organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl pyrido[2,3-b]pyrazine-3-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 October 2011; accepted 25 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, C9H7N3O2, is composed of two independent mol­ecules. The crystal structure is stabilized by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional network. The crystal structure also features pyrazine–pyrazine ππ inter­actions [centroid–centroid distance = 3.6994 (5) Å] and also pyridine–pyrazine ππ inter­actions [centroid–centroid distance = 3.6374 (5) Å].

Related literature

For details of heterocyclic esters, see: Listvan et al. (2002[Listvan, V. N., Listvan, V. V. & Skekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480-1483.]); Li et al. (2007[Li, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335-1338.]); Goswami & Hazra (2009[Goswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484-485.]); Goswami et al. (2011[Goswami, S., Hazra, A., Goh, J. H. & Fun, H.-K. (2011). Synth. Commun. 41, 2505-2510.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N3O2

  • Mr = 189.18

  • Monoclinic, P 21 /c

  • a = 9.5135 (1) Å

  • b = 26.9042 (3) Å

  • c = 6.7837 (1) Å

  • β = 107.686 (1)°

  • V = 1654.24 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.979

  • 18421 measured reflections

  • 4876 independent reflections

  • 4118 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.04

  • 4876 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3AA⋯O2Ai 0.93 2.54 3.2401 (13) 133
C4A—H4AA⋯N2Bii 0.93 2.55 3.3311 (14) 141
C9A—H9AA⋯N1B 0.96 2.62 3.4741 (14) 149
C3B—H3BA⋯O2Biii 0.93 2.53 3.2496 (14) 135
C4B—H4BA⋯N2Aiv 0.93 2.51 3.3350 (14) 147
C9B—H9BA⋯N1A 0.96 2.57 3.4266 (14) 149
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x+1, y, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic esters are important compounds in respect of their biological and pharmaceutical characteristics (Listvan et al., 2002; Li et al., 2007). Recently we have developed a mild methodology for the synthesis of heterocyclic esters from their corresponding aldehydes (Goswami & Hazra, 2009; Goswami et al., 2011). Here we report the crystal structure of methyl pyrido[2,3-b]pyrazine-3-carboxylate.

The asymmetric unit of the title compound consists of two crystallographically independent methyl pyrido[2,3-b]pyrazine-3-carboxylate molecules, (A & B), as shown in Fig. 1. The bond lengths of molecules A and B agree with each other and are within normal ranges (Allen et al., 1987).

In the crystal structure (Fig. 2), the molecules are linked through intermolecular C—H···O and C—H···N hydrogen bonds (Table 1), forming a three-dimensional network. Furthermore, the crystal structure is stabilized by the following ππ interactions: (a) between pyrazine rings (N1A,N3A/C1A,C2A/C6A,C7A, centroid Cg1) Cg1···Cg1(1-x, -y, 1-z) 3.6994 (5) Å and (b) between pyrazine (N1B,N3B/C1B,C2B/C6B,C7B, centroid Cg4) and pyridine (N2B/C2B–C6B, centroid Cg5) rings Cg4···Cg5( x, 1/2-y, 1/2+z) 3.6374 (5) Å

The two independent molecules in the asymmetric unit are strikingly similar in respect of their bond distances, bond angles and thermal parameters. For example, for bond distances the average δ/σ = 0.88. The symmetry between molecules A and B is almost that of an inversion centre.

Related literature top

For details of heterocyclic esters, see: Listvan et al. (2002); Li et al. (2007); Goswami & Hazra (2009); Goswami et al. (2011). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Methyl pyrido[2,3-b]pyrazine-3-carboxylate was synthesized from pyrido[2,3-b] pyrazine-3-carbaldehyde by our recently developed techniques (Goswami & Hazra, 2009; Goswami et al., 2011). Single crystals were grown by slow evaporation of a chloroform solution of the compound, Mp 155–156°C.

Refinement top

All hydrogen atoms were positioned geometrically, with Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å; they were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
Methyl pyrido[2,3-b]pyrazine-3-carboxylate top
Crystal data top
C9H7N3O2F(000) = 784
Mr = 189.18Dx = 1.519 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6855 reflections
a = 9.5135 (1) Åθ = 2.3–30.1°
b = 26.9042 (3) ŵ = 0.11 mm1
c = 6.7837 (1) ÅT = 100 K
β = 107.686 (1)°Block, brown
V = 1654.24 (4) Å30.22 × 0.20 × 0.19 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4876 independent reflections
Radiation source: fine-focus sealed tube4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.975, Tmax = 0.979k = 3637
18421 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3345P]
where P = (Fo2 + 2Fc2)/3
4876 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C9H7N3O2V = 1654.24 (4) Å3
Mr = 189.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.5135 (1) ŵ = 0.11 mm1
b = 26.9042 (3) ÅT = 100 K
c = 6.7837 (1) Å0.22 × 0.20 × 0.19 mm
β = 107.686 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4118 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.025
18421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4876 reflectionsΔρmin = 0.30 e Å3
255 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.93918 (7)0.07303 (3)0.70643 (12)0.01812 (16)
O2A1.02425 (8)0.00559 (3)0.76407 (12)0.02050 (17)
N1A0.53239 (9)0.03988 (3)0.73953 (13)0.01616 (17)
N2A0.58303 (9)0.09571 (3)0.79786 (14)0.02002 (18)
N3A0.74901 (9)0.03476 (3)0.77626 (13)0.01595 (17)
C1A0.66889 (10)0.05049 (4)0.74572 (15)0.01556 (19)
H1AA0.69580.08360.74110.019*
C2A0.50066 (10)0.00925 (3)0.75265 (14)0.01429 (18)
C3A0.35658 (10)0.02404 (4)0.74564 (15)0.01738 (19)
H3AA0.28170.00070.72840.021*
C4A0.32995 (11)0.07339 (4)0.76471 (16)0.0193 (2)
H4AA0.23610.08430.75950.023*
C5A0.44732 (11)0.10778 (4)0.79259 (16)0.0209 (2)
H5AA0.42740.14110.80820.025*
C6A0.60995 (10)0.04658 (4)0.77600 (15)0.01502 (18)
C7A0.77626 (10)0.01276 (3)0.75932 (14)0.01413 (18)
C8A0.92792 (10)0.02481 (4)0.74628 (15)0.01526 (19)
C9A1.07833 (11)0.08837 (4)0.67914 (17)0.0203 (2)
H9AA1.07500.12330.64880.031*
H9AB1.09510.07010.56680.031*
H9AC1.15700.08190.80380.031*
O1B0.52796 (7)0.17332 (3)0.64501 (12)0.01820 (16)
O2B0.45239 (8)0.25302 (3)0.63114 (13)0.02204 (17)
N1B0.93475 (9)0.20808 (3)0.61052 (13)0.01529 (17)
N2B0.89543 (9)0.34431 (3)0.62179 (13)0.01837 (18)
N3B0.72566 (9)0.28254 (3)0.61794 (13)0.01472 (16)
C1B0.79969 (10)0.19717 (3)0.61024 (15)0.01489 (18)
H1BA0.77150.16400.60570.018*
C2B0.96972 (10)0.25733 (3)0.61735 (14)0.01400 (18)
C3B1.11389 (11)0.27225 (4)0.62514 (15)0.0176 (2)
H3BA1.18610.24890.62590.021*
C4B1.14411 (11)0.32193 (4)0.63151 (16)0.0199 (2)
H4BA1.23790.33300.63720.024*
C5B1.03117 (11)0.35652 (4)0.62938 (16)0.0196 (2)
H5BA1.05450.39010.63360.024*
C6B0.86440 (10)0.29472 (3)0.61752 (14)0.01401 (18)
C7B0.69557 (10)0.23467 (3)0.61664 (14)0.01338 (18)
C8B0.54412 (10)0.22230 (4)0.62971 (15)0.01495 (18)
C9B0.39006 (11)0.15787 (4)0.67601 (18)0.0215 (2)
H9BA0.39010.12240.69270.032*
H9BB0.30930.16730.55810.032*
H9BC0.37950.17360.79770.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0143 (3)0.0134 (3)0.0275 (4)0.0008 (2)0.0076 (3)0.0009 (3)
O2A0.0153 (3)0.0168 (3)0.0304 (4)0.0025 (3)0.0085 (3)0.0018 (3)
N1A0.0162 (4)0.0156 (4)0.0176 (4)0.0015 (3)0.0065 (3)0.0003 (3)
N2A0.0175 (4)0.0140 (4)0.0271 (4)0.0009 (3)0.0047 (3)0.0023 (3)
N3A0.0133 (4)0.0139 (4)0.0195 (4)0.0006 (3)0.0034 (3)0.0012 (3)
C1A0.0165 (4)0.0129 (4)0.0183 (4)0.0012 (3)0.0068 (3)0.0008 (3)
C2A0.0142 (4)0.0154 (4)0.0132 (4)0.0008 (3)0.0040 (3)0.0001 (3)
C3A0.0146 (4)0.0224 (5)0.0156 (4)0.0010 (3)0.0053 (3)0.0002 (4)
C4A0.0155 (4)0.0243 (5)0.0181 (4)0.0044 (4)0.0050 (3)0.0000 (4)
C5A0.0206 (5)0.0181 (5)0.0231 (5)0.0045 (4)0.0051 (4)0.0014 (4)
C6A0.0142 (4)0.0137 (4)0.0164 (4)0.0006 (3)0.0035 (3)0.0012 (3)
C7A0.0133 (4)0.0133 (4)0.0153 (4)0.0012 (3)0.0035 (3)0.0005 (3)
C8A0.0144 (4)0.0144 (4)0.0165 (4)0.0004 (3)0.0040 (3)0.0009 (3)
C9A0.0165 (4)0.0168 (5)0.0298 (5)0.0020 (3)0.0101 (4)0.0011 (4)
O1B0.0143 (3)0.0148 (3)0.0272 (4)0.0014 (2)0.0087 (3)0.0005 (3)
O2B0.0166 (3)0.0183 (4)0.0338 (4)0.0029 (3)0.0116 (3)0.0028 (3)
N1B0.0147 (4)0.0154 (4)0.0166 (4)0.0012 (3)0.0061 (3)0.0005 (3)
N2B0.0211 (4)0.0140 (4)0.0215 (4)0.0020 (3)0.0085 (3)0.0009 (3)
N3B0.0146 (4)0.0145 (4)0.0159 (4)0.0010 (3)0.0060 (3)0.0004 (3)
C1B0.0155 (4)0.0127 (4)0.0172 (4)0.0004 (3)0.0062 (3)0.0001 (3)
C2B0.0134 (4)0.0156 (4)0.0132 (4)0.0008 (3)0.0043 (3)0.0000 (3)
C3B0.0138 (4)0.0217 (5)0.0177 (4)0.0004 (3)0.0056 (3)0.0000 (4)
C4B0.0157 (4)0.0245 (5)0.0195 (5)0.0054 (4)0.0052 (4)0.0006 (4)
C5B0.0225 (5)0.0170 (5)0.0196 (5)0.0053 (4)0.0068 (4)0.0007 (4)
C6B0.0144 (4)0.0143 (4)0.0139 (4)0.0002 (3)0.0051 (3)0.0002 (3)
C7B0.0122 (4)0.0146 (4)0.0138 (4)0.0013 (3)0.0047 (3)0.0007 (3)
C8B0.0142 (4)0.0159 (4)0.0150 (4)0.0004 (3)0.0048 (3)0.0007 (3)
C9B0.0152 (4)0.0189 (5)0.0324 (6)0.0024 (4)0.0102 (4)0.0040 (4)
Geometric parameters (Å, º) top
O1A—C8A1.3361 (11)O1B—C8B1.3344 (11)
O1A—C9A1.4512 (11)O1B—C9B1.4511 (11)
O2A—C8A1.2066 (12)O2B—C8B1.2041 (12)
N1A—C1A1.3177 (12)N1B—C1B1.3174 (12)
N1A—C2A1.3649 (12)N1B—C2B1.3637 (12)
N2A—C5A1.3212 (13)N2B—C5B1.3183 (13)
N2A—C6A1.3630 (12)N2B—C6B1.3648 (12)
N3A—C7A1.3163 (12)N3B—C7B1.3187 (12)
N3A—C6A1.3601 (12)N3B—C6B1.3608 (12)
C1A—C7A1.4230 (13)C1B—C7B1.4239 (13)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.4141 (13)C2B—C3B1.4146 (13)
C2A—C6A1.4194 (13)C2B—C6B1.4200 (13)
C3A—C4A1.3650 (14)C3B—C4B1.3650 (14)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.4178 (15)C4B—C5B1.4183 (15)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—H5AA0.9300C5B—H5BA0.9300
C7A—C8A1.5074 (13)C7B—C8B1.5074 (13)
C9A—H9AA0.9600C9B—H9BA0.9600
C9A—H9AB0.9600C9B—H9BB0.9600
C9A—H9AC0.9600C9B—H9BC0.9600
C8A—O1A—C9A115.74 (7)C8B—O1B—C9B115.14 (8)
C1A—N1A—C2A116.29 (8)C1B—N1B—C2B116.38 (8)
C5A—N2A—C6A116.72 (9)C5B—N2B—C6B116.57 (9)
C7A—N3A—C6A116.38 (8)C7B—N3B—C6B116.36 (8)
N1A—C1A—C7A121.92 (9)N1B—C1B—C7B121.96 (9)
N1A—C1A—H1AA119.0N1B—C1B—H1BA119.0
C7A—C1A—H1AA119.0C7B—C1B—H1BA119.0
N1A—C2A—C3A120.11 (9)N1B—C2B—C3B120.05 (9)
N1A—C2A—C6A121.57 (8)N1B—C2B—C6B121.57 (8)
C3A—C2A—C6A118.31 (9)C3B—C2B—C6B118.38 (9)
C4A—C3A—C2A118.45 (9)C4B—C3B—C2B118.13 (9)
C4A—C3A—H3AA120.8C4B—C3B—H3BA120.9
C2A—C3A—H3AA120.8C2B—C3B—H3BA120.9
C3A—C4A—C5A119.08 (9)C3B—C4B—C5B119.37 (9)
C3A—C4A—H4AA120.5C3B—C4B—H4BA120.3
C5A—C4A—H4AA120.5C5B—C4B—H4BA120.3
N2A—C5A—C4A124.53 (10)N2B—C5B—C4B124.55 (9)
N2A—C5A—H5AA117.7N2B—C5B—H5BA117.7
C4A—C5A—H5AA117.7C4B—C5B—H5BA117.7
N3A—C6A—N2A116.20 (8)N3B—C6B—N2B116.04 (8)
N3A—C6A—C2A120.92 (9)N3B—C6B—C2B120.96 (9)
N2A—C6A—C2A122.88 (9)N2B—C6B—C2B122.98 (9)
N3A—C7A—C1A122.81 (9)N3B—C7B—C1B122.73 (8)
N3A—C7A—C8A115.56 (8)N3B—C7B—C8B115.13 (8)
C1A—C7A—C8A121.59 (8)C1B—C7B—C8B122.11 (8)
O2A—C8A—O1A124.97 (9)O2B—C8B—O1B125.19 (9)
O2A—C8A—C7A124.05 (9)O2B—C8B—C7B123.84 (9)
O1A—C8A—C7A110.96 (8)O1B—C8B—C7B110.94 (8)
O1A—C9A—H9AA109.5O1B—C9B—H9BA109.5
O1A—C9A—H9AB109.5O1B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
O1A—C9A—H9AC109.5O1B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
C2A—N1A—C1A—C7A1.75 (14)C2B—N1B—C1B—C7B0.02 (13)
C1A—N1A—C2A—C3A179.51 (9)C1B—N1B—C2B—C3B177.88 (9)
C1A—N1A—C2A—C6A1.27 (13)C1B—N1B—C2B—C6B1.92 (13)
N1A—C2A—C3A—C4A178.29 (9)N1B—C2B—C3B—C4B179.91 (9)
C6A—C2A—C3A—C4A0.95 (14)C6B—C2B—C3B—C4B0.28 (14)
C2A—C3A—C4A—C5A0.57 (14)C2B—C3B—C4B—C5B0.22 (14)
C6A—N2A—C5A—C4A0.43 (16)C6B—N2B—C5B—C4B0.56 (15)
C3A—C4A—C5A—N2A1.35 (16)C3B—C4B—C5B—N2B0.09 (16)
C7A—N3A—C6A—N2A178.69 (9)C7B—N3B—C6B—N2B179.12 (8)
C7A—N3A—C6A—C2A1.72 (14)C7B—N3B—C6B—C2B0.48 (13)
C5A—N2A—C6A—N3A178.34 (9)C5B—N2B—C6B—N3B177.50 (8)
C5A—N2A—C6A—C2A1.24 (15)C5B—N2B—C6B—C2B1.11 (14)
N1A—C2A—C6A—N3A3.16 (14)N1B—C2B—C6B—N3B2.25 (14)
C3A—C2A—C6A—N3A177.61 (8)C3B—C2B—C6B—N3B177.55 (9)
N1A—C2A—C6A—N2A177.28 (9)N1B—C2B—C6B—N2B179.20 (9)
C3A—C2A—C6A—N2A1.94 (14)C3B—C2B—C6B—N2B0.99 (14)
C6A—N3A—C7A—C1A1.31 (14)C6B—N3B—C7B—C1B1.43 (13)
C6A—N3A—C7A—C8A176.28 (8)C6B—N3B—C7B—C8B176.59 (8)
N1A—C1A—C7A—N3A3.24 (15)N1B—C1B—C7B—N3B1.77 (15)
N1A—C1A—C7A—C8A174.20 (9)N1B—C1B—C7B—C8B176.12 (9)
C9A—O1A—C8A—O2A1.37 (14)C9B—O1B—C8B—O2B3.23 (14)
C9A—O1A—C8A—C7A176.73 (8)C9B—O1B—C8B—C7B175.04 (8)
N3A—C7A—C8A—O2A5.04 (14)N3B—C7B—C8B—O2B3.54 (14)
C1A—C7A—C8A—O2A177.34 (9)C1B—C7B—C8B—O2B178.43 (9)
N3A—C7A—C8A—O1A173.08 (8)N3B—C7B—C8B—O1B174.76 (8)
C1A—C7A—C8A—O1A4.54 (12)C1B—C7B—C8B—O1B3.27 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AA···O2Ai0.932.543.2401 (13)133
C4A—H4AA···N2Bii0.932.553.3311 (14)141
C9A—H9AA···N1B0.962.623.4741 (14)149
C3B—H3BA···O2Biii0.932.533.2496 (14)135
C4B—H4BA···N2Aiv0.932.513.3350 (14)147
C9B—H9BA···N1A0.962.573.4266 (14)149
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H7N3O2
Mr189.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5135 (1), 26.9042 (3), 6.7837 (1)
β (°) 107.686 (1)
V3)1654.24 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
18421, 4876, 4118
Rint0.025
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.04
No. of reflections4876
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AA···O2Ai0.93002.54003.2401 (13)133.00
C4A—H4AA···N2Bii0.93002.55003.3311 (14)141.00
C9A—H9AA···N1B0.96002.62003.4741 (14)149.00
C3B—H3BA···O2Biii0.93002.53003.2496 (14)135.00
C4B—H4BA···N2Aiv0.93002.51003.3350 (14)147.00
C9B—H9BA···N1A0.96002.57003.4266 (14)149.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+2, y+1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/EMR-II], Government of India, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. & Hazra, A. (2009). Chem. Lett. 38, 484–485.  Web of Science CrossRef CAS Google Scholar
First citationGoswami, S., Hazra, A., Goh, J. H. & Fun, H.-K. (2011). Synth. Commun. 41, 2505–2510.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, D. Z., Li, Y., Chen, X. G., Zhu, C. G., Yang, J., Liu, H. Y. & Pan, X. D. (2007). Chin. Chem. Lett. 18, 1335–1338.  CrossRef CAS Google Scholar
First citationListvan, V. N., Listvan, V. V. & Skekel, A. N. (2002). Chem. Heterocycl. Compd, 38, 1480–1483.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds