metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­­[μ2-1,4-bis­­(1H-imidazol-1-yl)butane]­di­chloridonickel(II)]

aDepartment of Chemistry, College of Science, North University of China, Taiyuan Shanxi 030051, People's Republic of China
*Correspondence e-mail: jfsong0129@gmail.com

(Received 12 October 2011; accepted 25 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, [NiCl2(C10H14N4)2]n, consists of one Ni2+ ion which is located on an inversion center, one 1,4-bis­(imidazol-1-yl)butane (bimb) and one chloride ion. The Ni2+ ion exhibits a distorted octa­hedral coordination environment defined by four N atoms from four bimb ligands in the equatorial plane and two chloride ions in axial positions. The bridging coordination mode of the bimb ligands leads to the formation of inter­penetrating square Ni4(bimb)4 units that are arranged parallel to (001). The separation between the Ni atoms in these units is 13.740 (3) Å.

Related literature

For related structures based on bis­(imidazole)­alkane ligands, see: Ballester et al. (1998[Ballester, L., Baxter, I., Duncan, P. C. M., Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (1998). Polyhedron, 17, 3613-3623.]); Li et al. (2004[Li, B., Zhu, X., Zhou, J. H., Peng, Y. F. & Zhang, Y. (2004). Polyhedron, 23, 3133-3141.]); Zhu et al. (2006[Zhu, X., Ge, H. Y., Zhang, Y. M., Li, B. L. & Zhang, Y. (2006). Polyhedron, 25, 1875-1883.], 2009[Zhu, X., Guo, Y. & Zou, Y.-L. (2009). Acta Cryst. E65, m1506.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C10H14N4)2]

  • Mr = 510.11

  • Monoclinic, P 21 /n

  • a = 7.4572 (15) Å

  • b = 18.297 (4) Å

  • c = 8.7321 (17) Å

  • β = 113.60 (3)°

  • V = 1091.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.801, Tmax = 0.893

  • 10382 measured reflections

  • 2469 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.11

  • 2469 reflections

  • 142 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N4i 2.0980 (19)
Ni1—N1 2.111 (2)
Ni1—Cl1 2.5270 (8)
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A large number of novel topologies constructed from bis(pyridine)alkane, triazolealkane or bis(imidazole)alkane ligands have been reported in recent years, for example, [Co(bte)2(NCS)2]n, {[Cd(bte)2(H2O)2](NO3)2}n, or [Cd(bimb)2(NCO)2]n [bte=1,2-Bis (1,2,4-triazol-1-yl) ethane, bimb=1,4-bis (imidazol-1-yl) butane] (Ballester et al., 1998; Li et al., 2004; Zhu et al., 2006; Zhu et al., 2009). These ligands show flexible bridging modes and can adopt different conformations (Li et al., 2004). Herein, a new coordination polymer based on 1,4-bis(imidazol-1-yl)-butane, [Ni(bimb)2Cl2]n, is reported.

The asymmetric unit of the title compound consists of one Ni2+ ion which is located on an inversion center, one bimb ligand and one chloride ion. The Ni2+ ion exhibits a distorted octahedral coordination environment defined by four N atoms from four bimp ligands in the equatorial plane [Ni1—N4 = 2.0980 (19) Å; Ni1—N1 = 2.111 (2) Å] and two chloride ions in axial positions [Ni1—Cl1 = 2.5270 (8) Å]. The dihedral angle between the imidazole rings in the bimp ligand is 60.99 (16)°.

Each bimb ligand connects two adjacent Ni2+ ions to form interpenetrating two-dimensional networks containing square Ni4(bimb)4 units parallel to (001) (Figure 2). The square Ni4(bimb)4 units are constructed from four Ni2+ ions which are situated in the four corners and four bimb ligands which are in the edge positions. The Ni ··· Ni distance in the net is 13.740 (3) Å.

Related literature top

For related structures based on bis(imidazole)alkane ligands, see: Ballester et al. (1998); Li et al. (2004); Zhu et al. (2006, 2009).

Experimental top

A solution of ethyl 2,2-difluoro-2-(pyridin-2-yl)acetate (10.0 mg, 0.05 mmol) in 2 ml ethanol was directly mixed with a solution of NiCl2 in 1 ml water (0.10 mol dm-3) at room temperature in a 15 ml beaker. A solution of bimb (9.5 mg, 0.05 mmol) in 3 ml e thanol in another 15 ml beaker was added the above-mentioned mixture. Then 2M HCl was added until the pH value of mixture arrives at 4.5. The resulted mixture was transferred and sealed in a 25 ml Teflon-lined stainless steel reactor, and heated at 85 °C for 72 h. Upon cooling to room temperature, the light green crystals were filtered and washed with water and ethanol.

Refinement top

All H atoms were located in a difference Fourier map refined as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of Ni(II) atom with displacement ellipsoids at the 50% probability level. H atome were omitted for clarity. [Symmetry codes: i) 1.5-x, 0.5+y, 0.5-z; ii) 1.5+x, 0.5+y, 0.5+z; iii) 3-x, 1-y, 1-z]
[Figure 2] Fig. 2. View of a two-dimensional layer containing square Ni4(bimb)4 units with dimension of 13.740 (3) × 13.740 (3) Å2 parallel to (001).
Poly[bis[µ2-1,4-bis(1H-imidazol-1-yl)butane]dichloridonickel(II)] top
Crystal data top
[NiCl2(C10H14N4)2]F(000) = 532
Mr = 510.11Dx = 1.552 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2469 reflections
a = 7.4572 (15) Åθ = 3.1–27.5°
b = 18.297 (4) ŵ = 1.16 mm1
c = 8.7321 (17) ÅT = 293 K
β = 113.60 (3)°Block, green
V = 1091.8 (4) Å30.20 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.801, Tmax = 0.893k = 2323
10382 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0274P)2 + 1.1307P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[NiCl2(C10H14N4)2]V = 1091.8 (4) Å3
Mr = 510.11Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4572 (15) ŵ = 1.16 mm1
b = 18.297 (4) ÅT = 293 K
c = 8.7321 (17) Å0.20 × 0.15 × 0.10 mm
β = 113.60 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2469 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2158 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.893Rint = 0.037
10382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.11Δρmax = 0.33 e Å3
2469 reflectionsΔρmin = 0.37 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.1415 (3)0.10177 (10)0.0471 (3)0.0289 (4)
C90.0664 (4)0.16648 (14)0.0733 (4)0.0440 (7)
H90.06150.17330.06300.053*
C100.2054 (4)0.21922 (14)0.1165 (4)0.0456 (7)
H100.19170.26780.14150.055*
C80.3245 (3)0.11623 (13)0.0740 (3)0.0298 (5)
H80.41180.08190.06500.036*
N30.3700 (3)0.18646 (11)0.1160 (3)0.0335 (5)
C70.5640 (4)0.21996 (15)0.1668 (4)0.0457 (7)
H7A0.65450.18350.15920.055*
H7B0.60920.23470.28290.055*
C60.5694 (4)0.28506 (14)0.0646 (3)0.0383 (6)
H6A0.47250.32040.06470.046*
H6B0.53610.26990.05000.046*
Ni11.50000.50000.50000.02315 (12)
Cl11.30895 (8)0.46277 (3)0.66987 (8)0.03495 (16)
N11.2760 (3)0.45639 (10)0.2843 (2)0.0269 (4)
N20.9912 (3)0.41380 (11)0.1097 (3)0.0323 (4)
C31.0969 (3)0.43850 (14)0.2651 (3)0.0329 (5)
H31.04960.44250.34850.039*
C11.2840 (4)0.44240 (13)0.1329 (3)0.0320 (5)
H11.39290.45000.10830.038*
C21.1099 (4)0.41598 (13)0.0245 (3)0.0355 (5)
H21.07760.40210.08590.043*
C50.7692 (4)0.32062 (14)0.1322 (4)0.0414 (6)
H5A0.80520.33150.24950.050*
H5B0.86310.28550.12530.050*
C40.7874 (4)0.38856 (16)0.0476 (4)0.0481 (7)
H4A0.73930.37990.07170.058*
H4B0.70720.42640.06610.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0205 (10)0.0275 (10)0.0382 (11)0.0007 (7)0.0113 (9)0.0027 (8)
C90.0290 (13)0.0301 (13)0.079 (2)0.0015 (10)0.0275 (14)0.0015 (13)
C100.0374 (15)0.0263 (12)0.080 (2)0.0011 (10)0.0303 (15)0.0013 (13)
C80.0236 (12)0.0295 (11)0.0370 (13)0.0006 (9)0.0128 (10)0.0031 (9)
N30.0224 (10)0.0295 (10)0.0472 (12)0.0034 (8)0.0126 (9)0.0058 (9)
C70.0240 (13)0.0422 (15)0.0624 (18)0.0085 (11)0.0085 (13)0.0115 (13)
C60.0279 (13)0.0359 (13)0.0446 (14)0.0107 (10)0.0078 (11)0.0010 (11)
Ni10.01420 (19)0.0230 (2)0.0300 (2)0.00183 (14)0.00640 (16)0.00287 (15)
Cl10.0247 (3)0.0419 (3)0.0393 (3)0.0057 (2)0.0139 (3)0.0037 (2)
N10.0174 (9)0.0279 (9)0.0321 (10)0.0033 (7)0.0066 (8)0.0038 (8)
N20.0238 (10)0.0306 (10)0.0337 (10)0.0097 (8)0.0023 (9)0.0023 (8)
C30.0225 (12)0.0410 (13)0.0327 (12)0.0079 (10)0.0086 (10)0.0021 (10)
C10.0283 (13)0.0310 (12)0.0390 (13)0.0020 (9)0.0157 (11)0.0035 (10)
C20.0390 (14)0.0321 (12)0.0305 (12)0.0053 (10)0.0089 (11)0.0053 (10)
C50.0253 (13)0.0344 (13)0.0570 (17)0.0059 (10)0.0086 (12)0.0077 (12)
C40.0254 (13)0.0481 (16)0.0522 (16)0.0159 (11)0.0041 (12)0.0121 (13)
Geometric parameters (Å, º) top
N4—C81.316 (3)Ni1—N1iv2.111 (2)
N4—C91.368 (3)Ni1—N12.111 (2)
N4—Ni1i2.0980 (19)Ni1—Cl12.5270 (8)
C9—C101.355 (4)Ni1—Cl1iv2.5270 (8)
C9—H90.9300N1—C31.319 (3)
C10—N31.368 (3)N1—C11.371 (3)
C10—H100.9300N2—C31.346 (3)
C8—N31.342 (3)N2—C21.366 (3)
C8—H80.9300N2—C41.469 (3)
N3—C71.467 (3)C3—H30.9300
C7—C61.499 (4)C1—C21.353 (3)
C7—H7A0.9700C1—H10.9300
C7—H7B0.9700C2—H20.9300
C6—C51.512 (3)C5—C41.480 (4)
C6—H6A0.9700C5—H5A0.9700
C6—H6B0.9700C5—H5B0.9700
Ni1—N4ii2.0980 (19)C4—H4A0.9700
Ni1—N4iii2.0980 (19)C4—H4B0.9700
C8—N4—C9105.1 (2)N1iv—Ni1—Cl190.51 (6)
C8—N4—Ni1i128.15 (16)N1—Ni1—Cl189.49 (6)
C9—N4—Ni1i126.43 (16)N4ii—Ni1—Cl1iv89.81 (6)
C10—C9—N4110.2 (2)N4iii—Ni1—Cl1iv90.19 (6)
C10—C9—H9124.9N1iv—Ni1—Cl1iv89.49 (6)
N4—C9—H9124.9N1—Ni1—Cl1iv90.51 (6)
C9—C10—N3105.9 (2)Cl1—Ni1—Cl1iv180.0
C9—C10—H10127.0C3—N1—C1105.3 (2)
N3—C10—H10127.0C3—N1—Ni1127.33 (17)
N4—C8—N3111.9 (2)C1—N1—Ni1127.36 (15)
N4—C8—H8124.1C3—N2—C2107.1 (2)
N3—C8—H8124.1C3—N2—C4125.4 (2)
C8—N3—C10106.9 (2)C2—N2—C4127.5 (2)
C8—N3—C7126.4 (2)N1—C3—N2111.4 (2)
C10—N3—C7126.4 (2)N1—C3—H3124.3
N3—C7—C6114.2 (2)N2—C3—H3124.3
N3—C7—H7A108.7C2—C1—N1110.0 (2)
C6—C7—H7A108.7C2—C1—H1125.0
N3—C7—H7B108.7N1—C1—H1125.0
C6—C7—H7B108.7C1—C2—N2106.2 (2)
H7A—C7—H7B107.6C1—C2—H2126.9
C7—C6—C5111.5 (2)N2—C2—H2126.9
C7—C6—H6A109.3C4—C5—C6116.1 (2)
C5—C6—H6A109.3C4—C5—H5A108.3
C7—C6—H6B109.3C6—C5—H5A108.3
C5—C6—H6B109.3C4—C5—H5B108.3
H6A—C6—H6B108.0C6—C5—H5B108.3
N4ii—Ni1—N4iii180.0H5A—C5—H5B107.4
N4ii—Ni1—N1iv90.26 (8)N2—C4—C5111.6 (2)
N4iii—Ni1—N1iv89.74 (8)N2—C4—H4A109.3
N4ii—Ni1—N189.74 (8)C5—C4—H4A109.3
N4iii—Ni1—N190.26 (8)N2—C4—H4B109.3
N1iv—Ni1—N1180.000 (1)C5—C4—H4B109.3
N4ii—Ni1—Cl190.19 (6)H4A—C4—H4B108.0
N4iii—Ni1—Cl189.81 (6)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formula[NiCl2(C10H14N4)2]
Mr510.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4572 (15), 18.297 (4), 8.7321 (17)
β (°) 113.60 (3)
V3)1091.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.801, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
10382, 2469, 2158
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.11
No. of reflections2469
No. of parameters142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Selected bond lengths (Å) top
Ni1—N4i2.0980 (19)Ni1—Cl12.5270 (8)
Ni1—N12.111 (2)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Young Scholars Foundation of North University of China and the Scientific Research Start-up Foundation of North University of China.

References

First citationBallester, L., Baxter, I., Duncan, P. C. M., Goodgame, D. M. L., Grachvogel, D. A. & Williams, D. J. (1998). Polyhedron, 17, 3613–3623.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, B., Zhu, X., Zhou, J. H., Peng, Y. F. & Zhang, Y. (2004). Polyhedron, 23, 3133–3141.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, X., Ge, H. Y., Zhang, Y. M., Li, B. L. & Zhang, Y. (2006). Polyhedron, 25, 1875–1883.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, X., Guo, Y. & Zou, Y.-L. (2009). Acta Cryst. E65, m1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds