14D—C13D177.1 (3)C1D—C2D—C3D—C4D0.3 (5)
O13B—Rb3—O13D—C13D110.5 (3)C2A—C3A—C4A—C5A1.1 (5)
O21D—Rb3—O13D—C13D36.6 (3)C2B—C3B—C4B—C5B0.3 (5)
O14Di—Rb3—O13D—C13D157.7 (2)C2C—C3C—C4C—C5C1.4 (5)
O14Bii—Rb3—O21D—N2D169.3 (4)C2D—C3D—C4D—C5D0.7 (5)
O14Di—Rb3—O21D—N2D108.1 (4)C3A—C4A—C5A—C6A1.7 (5)
O21Diii—Rb3iii—O14B—C13B2.6 (2)C3B—C4B—C5B—C6B1.7 (5)
O13D—Rb3—O21D—N2D66.5 (4)C3C—C4C—C5C—C6C0.1 (5)
O13Biii—Rb3iii—O14B—C13B4.6 (3)C3D—C4D—C5D—C6D0.0 (5)
O2W—Rb3—O13D—C13D111.0 (3)C4A—C5A—C6A—C1A0.1 (5)
O13Ai—Rb4i—O14C—C13C88.2 (3)C4B—C5B—C6B—C1B2.1 (5)
O14A—Rb4i—O14C—C13C112.6 (3)C4C—C5C—C6C—C1C1.6 (5)
O21A—Rb4—O13A—C13A57.5 (3)C4D—C5D—C6D—C1D1.8 (5)
O14Ciii—Rb4vi—O5W—Rb2114.45 (7)C1A—C11A—C12A—C13A175.4 (3)
O13Ai—Rb4i—O14C—Rb2119.95 (10)C1B—C11B—C12B—C13B177.7 (3)
O21Ai—Rb4i—O14C—Rb2146.10 (10)C1C—C11C—C12C—C13C175.5 (3)
O5Wii—Rb4i—O14C—Rb226.06 (11)C1D—C11D—C12D—C13D174.4 (3)
O21Ai—Rb4i—O14C—C13C5.7 (2)C11A—C12A—C13A—O13A8.7 (5)
O5Wii—Rb4i—O14C—C13C177.9 (2)C11A—C12A—C13A—O14A171.5 (3)
O5Wv—Rb4—O13A—Rb119.90 (6)C11B—C12B—C13B—O13B7.9 (5)
O13Cv—Rb4—O13A—C13A22.2 (3)C11B—C12B—C13B—O14B173.6 (3)
O21Avi—Rb4vi—O13C—C13C121.5 (2)C11C—C12C—C13C—O13C1.0 (5)
O13Cii—Rb4i—O14C—C13C22.8 (3)C11C—C12C—C13C—O14C179.8 (3)
O14Ciii—Rb4vi—O13C—C13C104.8 (3)C11D—C12D—C13D—O13D16.1 (5)
O14Aiv—Rb4—O13A—C13A168.3 (2)C11D—C12D—C13D—O14D163.1 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13Bvii0.871.942.795 (3)167
O1W—H12W···O13Dvii0.861.912.753 (3)167
O2W—H21W···O4Wiv0.821.972.788 (3)170
O2W—H22W···O14Civ0.851.932.716 (3)153
O3W—H31W···O14Dvii0.911.802.695 (3)169
O3W—H32W···O6Wii0.881.862.728 (3)170
O4W—H41W···O1W0.842.022.852 (3)178
O4W—H42W···O14A0.841.912.758 (3)180
O5W—H51W···O3Wvi0.941.822.734 (3)163
O5W—H52W···O14Bi0.832.072.893 (3)170
O6W—H61W···O13Civ0.861.882.742 (3)179
O6W—H62W···O13A0.852.002.834 (3)165
C4B—H4B···O21Bi0.952.563.290 (4)134
C4C—H4C···O21Civ0.952.583.290 (4)132
C5A—H5A···O22Cviii0.952.573.238 (5)128
C5D—H5D···O22Bix0.952.553.252 (5)131
C6D—H6D···O22Div0.952.603.297 (4)131
C11A—H11A···O13A0.952.512.826 (4)100
C11A—H11A···O21A0.952.292.741 (4)108
C11B—H11B···O21B0.952.472.819 (4)102
C11D—H11D···O21D0.952.462.801 (4)101
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iv) x, y+1, z; (vi) x1, y1, z; (vii) x+1, y1, z; (viii) x+1, y+1, z; (ix) x+1, y+3, z+1.

Experimental details

Crystal data
Chemical formula[Rb4(C9H6NO4)4(H2O)6]
Mr1218.57
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.02312 (14), 7.77072 (15), 41.1902 (8)
α, β, γ (°)89.5447 (15), 88.6733 (16), 84.8679 (16)
V3)2238.29 (8)
Z2
Radiation typeMo Kα
µ (mm1)4.44
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.591, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
26954, 8812, 6333
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.064, 1.05
No. of reflections8812
No. of parameters595
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.53

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O13Bi0.871.942.795 (3)167
O1W—H12W···O13Di0.861.912.753 (3)167
O2W—H21W···O4Wii0.821.972.788 (3)170
O2W—H22W···O14Cii0.851.932.716 (3)153
O3W—H31W···O14Di0.911.802.695 (3)169
O3W—H32W···O6Wiii0.881.862.728 (3)170
O4W—H41W···O1W0.842.022.852 (3)178
O4W—H42W···O14A0.841.912.758 (3)180
O5W—H51W···O3Wiv0.941.822.734 (3)163
O5W—H52W···O14Bv0.832.072.893 (3)170
O6W—H61W···O13Cii0.861.882.742 (3)179
O6W—H62W···O13A0.852.002.834 (3)165
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y1, z; (v) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee, and the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationDinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014–2021.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645–3652.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1594-m1595
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds