organic compounds
Methyl pyrido[2,3-b]pyrazine-3-carboxylate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my
The 9H7N3O2, is composed of two independent molecules. The is stabilized by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. The also features pyrazine–pyrazine π–π interactions [centroid–centroid distance = 3.6994 (5) Å] and also pyridine–pyrazine π–π interactions [centroid–centroid distance = 3.6374 (5) Å].
of the title compound, CRelated literature
For details of heterocyclic et al. (2002); Li et al. (2007); Goswami & Hazra (2009); Goswami et al. (2011). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
see: ListvanExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811044412/wn2453sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811044412/wn2453Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811044412/wn2453Isup3.cml
Methyl pyrido[2,3-b]pyrazine-3-carboxylate was synthesized from pyrido[2,3-b] pyrazine-3-carbaldehyde by our recently developed techniques (Goswami & Hazra, 2009; Goswami et al., 2011). Single crystals were grown by slow evaporation of a chloroform solution of the compound, Mp 155–156°C.
All hydrogen atoms were positioned geometrically, with Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å; they were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. | |
Fig. 2. The crystal packing of the title compound. Dashed lines indicate hydrogen bonds. |
C9H7N3O2 | F(000) = 784 |
Mr = 189.18 | Dx = 1.519 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6855 reflections |
a = 9.5135 (1) Å | θ = 2.3–30.1° |
b = 26.9042 (3) Å | µ = 0.11 mm−1 |
c = 6.7837 (1) Å | T = 100 K |
β = 107.686 (1)° | Block, brown |
V = 1654.24 (4) Å3 | 0.22 × 0.20 × 0.19 mm |
Z = 8 |
Bruker SMART APEXII CCD area-detector diffractometer | 4876 independent reflections |
Radiation source: fine-focus sealed tube | 4118 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 30.1°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→12 |
Tmin = 0.975, Tmax = 0.979 | k = −36→37 |
18421 measured reflections | l = −8→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3345P] where P = (Fo2 + 2Fc2)/3 |
4876 reflections | (Δ/σ)max < 0.001 |
255 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C9H7N3O2 | V = 1654.24 (4) Å3 |
Mr = 189.18 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5135 (1) Å | µ = 0.11 mm−1 |
b = 26.9042 (3) Å | T = 100 K |
c = 6.7837 (1) Å | 0.22 × 0.20 × 0.19 mm |
β = 107.686 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4876 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4118 reflections with I > 2σ(I) |
Tmin = 0.975, Tmax = 0.979 | Rint = 0.025 |
18421 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.38 e Å−3 |
4876 reflections | Δρmin = −0.30 e Å−3 |
255 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1A | 0.93918 (7) | 0.07303 (3) | 0.70643 (12) | 0.01812 (16) | |
O2A | 1.02425 (8) | −0.00559 (3) | 0.76407 (12) | 0.02050 (17) | |
N1A | 0.53239 (9) | 0.03988 (3) | 0.73953 (13) | 0.01616 (17) | |
N2A | 0.58303 (9) | −0.09571 (3) | 0.79786 (14) | 0.02002 (18) | |
N3A | 0.74901 (9) | −0.03476 (3) | 0.77626 (13) | 0.01595 (17) | |
C1A | 0.66889 (10) | 0.05049 (4) | 0.74572 (15) | 0.01556 (19) | |
H1AA | 0.6958 | 0.0836 | 0.7411 | 0.019* | |
C2A | 0.50066 (10) | −0.00925 (3) | 0.75265 (14) | 0.01429 (18) | |
C3A | 0.35658 (10) | −0.02404 (4) | 0.74564 (15) | 0.01738 (19) | |
H3AA | 0.2817 | −0.0007 | 0.7284 | 0.021* | |
C4A | 0.32995 (11) | −0.07339 (4) | 0.76471 (16) | 0.0193 (2) | |
H4AA | 0.2361 | −0.0843 | 0.7595 | 0.023* | |
C5A | 0.44732 (11) | −0.10778 (4) | 0.79259 (16) | 0.0209 (2) | |
H5AA | 0.4274 | −0.1411 | 0.8082 | 0.025* | |
C6A | 0.60995 (10) | −0.04658 (4) | 0.77600 (15) | 0.01502 (18) | |
C7A | 0.77626 (10) | 0.01276 (3) | 0.75932 (14) | 0.01413 (18) | |
C8A | 0.92792 (10) | 0.02481 (4) | 0.74628 (15) | 0.01526 (19) | |
C9A | 1.07833 (11) | 0.08837 (4) | 0.67914 (17) | 0.0203 (2) | |
H9AA | 1.0750 | 0.1233 | 0.6488 | 0.031* | |
H9AB | 1.0951 | 0.0701 | 0.5668 | 0.031* | |
H9AC | 1.1570 | 0.0819 | 0.8038 | 0.031* | |
O1B | 0.52796 (7) | 0.17332 (3) | 0.64501 (12) | 0.01820 (16) | |
O2B | 0.45239 (8) | 0.25302 (3) | 0.63114 (13) | 0.02204 (17) | |
N1B | 0.93475 (9) | 0.20808 (3) | 0.61052 (13) | 0.01529 (17) | |
N2B | 0.89543 (9) | 0.34431 (3) | 0.62179 (13) | 0.01837 (18) | |
N3B | 0.72566 (9) | 0.28254 (3) | 0.61794 (13) | 0.01472 (16) | |
C1B | 0.79969 (10) | 0.19717 (3) | 0.61024 (15) | 0.01489 (18) | |
H1BA | 0.7715 | 0.1640 | 0.6057 | 0.018* | |
C2B | 0.96972 (10) | 0.25733 (3) | 0.61735 (14) | 0.01400 (18) | |
C3B | 1.11389 (11) | 0.27225 (4) | 0.62514 (15) | 0.0176 (2) | |
H3BA | 1.1861 | 0.2489 | 0.6259 | 0.021* | |
C4B | 1.14411 (11) | 0.32193 (4) | 0.63151 (16) | 0.0199 (2) | |
H4BA | 1.2379 | 0.3330 | 0.6372 | 0.024* | |
C5B | 1.03117 (11) | 0.35652 (4) | 0.62938 (16) | 0.0196 (2) | |
H5BA | 1.0545 | 0.3901 | 0.6336 | 0.024* | |
C6B | 0.86440 (10) | 0.29472 (3) | 0.61752 (14) | 0.01401 (18) | |
C7B | 0.69557 (10) | 0.23467 (3) | 0.61664 (14) | 0.01338 (18) | |
C8B | 0.54412 (10) | 0.22230 (4) | 0.62971 (15) | 0.01495 (18) | |
C9B | 0.39006 (11) | 0.15787 (4) | 0.67601 (18) | 0.0215 (2) | |
H9BA | 0.3901 | 0.1224 | 0.6927 | 0.032* | |
H9BB | 0.3093 | 0.1673 | 0.5581 | 0.032* | |
H9BC | 0.3795 | 0.1736 | 0.7977 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1A | 0.0143 (3) | 0.0134 (3) | 0.0275 (4) | −0.0008 (2) | 0.0076 (3) | 0.0009 (3) |
O2A | 0.0153 (3) | 0.0168 (3) | 0.0304 (4) | 0.0025 (3) | 0.0085 (3) | 0.0018 (3) |
N1A | 0.0162 (4) | 0.0156 (4) | 0.0176 (4) | 0.0015 (3) | 0.0065 (3) | 0.0003 (3) |
N2A | 0.0175 (4) | 0.0140 (4) | 0.0271 (4) | −0.0009 (3) | 0.0047 (3) | 0.0023 (3) |
N3A | 0.0133 (4) | 0.0139 (4) | 0.0195 (4) | 0.0006 (3) | 0.0034 (3) | 0.0012 (3) |
C1A | 0.0165 (4) | 0.0129 (4) | 0.0183 (4) | 0.0012 (3) | 0.0068 (3) | 0.0008 (3) |
C2A | 0.0142 (4) | 0.0154 (4) | 0.0132 (4) | 0.0008 (3) | 0.0040 (3) | 0.0001 (3) |
C3A | 0.0146 (4) | 0.0224 (5) | 0.0156 (4) | 0.0010 (3) | 0.0053 (3) | 0.0002 (4) |
C4A | 0.0155 (4) | 0.0243 (5) | 0.0181 (4) | −0.0044 (4) | 0.0050 (3) | 0.0000 (4) |
C5A | 0.0206 (5) | 0.0181 (5) | 0.0231 (5) | −0.0045 (4) | 0.0051 (4) | 0.0014 (4) |
C6A | 0.0142 (4) | 0.0137 (4) | 0.0164 (4) | 0.0006 (3) | 0.0035 (3) | 0.0012 (3) |
C7A | 0.0133 (4) | 0.0133 (4) | 0.0153 (4) | 0.0012 (3) | 0.0035 (3) | 0.0005 (3) |
C8A | 0.0144 (4) | 0.0144 (4) | 0.0165 (4) | −0.0004 (3) | 0.0040 (3) | −0.0009 (3) |
C9A | 0.0165 (4) | 0.0168 (5) | 0.0298 (5) | −0.0020 (3) | 0.0101 (4) | 0.0011 (4) |
O1B | 0.0143 (3) | 0.0148 (3) | 0.0272 (4) | −0.0014 (2) | 0.0087 (3) | 0.0005 (3) |
O2B | 0.0166 (3) | 0.0183 (4) | 0.0338 (4) | 0.0029 (3) | 0.0116 (3) | 0.0028 (3) |
N1B | 0.0147 (4) | 0.0154 (4) | 0.0166 (4) | 0.0012 (3) | 0.0061 (3) | −0.0005 (3) |
N2B | 0.0211 (4) | 0.0140 (4) | 0.0215 (4) | −0.0020 (3) | 0.0085 (3) | −0.0009 (3) |
N3B | 0.0146 (4) | 0.0145 (4) | 0.0159 (4) | 0.0010 (3) | 0.0060 (3) | 0.0004 (3) |
C1B | 0.0155 (4) | 0.0127 (4) | 0.0172 (4) | 0.0004 (3) | 0.0062 (3) | 0.0001 (3) |
C2B | 0.0134 (4) | 0.0156 (4) | 0.0132 (4) | 0.0008 (3) | 0.0043 (3) | 0.0000 (3) |
C3B | 0.0138 (4) | 0.0217 (5) | 0.0177 (4) | −0.0004 (3) | 0.0056 (3) | 0.0000 (4) |
C4B | 0.0157 (4) | 0.0245 (5) | 0.0195 (5) | −0.0054 (4) | 0.0052 (4) | −0.0006 (4) |
C5B | 0.0225 (5) | 0.0170 (5) | 0.0196 (5) | −0.0053 (4) | 0.0068 (4) | −0.0007 (4) |
C6B | 0.0144 (4) | 0.0143 (4) | 0.0139 (4) | 0.0002 (3) | 0.0051 (3) | −0.0002 (3) |
C7B | 0.0122 (4) | 0.0146 (4) | 0.0138 (4) | 0.0013 (3) | 0.0047 (3) | 0.0007 (3) |
C8B | 0.0142 (4) | 0.0159 (4) | 0.0150 (4) | −0.0004 (3) | 0.0048 (3) | 0.0007 (3) |
C9B | 0.0152 (4) | 0.0189 (5) | 0.0324 (6) | −0.0024 (4) | 0.0102 (4) | 0.0040 (4) |
O1A—C8A | 1.3361 (11) | O1B—C8B | 1.3344 (11) |
O1A—C9A | 1.4512 (11) | O1B—C9B | 1.4511 (11) |
O2A—C8A | 1.2066 (12) | O2B—C8B | 1.2041 (12) |
N1A—C1A | 1.3177 (12) | N1B—C1B | 1.3174 (12) |
N1A—C2A | 1.3649 (12) | N1B—C2B | 1.3637 (12) |
N2A—C5A | 1.3212 (13) | N2B—C5B | 1.3183 (13) |
N2A—C6A | 1.3630 (12) | N2B—C6B | 1.3648 (12) |
N3A—C7A | 1.3163 (12) | N3B—C7B | 1.3187 (12) |
N3A—C6A | 1.3601 (12) | N3B—C6B | 1.3608 (12) |
C1A—C7A | 1.4230 (13) | C1B—C7B | 1.4239 (13) |
C1A—H1AA | 0.9300 | C1B—H1BA | 0.9300 |
C2A—C3A | 1.4141 (13) | C2B—C3B | 1.4146 (13) |
C2A—C6A | 1.4194 (13) | C2B—C6B | 1.4200 (13) |
C3A—C4A | 1.3650 (14) | C3B—C4B | 1.3650 (14) |
C3A—H3AA | 0.9300 | C3B—H3BA | 0.9300 |
C4A—C5A | 1.4178 (15) | C4B—C5B | 1.4183 (15) |
C4A—H4AA | 0.9300 | C4B—H4BA | 0.9300 |
C5A—H5AA | 0.9300 | C5B—H5BA | 0.9300 |
C7A—C8A | 1.5074 (13) | C7B—C8B | 1.5074 (13) |
C9A—H9AA | 0.9600 | C9B—H9BA | 0.9600 |
C9A—H9AB | 0.9600 | C9B—H9BB | 0.9600 |
C9A—H9AC | 0.9600 | C9B—H9BC | 0.9600 |
C8A—O1A—C9A | 115.74 (7) | C8B—O1B—C9B | 115.14 (8) |
C1A—N1A—C2A | 116.29 (8) | C1B—N1B—C2B | 116.38 (8) |
C5A—N2A—C6A | 116.72 (9) | C5B—N2B—C6B | 116.57 (9) |
C7A—N3A—C6A | 116.38 (8) | C7B—N3B—C6B | 116.36 (8) |
N1A—C1A—C7A | 121.92 (9) | N1B—C1B—C7B | 121.96 (9) |
N1A—C1A—H1AA | 119.0 | N1B—C1B—H1BA | 119.0 |
C7A—C1A—H1AA | 119.0 | C7B—C1B—H1BA | 119.0 |
N1A—C2A—C3A | 120.11 (9) | N1B—C2B—C3B | 120.05 (9) |
N1A—C2A—C6A | 121.57 (8) | N1B—C2B—C6B | 121.57 (8) |
C3A—C2A—C6A | 118.31 (9) | C3B—C2B—C6B | 118.38 (9) |
C4A—C3A—C2A | 118.45 (9) | C4B—C3B—C2B | 118.13 (9) |
C4A—C3A—H3AA | 120.8 | C4B—C3B—H3BA | 120.9 |
C2A—C3A—H3AA | 120.8 | C2B—C3B—H3BA | 120.9 |
C3A—C4A—C5A | 119.08 (9) | C3B—C4B—C5B | 119.37 (9) |
C3A—C4A—H4AA | 120.5 | C3B—C4B—H4BA | 120.3 |
C5A—C4A—H4AA | 120.5 | C5B—C4B—H4BA | 120.3 |
N2A—C5A—C4A | 124.53 (10) | N2B—C5B—C4B | 124.55 (9) |
N2A—C5A—H5AA | 117.7 | N2B—C5B—H5BA | 117.7 |
C4A—C5A—H5AA | 117.7 | C4B—C5B—H5BA | 117.7 |
N3A—C6A—N2A | 116.20 (8) | N3B—C6B—N2B | 116.04 (8) |
N3A—C6A—C2A | 120.92 (9) | N3B—C6B—C2B | 120.96 (9) |
N2A—C6A—C2A | 122.88 (9) | N2B—C6B—C2B | 122.98 (9) |
N3A—C7A—C1A | 122.81 (9) | N3B—C7B—C1B | 122.73 (8) |
N3A—C7A—C8A | 115.56 (8) | N3B—C7B—C8B | 115.13 (8) |
C1A—C7A—C8A | 121.59 (8) | C1B—C7B—C8B | 122.11 (8) |
O2A—C8A—O1A | 124.97 (9) | O2B—C8B—O1B | 125.19 (9) |
O2A—C8A—C7A | 124.05 (9) | O2B—C8B—C7B | 123.84 (9) |
O1A—C8A—C7A | 110.96 (8) | O1B—C8B—C7B | 110.94 (8) |
O1A—C9A—H9AA | 109.5 | O1B—C9B—H9BA | 109.5 |
O1A—C9A—H9AB | 109.5 | O1B—C9B—H9BB | 109.5 |
H9AA—C9A—H9AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
O1A—C9A—H9AC | 109.5 | O1B—C9B—H9BC | 109.5 |
H9AA—C9A—H9AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H9AB—C9A—H9AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
C2A—N1A—C1A—C7A | 1.75 (14) | C2B—N1B—C1B—C7B | 0.02 (13) |
C1A—N1A—C2A—C3A | −179.51 (9) | C1B—N1B—C2B—C3B | 177.88 (9) |
C1A—N1A—C2A—C6A | 1.27 (13) | C1B—N1B—C2B—C6B | −1.92 (13) |
N1A—C2A—C3A—C4A | −178.29 (9) | N1B—C2B—C3B—C4B | 179.91 (9) |
C6A—C2A—C3A—C4A | 0.95 (14) | C6B—C2B—C3B—C4B | −0.28 (14) |
C2A—C3A—C4A—C5A | 0.57 (14) | C2B—C3B—C4B—C5B | −0.22 (14) |
C6A—N2A—C5A—C4A | 0.43 (16) | C6B—N2B—C5B—C4B | 0.56 (15) |
C3A—C4A—C5A—N2A | −1.35 (16) | C3B—C4B—C5B—N2B | 0.09 (16) |
C7A—N3A—C6A—N2A | −178.69 (9) | C7B—N3B—C6B—N2B | −179.12 (8) |
C7A—N3A—C6A—C2A | 1.72 (14) | C7B—N3B—C6B—C2B | −0.48 (13) |
C5A—N2A—C6A—N3A | −178.34 (9) | C5B—N2B—C6B—N3B | 177.50 (8) |
C5A—N2A—C6A—C2A | 1.24 (15) | C5B—N2B—C6B—C2B | −1.11 (14) |
N1A—C2A—C6A—N3A | −3.16 (14) | N1B—C2B—C6B—N3B | 2.25 (14) |
C3A—C2A—C6A—N3A | 177.61 (8) | C3B—C2B—C6B—N3B | −177.55 (9) |
N1A—C2A—C6A—N2A | 177.28 (9) | N1B—C2B—C6B—N2B | −179.20 (9) |
C3A—C2A—C6A—N2A | −1.94 (14) | C3B—C2B—C6B—N2B | 0.99 (14) |
C6A—N3A—C7A—C1A | 1.31 (14) | C6B—N3B—C7B—C1B | −1.43 (13) |
C6A—N3A—C7A—C8A | −176.28 (8) | C6B—N3B—C7B—C8B | 176.59 (8) |
N1A—C1A—C7A—N3A | −3.24 (15) | N1B—C1B—C7B—N3B | 1.77 (15) |
N1A—C1A—C7A—C8A | 174.20 (9) | N1B—C1B—C7B—C8B | −176.12 (9) |
C9A—O1A—C8A—O2A | 1.37 (14) | C9B—O1B—C8B—O2B | −3.23 (14) |
C9A—O1A—C8A—C7A | −176.73 (8) | C9B—O1B—C8B—C7B | 175.04 (8) |
N3A—C7A—C8A—O2A | −5.04 (14) | N3B—C7B—C8B—O2B | 3.54 (14) |
C1A—C7A—C8A—O2A | 177.34 (9) | C1B—C7B—C8B—O2B | −178.43 (9) |
N3A—C7A—C8A—O1A | 173.08 (8) | N3B—C7B—C8B—O1B | −174.76 (8) |
C1A—C7A—C8A—O1A | −4.54 (12) | C1B—C7B—C8B—O1B | 3.27 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3A—H3AA···O2Ai | 0.93 | 2.54 | 3.2401 (13) | 133 |
C4A—H4AA···N2Bii | 0.93 | 2.55 | 3.3311 (14) | 141 |
C9A—H9AA···N1B | 0.96 | 2.62 | 3.4741 (14) | 149 |
C3B—H3BA···O2Biii | 0.93 | 2.53 | 3.2496 (14) | 135 |
C4B—H4BA···N2Aiv | 0.93 | 2.51 | 3.3350 (14) | 147 |
C9B—H9BA···N1A | 0.96 | 2.57 | 3.4266 (14) | 149 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1, y, z; (iv) −x+2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C9H7N3O2 |
Mr | 189.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.5135 (1), 26.9042 (3), 6.7837 (1) |
β (°) | 107.686 (1) |
V (Å3) | 1654.24 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.22 × 0.20 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.975, 0.979 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18421, 4876, 4118 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.115, 1.04 |
No. of reflections | 4876 |
No. of parameters | 255 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.30 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C3A—H3AA···O2Ai | 0.9300 | 2.5400 | 3.2401 (13) | 133.00 |
C4A—H4AA···N2Bii | 0.9300 | 2.5500 | 3.3311 (14) | 141.00 |
C9A—H9AA···N1B | 0.9600 | 2.6200 | 3.4741 (14) | 149.00 |
C3B—H3BA···O2Biii | 0.9300 | 2.5300 | 3.2496 (14) | 135.00 |
C4B—H4BA···N2Aiv | 0.9300 | 2.5100 | 3.3350 (14) | 147.00 |
C9B—H9BA···N1A | 0.9600 | 2.5700 | 3.4266 (14) | 149.00 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1, y, z; (iv) −x+2, y+1/2, −z+3/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484–485. Web of Science CrossRef CAS Google Scholar
Goswami, S., Hazra, A., Goh, J. H. & Fun, H.-K. (2011). Synth. Commun. 41, 2505–2510. Web of Science CSD CrossRef CAS Google Scholar
Li, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335–1338. CrossRef CAS Google Scholar
Listvan, V. N., Listvan, V. V. & Skekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480–1483. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic esters are important compounds in respect of their biological and pharmaceutical characteristics (Listvan et al., 2002; Li et al., 2007). Recently we have developed a mild methodology for the synthesis of heterocyclic esters from their corresponding aldehydes (Goswami & Hazra, 2009; Goswami et al., 2011). Here we report the crystal structure of methyl pyrido[2,3-b]pyrazine-3-carboxylate.
The asymmetric unit of the title compound consists of two crystallographically independent methyl pyrido[2,3-b]pyrazine-3-carboxylate molecules, (A & B), as shown in Fig. 1. The bond lengths of molecules A and B agree with each other and are within normal ranges (Allen et al., 1987).
In the crystal structure (Fig. 2), the molecules are linked through intermolecular C—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional network. Furthermore, the crystal structure is stabilized by the following π–π interactions: (a) between pyrazine rings (N1A,N3A/C1A,C2A/C6A,C7A, centroid Cg1) Cg1···Cg1(1-x, -y, 1-z) 3.6994 (5) Å and (b) between pyrazine (N1B,N3B/C1B,C2B/C6B,C7B, centroid Cg4) and pyridine (N2B/C2B–C6B, centroid Cg5) rings Cg4···Cg5( x, 1/2-y, 1/2+z) 3.6374 (5) Å
The two independent molecules in the asymmetric unit are strikingly similar in respect of their bond distances, bond angles and thermal parameters. For example, for bond distances the average δ/σ = 0.88. The symmetry between molecules A and B is almost that of an inversion centre.