organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3092-o3093

4-(2,6-Di­bromo-4-fluoro­anilino)pent-3-en-2-one

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: truidie@hotmail.com

(Received 17 October 2011; accepted 25 October 2011; online 29 October 2011)

The title enamino­ketone, C11H10Br2FNO, has a roughly planar pentenone chain; the maximum displacement of an atom from the pentenone plane is 0.071 (4) Å. The dihedral angle between the benzene ring and the pentenone unit is 77.2 (1)°. Inter­molecular C—H⋯Br and C—H⋯O inter­actions, as well as an intra­molecular N—H⋯O inter­action, are observed. In both methyl groups, each H atom is disordered equally over two sites.

Related literature

For synthetic background, see: Shaheen et al. (2006[Shaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873-o874.]); Venter et al. (2010a[Venter, G. J. S., Steyl, G. & Roodt, A. (2010a). Acta Cryst. E66, o1593-o1594.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2010b). Acta Cryst. E66, o3011-o3012.]). For applications of enamino­ketones, see: Brink et al. (2010[Brink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572-5578.]); Chen & Rhodes (1996[Chen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497-504.]); Nair et al. (2002[Nair, V. A., Suni, M. M. & Sreekumar, K. (2002). Proc. Indian Acad. Sci. Chem. Sci. 114, 481-486.]); Otto et al. (1998[Otto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447-2453.]); Pyżuk et al. (1993[Pyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75-84.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1-23. Trivandrum: Transworld Research Network.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.], 1997[Steyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536/7, 197-205.]); Tan et al. (2008[Tan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab. Chip, 8, 885-891.]); Van Aswegen et al. (1991[Van Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem, 16, 369-371.]); Xia et al. (2008[Xia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402-408.]). For related ligand systems, see: Venter et al. (2009a[Venter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321-m1322.],b[Venter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606-m1607.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10Br2FNO

  • Mr = 351.02

  • Orthorhombic, P 21 21 21

  • a = 8.7710 (3) Å

  • b = 10.8710 (4) Å

  • c = 12.6720 (4) Å

  • V = 1208.27 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.70 mm−1

  • T = 100 K

  • 0.66 × 0.25 × 0.18 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.096, Tmax = 0.379

  • 20084 measured reflections

  • 2624 independent reflections

  • 2381 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.063

  • S = 1.04

  • 2624 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.70 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1102 Friedel pairs

  • Flack parameter: 0.057 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯O12 0.85 1.99 2.650 (4) 134
C5—H5A⋯Br16i 0.98 2.85 3.702 (4) 145
C5—H5F⋯Br16i 0.98 2.90 3.702 (4) 139
C5—H5B⋯Br12ii 0.98 2.88 3.839 (4) 168
C5—H5D⋯O12iii 0.98 2.44 3.354 (4) 155
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A well known system in organometallic chemistry is the β-diketone compound AcacH (acetylacetone; or when coordinated acetylacetonato, acac-). A multitude of derivatives have been synthesized to date, with enaminoketones being one type. Enaminoketones contain nitrogen and oxygen atoms as well as an unsaturated CC bond, making these electron-rich compounds of interest in various fields including liquid crystals (Pyżuk et al., 1993), fluorescence studies (Xia et al., 2008) as well as the formation of complexes of medical interest (Tan et al., 2008; Chen & Rhodes, 1996). It also has significant application possibilities in catalysis (Nair et al., 2002; Van Aswegen et al., 1991; Steyn et al., 1992, 1997; Otto et al., 1998; Roodt & Steyn, 2000; Brink et al., 2010). Enaminoketones readily coordinate to rhodium to form carbonyl species (Venter et al., 2009a, 2009b).

The title compound (Fig. 1) is a derivative of 4-(phenylamino)pent-3-en-2-one whose crystal structure has already been published (Shaheen et al., 2006) and forms part of an ongoing investigation on the influence of electron-donating and -withdrawing substituents on the benzene unit of these types of enaminoketones (Table 2; Venter et al., 2010a, 2010b). The position of the substituents has an influence on the dihedral angle (angle between the benzene ring and the N—C—C—C—O plane) of the compounds, with compounds containing substituents on the ortho-position having larger dihedral angles. The N···O distance is larger for compounds containing electron-withdrawing substituents than for compounds containing electron-donating substituents. The C2—C3 distance of 1.355 (5) Å, versus the C3—C4 bond distance of 1.432 (5) Å indicates an unsaturated bond in the pentenone backbone. The dihedral angle between the benzene ring and pentenone unit is 77.2 (1)°.

Intermolecular C—H···Br and C—H···O interactions as well as an intramolecular N—H···O interaction are observed. There is also a short Br···Br contact of 3.496 (1)Å for Br12···Br16(1/2-x, 1-y, z-1/2).

Related literature top

For synthetic background, see: Shaheen et al. (2006); Venter et al. (2010a,b). For applications of enaminoketones, see: Brink et al. (2010); Chen & Rhodes (1996); Nair et al. (2002); Otto et al. (1998); Pyżuk et al. (1993); Roodt & Steyn (2000); Steyn et al. (1992, 1997); Tan et al. (2008); Van Aswegen et al. (1991); Xia et al. (2008). For related ligand systems, see: Venter et al. (2009a,b).

Experimental top

A solution of acetylacetone (11.15 g, 0.1113 mol), 2,6-dibromo-4-fluoroaniline (26.94 g, 0.1002 mol) and 2 drops of H2SO4(conc.) in 150 ml benzene was refluxed for 24 h in a Dean-Stark trap, filtered and left to crystallize. Crystals suitable for X-ray diffraction were obtained in 30.80 g (87.59%) yield. This compound is stable in air and light over a period of several months.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 and 0.98 Å for Csp2—H and C(methyl)—H, respectively, N—H = 0.85 Å; Uiso(H) = kUeq(carrier atom), where k = 1.2 for Csp2—H and 1.5 for all other H atoms. The methyl groups were positioned to fit the difference electron density and the groups were then refined as rigid rotors. In both methyl groups each H atom is disordered equally over two sites.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability displacement level. Hydrogen atoms are shown as spheres of arbitrary radius. Both disorder components are shown.
[Figure 2] Fig. 2. Partially filled unit cell illustrating the intra- and intermolecular hydrogen bond interactions (dashed lines) in the title compound. Hydrogen atoms not involved in these interactions have been omitted for clarity.
4-(2,6-Dibromo-4-fluoroanilino)pent-3-en-2-one top
Crystal data top
C11H10Br2FNOF(000) = 680
Mr = 351.02Dx = 1.93 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9975 reflections
a = 8.7710 (3) Åθ = 2.5–26.8°
b = 10.8710 (4) ŵ = 6.70 mm1
c = 12.6720 (4) ÅT = 100 K
V = 1208.27 (7) Å3Cuboid, colourless
Z = 40.66 × 0.25 × 0.18 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2624 independent reflections
Radiation source: fine-focus sealed tube2381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ω and ϕ scansθmax = 27°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.096, Tmax = 0.379k = 1313
20084 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.0721P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2624 reflectionsΔρmax = 0.48 e Å3
147 parametersΔρmin = 0.70 e Å3
0 restraintsAbsolute structure: Flack (1983), 1102 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.057 (12)
Crystal data top
C11H10Br2FNOV = 1208.27 (7) Å3
Mr = 351.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7710 (3) ŵ = 6.70 mm1
b = 10.8710 (4) ÅT = 100 K
c = 12.6720 (4) Å0.66 × 0.25 × 0.18 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
2624 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2381 reflections with I > 2σ(I)
Tmin = 0.096, Tmax = 0.379Rint = 0.084
20084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.48 e Å3
S = 1.04Δρmin = 0.70 e Å3
2624 reflectionsAbsolute structure: Flack (1983), 1102 Friedel pairs
147 parametersAbsolute structure parameter: 0.057 (12)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 5 s/frame. A total of 1849 frames were collected with a frame width of 0.5° covering up to θ = 26.83° with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3941 (5)0.1897 (4)0.4390 (3)0.0321 (9)
H1A0.47240.25090.45590.048*0.5
H1B0.43970.1230.39750.048*0.5
H1C0.35170.15610.50450.048*0.5
H1D0.37020.10250.44940.048*0.5
H1E0.40280.23030.50770.048*0.5
H1F0.49080.19730.40080.048*0.5
C20.2691 (4)0.2495 (3)0.3761 (3)0.0205 (8)
C30.1464 (4)0.1850 (3)0.3420 (3)0.0193 (8)
H30.13930.1010.36210.023*
C40.0266 (4)0.2343 (3)0.2780 (2)0.0176 (8)
C50.0933 (4)0.1488 (3)0.2389 (3)0.0284 (9)
H5A0.16720.19470.19640.043*0.5
H5B0.14540.11090.29910.043*0.5
H5C0.04610.08460.19560.043*0.5
H5D0.07190.06540.26430.043*0.5
H5E0.09370.14920.16160.043*0.5
H5F0.19310.17550.26510.043*0.5
C1110.4145 (4)0.4411 (3)0.3773 (3)0.0177 (7)
C1120.4141 (4)0.5250 (3)0.4607 (3)0.0183 (7)
C1130.5425 (4)0.5915 (3)0.4879 (3)0.0213 (8)
H1130.54060.64870.54460.026*
C1140.6730 (4)0.5723 (3)0.4304 (3)0.0232 (8)
C1150.6803 (4)0.4939 (3)0.3454 (3)0.0222 (8)
H1150.77190.48360.30630.027*
C1160.5489 (4)0.4306 (3)0.3194 (2)0.0202 (7)
N110.2846 (3)0.3703 (2)0.3530 (2)0.0198 (7)
H110.2120.40570.32200.03*
O120.0192 (3)0.3462 (2)0.2553 (2)0.0236 (6)
F140.8008 (2)0.6351 (2)0.45685 (18)0.0322 (5)
Br120.23441 (4)0.54808 (3)0.53970 (3)0.02556 (11)
Br160.55267 (5)0.32820 (4)0.19895 (3)0.03091 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.022 (2)0.036 (2)0.0009 (18)0.0122 (18)0.0052 (18)
C20.029 (2)0.0168 (17)0.0156 (16)0.0030 (16)0.0038 (16)0.0017 (14)
C30.025 (2)0.0096 (16)0.0229 (17)0.0021 (16)0.0014 (15)0.0040 (15)
C40.018 (2)0.0175 (18)0.0176 (17)0.0005 (15)0.0070 (14)0.0024 (14)
C50.019 (2)0.022 (2)0.045 (2)0.0041 (16)0.0055 (17)0.0049 (18)
C1110.0196 (19)0.0122 (16)0.0211 (17)0.0013 (15)0.0056 (14)0.0016 (15)
C1120.0223 (19)0.0151 (17)0.0176 (16)0.0046 (14)0.0021 (15)0.0014 (15)
C1130.029 (2)0.0146 (17)0.0205 (18)0.0012 (17)0.0043 (16)0.0017 (14)
C1140.0225 (19)0.0178 (19)0.029 (2)0.0069 (16)0.0062 (16)0.0080 (16)
C1150.0193 (19)0.026 (2)0.0210 (17)0.0021 (16)0.0007 (14)0.0065 (17)
C1160.0238 (19)0.0230 (18)0.0138 (16)0.0057 (17)0.0035 (15)0.0019 (14)
N110.0189 (16)0.0144 (14)0.0262 (15)0.0003 (12)0.0063 (13)0.0005 (13)
O120.0212 (14)0.0162 (13)0.0333 (14)0.0001 (11)0.0054 (11)0.0041 (12)
F140.0277 (12)0.0315 (12)0.0375 (12)0.0103 (10)0.0077 (10)0.0010 (11)
Br120.0260 (2)0.0285 (2)0.02217 (18)0.00240 (17)0.00389 (16)0.00038 (16)
Br160.0296 (2)0.0391 (2)0.02405 (18)0.0117 (2)0.00532 (17)0.01234 (18)
Geometric parameters (Å, º) top
C1—C21.503 (5)C5—H5D0.98
C1—H1A0.98C5—H5E0.98
C1—H1B0.98C5—H5F0.98
C1—H1C0.98C111—C1161.393 (5)
C1—H1D0.98C111—C1121.397 (5)
C1—H1E0.98C111—N111.408 (4)
C1—H1F0.98C112—C1131.382 (5)
C2—N111.353 (4)C112—Br121.884 (3)
C2—C31.355 (5)C113—C1141.373 (5)
C3—C41.431 (5)C113—H1130.95
C3—H30.95C114—F141.355 (4)
C4—O121.252 (4)C114—C1151.375 (5)
C4—C51.488 (5)C115—C1161.382 (5)
C5—H5A0.98C115—H1150.95
C5—H5B0.98C116—Br161.889 (3)
C5—H5C0.98N11—H110.8453
C2—C1—H1A109.5C4—C5—H5D109.5
C2—C1—H1B109.5H5A—C5—H5D141.1
H1A—C1—H1B109.5H5B—C5—H5D56.3
C2—C1—H1C109.5H5C—C5—H5D56.3
H1A—C1—H1C109.5C4—C5—H5E109.5
H1B—C1—H1C109.5H5A—C5—H5E56.3
C2—C1—H1D109.5H5B—C5—H5E141.1
H1A—C1—H1D141.1H5C—C5—H5E56.3
H1B—C1—H1D56.3H5D—C5—H5E109.5
H1C—C1—H1D56.3C4—C5—H5F109.5
C2—C1—H1E109.5H5A—C5—H5F56.3
H1A—C1—H1E56.3H5B—C5—H5F56.3
H1B—C1—H1E141.1H5C—C5—H5F141.1
H1C—C1—H1E56.3H5D—C5—H5F109.5
H1D—C1—H1E109.5H5E—C5—H5F109.5
C2—C1—H1F109.5C116—C111—C112117.0 (3)
H1A—C1—H1F56.3C116—C111—N11121.7 (3)
H1B—C1—H1F56.3C112—C111—N11121.3 (3)
H1C—C1—H1F141.1C113—C112—C111121.9 (3)
H1D—C1—H1F109.5C113—C112—Br12118.6 (2)
H1E—C1—H1F109.5C111—C112—Br12119.4 (2)
N11—C2—C3120.9 (3)C114—C113—C112117.8 (3)
N11—C2—C1117.4 (3)C114—C113—H113121.1
C3—C2—C1121.6 (3)C112—C113—H113121.1
C2—C3—C4124.7 (3)F14—C114—C113118.8 (3)
C2—C3—H3117.6F14—C114—C115117.9 (3)
C4—C3—H3117.6C113—C114—C115123.3 (3)
O12—C4—C3122.2 (3)C114—C115—C116117.2 (3)
O12—C4—C5119.6 (3)C114—C115—H115121.4
C3—C4—C5118.3 (3)C116—C115—H115121.4
C4—C5—H5A109.5C115—C116—C111122.7 (3)
C4—C5—H5B109.5C115—C116—Br16118.1 (3)
H5A—C5—H5B109.5C111—C116—Br16119.2 (3)
C4—C5—H5C109.5C2—N11—C111124.4 (3)
H5A—C5—H5C109.5C2—N11—H11117.8
H5B—C5—H5C109.5C111—N11—H11117.8
N11—C2—C3—C41.8 (6)F14—C114—C115—C116179.9 (3)
C1—C2—C3—C4177.1 (3)C113—C114—C115—C1161.1 (5)
C2—C3—C4—O126.2 (5)C114—C115—C116—C1112.0 (5)
C2—C3—C4—C5174.5 (3)C114—C115—C116—Br16177.0 (3)
C116—C111—C112—C1132.5 (5)C112—C111—C116—C1153.8 (5)
N11—C111—C112—C113177.4 (3)N11—C111—C116—C115176.2 (3)
C116—C111—C112—Br12178.0 (2)C112—C111—C116—Br16175.2 (2)
N11—C111—C112—Br122.1 (4)N11—C111—C116—Br164.8 (4)
C111—C112—C113—C1140.4 (5)C3—C2—N11—C111174.1 (3)
Br12—C112—C113—C114179.2 (3)C1—C2—N11—C1114.8 (5)
C112—C113—C114—F14178.9 (3)C116—C111—N11—C275.4 (5)
C112—C113—C114—C1152.3 (5)C112—C111—N11—C2104.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O120.851.992.650 (4)134
C5—H5A···Br16i0.982.853.702 (4)145
C5—H5F···Br16i0.982.903.702 (4)139
C5—H5B···Br12ii0.982.883.839 (4)168
C5—H5D···O12iii0.982.443.354 (4)155
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H10Br2FNO
Mr351.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.7710 (3), 10.8710 (4), 12.6720 (4)
V3)1208.27 (7)
Z4
Radiation typeMo Kα
µ (mm1)6.70
Crystal size (mm)0.66 × 0.25 × 0.18
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.096, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
20084, 2624, 2381
Rint0.084
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 1.04
No. of reflections2624
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.70
Absolute structureFlack (1983), 1102 Friedel pairs
Absolute structure parameter0.057 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O120.851.992.650 (4)133.7
C5—H5A···Br16i0.982.853.702 (4)145.3
C5—H5F···Br16i0.982.903.702 (4)139
C5—H5B···Br12ii0.982.883.839 (4)167.6
C5—H5D···O12iii0.982.443.354 (4)155
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x, y1/2, z+1/2.
Comparative geometrical parameters (Å, °) for free and coordinated N,O-bidendate (N,O-bid) compounds. top
ParametersIIIIIIIV
N11—C1111.409 (4)1.412 (3)1.422 (2)1.417 (2)
N11—C21.352 (4)1.352 (3)1.345 (2)1.348 (1)
O12—C41.252 (4)1.244 (3)1.257 (2)1.253 (1)
C2—C31.355 (5)1.365 (4)1.383 (3)1.384 (2)
C3—C41.432 (5)1.424 (4)1.420 (2)1.424 (2)
N11···O122.650 (4)2.658 (3)2.635 (2)2.646 (1)
N11—C2···C4—O12-3.8 (3)1.4 (2)-0.5 (1)1.70 (9)
Dihedral angle77.2 (1)32.03 (9)49.53 (5)29.90 (3)
(I) This work; (II) 4-(phenylamino)pent-3-en-2-onato [Shaheen et al. (2006)]; (III) 4-(2-methylphenylamino)pent-3-en-2-onato [Venter et al. (2010a)]; (IV) 4-(4-methylphenylamino)pent-3-en-2-onato [Venter et al. (2010b)]. The dihedral angle is defined as the torsion angle between the N—C—C—C—O plane and the benzene ring. A positive angle denotes a clockwise rotation.
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. We also express our gratitude towards SASOL, the South African National Research Foundation (SA-NRF/THRIP) and the Inkaba yeAfrica initiative for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Visser, H. G., Steyl, G. & Roodt, A. (2010). Dalton Trans. 39, 5572–5578.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497–504.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNair, V. A., Suni, M. M. & Sreekumar, K. (2002). Proc. Indian Acad. Sci. Chem. Sci. 114, 481–486.  CrossRef CAS Google Scholar
First citationOtto, S., Roodt, A., Swarts, J. C. & Erasmus, J. C. (1998). Polyhedron, 17, 2447–2453.  Web of Science CSD CrossRef CAS Google Scholar
First citationPyżuk, W., Krówczynsk, A. & Górecka, E. (1993). Mol. Cryst. Liq. Cryst. 237, 75–84.  Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Recent Research Developments in Inorganic Chemistry, Vol. 2, pp. 1–23. Trivandrum: Transworld Research Network.  Google Scholar
First citationShaheen, F., Marchio, L., Badshah, A. & Khosa, M. K. (2006). Acta Cryst. E62, o873–o874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteyn, G. J. J., Roodt, A., Poletaeva, I. A. & Varshavsky, Y. S. (1997). J. Organomet. Chem. 536/7, 197–205.  CSD CrossRef Web of Science Google Scholar
First citationTan, H. Y., Loke, W. K., Tan, Y. T. & Nguyen, N.-T. (2008). Lab. Chip, 8, 885–891.  CrossRef PubMed CAS Google Scholar
First citationVan Aswegen, K. G., Leipoldt, J. G., Potgieter, I. M., Roodt, A. & Van Zyl, G. J. (1991). Transition Met. Chem, 16, 369–371.  CrossRef CAS Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009a). Acta Cryst. E65, m1321–m1322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2009b). Acta Cryst. E65, m1606–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010a). Acta Cryst. E66, o1593–o1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenter, G. J. S., Steyl, G. & Roodt, A. (2010b). Acta Cryst. E66, o3011–o3012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXia, M., Wu, B. & Xiang, G. (2008). J. Fluorine Chem. 129, 402–408.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages o3092-o3093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds